Lecture 7

Quantified Statements

- (i) For every natural number n, $2n^2 + 11n + 15$ is composite.
- (ii) There is an integer k such that 6 = 3k.

Symbolically, we write

- (i) $\forall n \in \mathbb{N}, 2n^2 + 11n + 15$ is composite.
- (ii) $\exists k \in \mathbb{Z}$ such that 6 = 3k.

We call \forall and \exists quantifiers, n and k variables, \mathbb{N} and \mathbb{Z} domains and the rest are called an open sentence (usually involving the variable(s)).

Note: $\forall x \in S P(x)$ means for all x in S, statuent P(x) holds. This is equivalent to $x \in S \Rightarrow P(x)$.

Proof: (of number 1 above) Let n be an arbitrary natural number. Then factoring gives $2n^2 + 11n + 15 = (2n+5)(n+3)$. Since 2n+5 > 1 and n+3 > 1, we have $2n^2 + 11n + 15$ is composite.

Proof: (of number 2 above) Since $3 \cdot 2 = 6$, we see that k = 2 satisfies the given statement.

Example: $S \subseteq T \equiv \forall x \in S \ x \in T$

Instructor's Comments: This is the 7 minute mark

Handout or Document Camera or Class Exercise

Example: Prove that there is an $x \in \mathbb{R}$ such that $\frac{x^2+3x-3}{2x+3} = 1$.

Proof: When x = 2, note that $\frac{2^2+3(2)-3}{2(2)+3} = \frac{7}{7} = 1$.

Note: : The discovery of this proof is perhaps what is more interesting:

$$\frac{x^2 + 3x - 3}{2x + 3} = 1 \quad \Leftrightarrow \quad x^2 + 3x - 3 = 2x + 3 \quad \Leftrightarrow \quad x^2 + x - 6 = 0$$

and the last equation factors as (x-2)(x+3) = 0 and hence x = 2.

Instructor's Comments: This is the 17 minute mark

Note: : Vacuously true statements $\forall x \in \emptyset$, P(x). Since there is no element in the empty set, we define this statement to always be true as a matter of convention.

Example: Let $a, b, c \in \mathbb{Z}$. If $\forall x \in \mathbb{Z}, a \mid (bx + c)$ then $a \mid (b + c)$.

Proof: Assume $\forall x \in \mathbb{Z}$, $a \mid (bx + c)$. Then, for example, when x = 1, we see that $a \mid (b(1) + c)$. Thus $a \mid (b + c)$.

Instructor's Comments: Note: If you're running short on time, this next example can be omitted

Example: $\exists m \in \mathbb{Z} \text{ such that } \frac{m-7}{2m+4} = 5.$

Proof: When m = 3, note that $\frac{m-7}{2m+4} = \frac{-3-7}{2(-3)+4} = \frac{-10}{-2} = 5$

Instructor's Comments: This should be the 26-30 minute mark

Handout or Document Camera or Class Exercise

Example: Show that for each $x \in \mathbb{R}$, we have that $x^2 + 4x + 7 > 0$.

Instructor's Comments: For the next two pages, you should give students say 5 minutes each (maybe more for the second handout) and then take them up as a class for 5 minutes each

Proof: Let $x \in \mathbb{R}$ be arbitrary. Then

$$x^{2} + 4x + 7 = x^{2} + 4x + 4 - 4 + 7$$
$$= (x + 2)^{2} + 3$$
$$> 0$$

Handout or Document Camera or Class Exercise

Sometimes \forall and \exists are hidden! If you encounter a statement with quantifiers, take a moment to make sure you understand what the question is saying/asking.

Examples:

- (i) $2n^2 + 11n + 15$ is never prime when n is a natural number.
- (ii) If n is a natural number, then $2n^2 + 11n + 15$ is composite.
- (iii) $\frac{m-7}{2m+4} = 5$ for some integer m.
- (iv) $\frac{m-7}{2m+4} = 5$ has an integer solution.

Solution:

- (i) $\forall n \in \mathbb{N}, 2n^2 + 11n + 15$ is not prime.
- (ii) $\forall n \in \mathbb{N}, 2n^2 + 11n + 15$ is composite.

(iii)
$$\exists m \in \mathbb{Z}, \frac{m-7}{2m+4} = 5$$
.

(iv) $\exists m \in \mathbb{Z}, \frac{m-7}{2m+4} = 5.$

Instructor's Comments: This should be about the 46 minute mark

Note: : Domain is important!

Let P(x) be the statement $x^2 = 2$ and let $S = \{\sqrt{2}, -\sqrt{2}\}$. Which of the following are true?

- (i) $\exists x \in \mathbb{Z}, P(x)$
- (ii) $\forall x \in \mathbb{Z}, P(x)$
- (iii) $\exists x \in \mathbb{R}, P(x)$
- (iv) $\forall x \in \mathbb{R}, P(x)$
- (v) $\exists x \in S, P(x)$
- (vi) $\forall x \in S, P(x)$

Solution:

- (i) False
- (ii) False
- (iii) True
- (iv) False
- (v) True
- (vi) True

Instructor's Comments: This is the end of the lecture.