Lecture 6

Note: $\{\}$ and \emptyset are the empty set, a set with no elements.

Note: $\{\emptyset\}$ is NOT the empty set. It is a set with one element, the element that is the empty set.

Example: In set notation, write the set of positive integers less than 1000 and which are multiples of 7.

Instructor's Comments: Might be good to give students a minute to try this

Solution: $\{n \in \mathbb{N} : n < 1000 \land 7 \mid n\}$. Another answer is given by

$$\{7k: k \in \mathbb{N} \land k \le 142\}$$

Note: The : symbol means "such that". Sometimes | is used as well (though because we use it for divisibility, we won't use it in this context very often if at all).

Instructor's Comments: This is the 7 minute mark

Handout or Document Camera or Class Exercise

Describe the following sets using set-builder notation:

- (i) Set of even numbers between 5 and 14 (inclusive).
- (ii) All odd perfect squares.
- (iii) Sets of three integers which are the side lengths of a (non-trivial) triangle.
- (iv) All points on a circle of radius 8 centred at the origin.

Instructor's Comments: 5 minutes to try on their own and 5 to take up

Solution:

- (i) $\{6, 8, 10, 12, 14\}$ or $\{n \in \mathbb{N} : 5 \le n \le 14 \land 2 \mid n\}$
- (ii) $\{(2k+1)^2 : k \in \mathbb{Z}\}$ (or \mathbb{N} overlap doesn't matter!)
- (iii) $\{(a, b, c) : a, b, c \in \mathbb{N} \land a < b + c \land b < a + c \land c < a + b\}$
- (iv) $\{(x, y) : x, y \in \mathbb{R} \land x^2 + y^2 = 8^2\}$

Instructor's Comments: This is the 17 minute mark

Set Operations. Let S and T be sets. Define

- (i) #S or |S|. Size of the set S.
- (ii) $S \cup T = \{x : x \in S \lor x \in T\}$ (Union)
- (iii) $S \cap T = \{x : x \in S \land x \in T\}$ (Intersection)
- (iv) $S T = \{x \in S : x \notin T\}$ (Set difference)
- (v) \bar{S} or S^c (with respect to universe U) the complement of S, that is

 $S^c = \{x \in U : x \notin S\} = U - S$

(vi) $S \times T = \{(x, y) : x \in S \land y \in T\}$ (Cartesian Product)

Example: $(1,2) \in \mathbb{Z} \times \mathbb{Z}, (2,1) \in \mathbb{Z} \times \mathbb{Z}, \text{BUT } (1,2) \neq (2,1).$

Note: $\mathbb{Z} \times \mathbb{Z}$ and $\{(n, n) : n \in \mathbb{Z}\}$ are different sets!!!

Example:

$$\mathbb{Z} = \{ m \in \mathbb{Z} : 2 \mid m \} \cup \{ 2k+1 : k \in \mathbb{Z} \}$$
$$\emptyset = \{ m \in \mathbb{Z} : 2 \mid m \} \cap \{ 2k+1 : k \in \mathbb{Z} \}$$

Instructor's Comments: This is the 30-33 minute mark

Definition: Let S and T be sets. Then

- (i) $S \subseteq T$: S is a subset of T. Every element of S is an element of T.
- (ii) $S \subsetneq T$: S is a proper/strict subset of T. Every element of S is an element of T and some element of T is not in S.
- (iii) $S \supseteq T$: S contains T. Every element of T is an element of S.
- (iv) $S \supseteq T$: S properly/strictly contains T. Every element of T is an element of S and some element of S is not in T.

Definition: S = T means $S \subseteq T$ and $T \subseteq S$.

Example: $\{1, 2\} = \{2, 1\}$

Example: Prove $\{n \in \mathbb{N} : 4 \mid (n+1)\} \subseteq \{2k+1 : k \in \mathbb{Z}\}$

Proof: Let $m \in \{n \in \mathbb{N} : 4 \mid (n+1)\}$. Then $4 \mid (m+1)$. Thus, $\exists \ell \in \mathbb{Z}$ such that $4\ell = m+1$. Now

$$m = 2(2\ell) - 1 = 2(2\ell) - 2 + 2 - 1 = 2(2\ell - 1) + 1.$$

Hence $m \in \{2k+1 : k \in \mathbb{Z}\}.$

Instructor's Comments: This is the 40-43 minute mark. You might run out of time in the next example. Carry forward to Lecture 7 as need be.

Example: Show S = T if and only if $S \cap T = S \cup T$.

Proof: Suppose S = T. To show $S \cap T = S \cup T$ we need to show that $S \cap T \subseteq S \cup T$ and that $S \cap T \supseteq S \cup T$

First suppose that $x \in S \cap T$. Then $x \in S$ and $x \in T$. Hence $x \in S \cup T$.

Next, suppose that $x \in S \cup T$. Then $x \in S$ or $x \in T$. Since S = T we have in either case that $x \in S$ and $x \in T$. Thus $x \in S \cap T$. This shows that $S \cap T = S \cup T$ and completes the forward direction.

Now assume that $S \cap T = S \cup T$. We want to show that S = T which we do by showing that $S \subseteq T$ and $T \subseteq S$.

First, suppose that $x \in S$. Then $x \in S \cup T = S \cap T$. Hence $x \in T$.

Next, suppose that $x \in T$. Then $x \in S \cup T = S \cap T$. Hence $x \in S$. Therefore, S = T.

Instructor's Comments: The last two points give a good learning moment to explain when the word 'similarly' can be used. This is the 50 minute mark.