Q1.	. I enjoy trying to discover and write MATH 135 proofs.
A)	Strongly disagree
B)	Disagree

- C) Neither agree nor disagree
- D) Agree
- E) Strongly agree

Q2.When I have difficulties with MATH 135 proofs, I know I can handle them.

- A) Strongly disagree
- B) Disagree
- C) Neither agree nor disagree
- D) Agree
- E) Strongly agree

Q3. Consider the following statement.

$$\{2k: k \in \mathbb{N}\} \supseteq \{n \in \mathbb{Z}: 8 \mid (n+4)\}$$

A well written and correct direct proof of this statement could begin with

- A) We will show that the statement is true in both directions.
- B) Assume that $8 \mid (n+4)$ where n is an integer. (CORRECT)
- C) Let $m \in \{n \in \mathbb{Z} : 8 \mid (n+4)\}.$
- D) Let $m \in \{2k : k \in \mathbb{N}\}.$
- E) Assume that $8 \mid (2k+4)$.

Notes:

1. A single counter example proves that $(\forall x \in S, P(x))$ is false.

Claim: Every positive even integer is composite.

This claim is false since 2 is even but 2 is prime.

2. A single example does not prove that $(\forall x \in S, P(x))$ is true.

Claim: Every even integer at least 4 is composite.

This is true but we cannot prove it by saying "6 is an even integer and is composite." We must show this is true for an arbitrary even integer x. (Idea: $2 \mid x$ so there exists a $k \in \mathbb{N}$ such that 2k = x and $k \neq 1$.)

3. A single example does show that $(\exists x \in S, P(x))$ is true.

Claim: Some even integer is prime.

This claim is true since 2 is even and 2 is prime.

4. What about showing that $(\exists x \in S, P(x))$ is false? Idea: $(\exists x \in S, P(x))$ is false $\equiv \forall x \in S, \neg P(x)$ is true. This idea is central for proof by contradiction which we will see later.

Negating Quantifiers.	L8P3
Degate the following. Every body in this room was to before 2010.	Ю ГЛ
Egotion. Some bady in this noom was Not he before 2010.	DD
ET. Someone in this soon was borr 1990. [1987]	the street of the street that the street of
Egotel: Everyone inthis room was born 131. HXER, 1X1<5	
Vegdei) FXER, 1X1 35 = 7 (YXER) 1. FXER 1X1 < 5 YXER 1X1 > 5.	,1x1<5)
B) Apost that a statement is fall	50 (S

MB) A proof that a statement is false is called a disproof-

Which of the following are true?

1.
$$\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x^3 - y^3 = 1$$
 FALSE (Charles x zo)

2.
$$\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x^3 - y^3 = 1$$
 TRUE $(+=1, y=0)$

3.
$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x^3 - y^3 = 1$$

4.
$$\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x^3 - y^3 = 1$$

4. $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x^3 - y^3 = 1$ $|3| \text{ TRUE: P.F.: Let } \times \in \mathbb{R} \text{ be orbitrary. Then Choose}$ 4= 3/x3-1. Then

$$4^{3}-4^{3}=x^{3}-(3\sqrt{x^{3}-1})^{3}=x^{3}-(x^{3}-1)=1$$
.

IT FALSE. I deai Negerte and Show the regation 13 true

Let x ER bearbitrary. Take Y= X. Then $\chi^{3} - \chi^{3} = \chi^{3} - \chi^{3} = 0 \neq 1$. 日.

Notation Cheat Sheet

- 1. + Addition
- 2. Subtraction
- $3. \times, \cdot$ Multiplication
- 4. \div ,/ Division
- 5. N Natural Numbers
- 6. Z Integers (Zählen)
- 7. Q Rational Numbers (Quoziente)
- 8. \mathbb{R} Real Numbers
- 9. ¬ Not, Negation
- 10. V Or
- 11. \wedge And
- 12. | Divides
- 13. \Rightarrow Implies (If... Then)
- 14. \Leftrightarrow , (iff) If and Only If
- 15. \in In
- 16. ∉ Not In
- 17. {}, ∅ Empty Set
- 18. ∩ Intersection (Of Sets)
- 19. ∪ Union (Of Sets)
- 20. \subset Subset
- 21. \subseteq Subset Or Equal
- 22. \subseteq Proper/Strict Subset (Subset Not Equal)
- 23. ⊃ Contains
- 24. ⊇ Contains Or Equal
- 25. ⊋ Properly/Strictly Contains (Contains Not Equal)
- 26. \forall For All
- 27. ∃ There Exists

List all elements of the set:

$$\{n \in \mathbb{Z} : n > 1 \land ((m \in \mathbb{Z} \land m > 0 \land m \mid n) \Rightarrow (m = 1 \lor m = n))\}$$

$$\cap \{n \in \mathbb{Z} : n \mid 42\}$$