## Lecture 6

Note: $\}$ and $\emptyset$ are the empty set, a set with no elements.
Note: $\{\emptyset\}$ is NOT the empty set. It is a set with one element, the element that is the empty set.

Example: In set notation, write the set of positive integers less than 1000 and which are multiples of 7 .

Instructor's Comments: Might be good to give students a minute to try this

Solution: $\{n \in \mathbb{N}: n<1000 \wedge 7 \mid n\}$. Another answer is given by

$$
\{7 k: k \in \mathbb{N} \wedge k \leq 142\}
$$

Note: The : symbol means "such that". Sometimes | is used as well (though because we use it for divisibility, we won't use it in this context very often if at all).

Instructor's Comments: This is the 7 minute mark

Handout or Document Camera or Class Exercise
Describe the following sets using set-builder notation:
(i) Set of even numbers between 5 and 14 (inclusive).
(ii) All odd perfect squares.
(iii) Sets of three integers which are the side lengths of a (non-trivial) triangle.
(iv) All points on a circle of radius 8 centred at the origin.

Instructor's Comments: 5 minutes to try on their own and 5 to take up

## Solution:

(i) $\{6,8,10,12,14\}$ or $\{n \in \mathbb{N}: 5 \leq n \leq 14 \wedge 2 \mid n\}$
(ii) $\left\{(2 k+1)^{2}: k \in \mathbb{Z}\right\}$ (or $\mathbb{N}$ overlap doesn't matter!)
(iii) $\{(a, b, c): a, b, c \in \mathbb{N} \wedge a<b+c \wedge b<a+c \wedge c<a+b\}$
(iv) $\left\{(x, y): x, y \in \mathbb{R} \wedge x^{2}+y^{2}=8^{2}\right\}$

Instructor's Comments: This is the 17 minute mark

Set Operations. Let $S$ and $T$ be sets. Define
(i) $\# S$ or $|S|$. Size of the set $S$.
(ii) $S \cup T=\{x: x \in S \vee x \in T\}$ (Union)
(iii) $S \cap T=\{x: x \in S \wedge x \in T\}$ (Intersection)
(iv) $S-T=\{x \in S: x \notin T\}$ (Set difference)
(v) $\bar{S}$ or $S^{c}$ (with respect to universe $U$ ) the complement of $S$, that is

$$
S^{c}=\{x \in U: x \notin S\}=U-S
$$

(vi) $S \times T=\{(x, y): x \in S \wedge y \in T\}$ (Cartesian Product)

Example: $(1,2) \in \mathbb{Z} \times \mathbb{Z},(2,1) \in \mathbb{Z} \times \mathbb{Z}$, $\operatorname{BUT}(1,2) \neq(2,1)$.
Note: $\mathbb{Z} \times \mathbb{Z}$ and $\{(n, n): n \in \mathbb{Z}\}$ are different sets!!!

## Example:

$$
\begin{aligned}
\mathbb{Z} & =\{m \in \mathbb{Z}: 2 \mid m\} \cup\{2 k+1: k \in \mathbb{Z}\} \\
\emptyset & =\{m \in \mathbb{Z}: 2 \mid m\} \cap\{2 k+1: k \in \mathbb{Z}\}
\end{aligned}
$$

Instructor's Comments: This is the 30-33 minute mark
Definition: Let $S$ and $T$ be sets. Then
(i) $S \subseteq T: S$ is a subset of $T$. Every element of $S$ is an element of $T$.
(ii) $S \subsetneq T$ : $S$ is a proper/strict subset of $T$. Every element of $S$ is an element of $T$ and some element of $T$ is not in $S$.
(iii) $S \supseteq T$ : $S$ contains $T$. Every element of $T$ is an element of $S$.
(iv) $S \supsetneq T$ : $S$ properly/strictly contains $T$. Every element of $T$ is an element of $S$ and some element of $S$ is not in $T$.

Definition: $\quad S=T$ means $S \subseteq T$ and $T \subseteq S$.
Example: $\quad\{1,2\}=\{2,1\}$
Example: Prove $\{n \in \mathbb{N}: 4 \mid(n+1)\} \subseteq\{2 k+1: k \in \mathbb{Z}\}$
Proof: Let $m \in\{n \in \mathbb{N}: 4 \mid(n+1)\}$. Then $4 \mid(m+1)$. Thus, $\exists \ell \in \mathbb{Z}$ such that $4 \ell=m+1$. Now

$$
m=2(2 \ell)-1=2(2 \ell)-2+2-1=2(2 \ell-1)+1
$$

Hence $m \in\{2 k+1: k \in \mathbb{Z}\}$.
Instructor's Comments: This is the 40-43 minute mark. You might run out of time in the next example. Carry forward to Lecture 7 as need be.

Example: Show $S=T$ if and only if $S \cap T=S \cup T$.

Proof: Suppose $S=T$. To show $S \cap T=S \cup T$ we need to show that $S \cap T \subseteq S \cup T$ and that $S \cap T \supseteq S \cup T$

First suppose that $x \in S \cap T$. Then $x \in S$ and $x \in T$. Hence $x \in S \cup T$.
Next, suppose that $x \in S \cup T$. Then $x \in S$ or $x \in T$. Since $S=T$ we have in either case that $x \in S$ and $x \in T$. Thus $x \in S \cap T$. This shows that $S \cap T=S \cup T$ and completes the forward direction.

Now assume that $S \cap T=S \cup T$. We want to show that $S=T$ which we do by showing that $S \subseteq T$ and $T \subseteq S$.

First, suppose that $x \in S$. Then $x \in S \cup T=S \cap T$. Hence $x \in T$.
Next, suppose that $x \in T$. Then $x \in S \cup T=S \cap T$. Hence $x \in S$. Therefore, $S=T$.

Instructor's Comments: The last two points give a good learning moment to explain when the word 'similarly' can be used. This is the 50 minute mark.

