Lecture 7

Quantified Statements

(i) For every natural number $n, 2 n^{2}+11 n+15$ is composite.
(ii) There is an integer k such that $6=3 k$.

Symbolically, we write
(i) $\forall n \in \mathbb{N}, 2 n^{2}+11 n+15$ is composite.
(ii) $\exists k \in \mathbb{Z}$ such that $6=3 k$.

We call \forall and \exists quantifiers, n and k variables, \mathbb{N} and \mathbb{Z} domains and the rest are called an open sentence (usually involving the variable(s)).

Note: $\forall x \in S P(x)$ means for all x in S, statment $P(x)$ holds. This is equivalent to $x \in S \Rightarrow P(x)$.

Proof: (of number 1 above) Let n be an arbitrary natural number. Then factoring gives $2 n^{2}+11 n+15=(2 n+5)(n+3)$. Since $2 n+5>1$ and $n+3>1$, we have $2 n^{2}+11 n+15$ is composite.

Proof: (of number 2 above) Since $3 \cdot 2=6$, we see that $k=2$ satisfies the given statement.
Example: $\quad S \subseteq T \equiv \forall x \in S x \in T$
Instructor's Comments: This is the 7 minute mark

Handout or Document Camera or Class Exercise
Example: Prove that there is an $x \in \mathbb{R}$ such that $\frac{x^{2}+3 x-3}{2 x+3}=1$.

Proof: When $x=2$, note that $\frac{2^{2}+3(2)-3}{2(2)+3}=\frac{7}{7}=1$.
Note: : The discovery of this proof is perhaps what is more interesting:

$$
\frac{x^{2}+3 x-3}{2 x+3}=1 \quad \Leftrightarrow \quad x^{2}+3 x-3=2 x+3 \quad \Leftrightarrow \quad x^{2}+x-6=0
$$

and the last equation factors as $(x-2)(x+3)=0$ and hence $x=2$.
Instructor's Comments: This is the 17 minute mark

Note: : Vacuously true statements $\forall x \in \emptyset, P(x)$. Since there is no element in the empty set, we define this statement to always be true as a matter of convention.

Example: Let $a, b, c \in \mathbb{Z}$. If $\forall x \in \mathbb{Z}, a \mid(b x+c)$ then $a \mid(b+c)$.
Proof: Assume $\forall x \in \mathbb{Z}, a \mid(b x+c)$. Then, for example, when $x=1$, we see that $a \mid(b(1)+c)$. Thus $a \mid(b+c)$.

Instructor's Comments: Note: If you're running short on time, this next example can be omitted

Example: $\exists m \in \mathbb{Z}$ such that $\frac{m-7}{2 m+4}=5$.
Proof: When $m=3$, note that $\frac{m-7}{2 m+4}=\frac{-3-7}{2(-3)+4}=\frac{-10}{-2}=5$
Instructor's Comments: This should be the 26-30 minute mark

Handout or Document Camera or Class Exercise
Example: Show that for each $x \in \mathbb{R}$, we have that $x^{2}+4 x+7>0$.

Instructor's Comments: For the next two pages, you should give students say 5 minutes each (maybe more for the second handout) and then take them up as a class for 5 minutes each

Proof: Let $x \in \mathbb{R}$ be arbitrary. Then

$$
\begin{aligned}
x^{2}+4 x+7 & =x^{2}+4 x+4-4+7 \\
& =(x+2)^{2}+3 \\
& >0
\end{aligned}
$$

Sometimes \forall and \exists are hidden! If you encounter a statement with quantifiers, take a moment to make sure you understand what the question is saying/asking.

Examples:
(i) $2 n^{2}+11 n+15$ is never prime when n is a natural number.
(ii) If n is a natural number, then $2 n^{2}+11 n+15$ is composite.
(iii) $\frac{m-7}{2 m+4}=5$ for some integer m.
(iv) $\frac{m-7}{2 m+4}=5$ has an integer solution.

Solution:

(i) $\forall n \in \mathbb{N}, 2 n^{2}+11 n+15$ is not prime.
(ii) $\forall n \in \mathbb{N}, 2 n^{2}+11 n+15$ is composite.
(iii) $\exists m \in \mathbb{Z}, \frac{m-7}{2 m+4}=5$.
(iv) $\exists m \in \mathbb{Z}, \frac{m-7}{2 m+4}=5$.

Instructor's Comments: This should be about the 46 minute mark

Note: : Domain is important!
Let $P(x)$ be the statement $x^{2}=2$ and let $S=\{\sqrt{2},-\sqrt{2}\}$. Which of the following are true?
(i) $\exists x \in \mathbb{Z}, P(x)$
(ii) $\forall x \in \mathbb{Z}, P(x)$
(iii) $\exists x \in \mathbb{R}, P(x)$
(iv) $\forall x \in \mathbb{R}, P(x)$
(v) $\exists x \in S, P(x)$
(vi) $\forall x \in S, P(x)$

Solution:

(i) False
(ii) False
(iii) True
(iv) False
(v) True
(vi) True

Instructor's Comments: This is the end of the lecture.

