Lecture 4

Handout or Document Camera or Class Exercise

Instructor's Comments: Clicker Questions to start every 4th lecture.
Suppose A, B and C are all true statements.
The compound statement $(\neg A) \vee(B \wedge \neg C)$ is
A) True
B) False

Solution: The answer is False.
Instructor's Comments: This should take about 5 minutes. For all clicker questions, if the results are poor - get them to talk to each other and repoll.

Recall:

Proposition: Let A and B be statements. Then $A \Rightarrow B \equiv \neg A \vee B$.
Proposition: Let A and B be statements. Then $\neg(A \Rightarrow B) \equiv A \wedge \neg B$. Reworded, the negation of an implication is the hypothesis and the negation of the conclusion.

Proof:

$$
\begin{aligned}
\neg(A \Rightarrow B) & \equiv \neg(\neg A \vee B) & & \text { By the above proposition } \\
& \equiv \neg(\neg A) \wedge \neg B & & \text { De Morgan's Law } \\
& \equiv A \wedge \neg B & & \text { By proposition from class }
\end{aligned}
$$

This completes the proof.
Instructor's Comments: This is the 10 minute mark. Note it is important to do the negation of implication with them.

Definition: Denote the set of integers by \mathbb{Z}.
Note: We use \mathbb{Z} since this is the first letter of the word integer... in German! (Zählen)
Definition: Let $m, n \in \mathbb{Z}$. We say that m divides n and write $m \mid n$ if (and only if) there exists a $k \in \mathbb{Z}$ such that $m k=n$. Otherwise, we write $m \nmid n$, that is, when there is no integer k satisfying $m k=n$.

Note: The "(and only if)" part will be explained in a few lectures.
Instructor's Comments: I tell my students that definitions in mathematics should be if and only if however mathematicians are sloppy and do not do this in practice.

Example:

(i) $3 \mid 6$
(ii) $2 \mid 2$
(iii) $7 \mid 49$
(iv) $3 \mid-27$
(v) $6 \nmid 8$
(vi) $55 \mid 0$
(vii) $0 \mid 0$
(viii) $0 \nmid 3$

Instructor's Comments: This is the 17 minute mark
Example: Does $\pi \mid 3 \pi$? This question doesn't make sense since in the definition of \mid, we required both m and n to be integers (there are ways to extend the definition but here we're restricting ourselves to talk only about integers when we use |).

Example: (Direct Proof Example) Prove $n \in \mathbb{Z} \wedge 14|n \Rightarrow 7| n$.
Proof: Let $n \in \mathbb{Z}$ and suppose that $14 \mid n$. Then $\exists k \in \mathbb{Z}$ s.t. $114 k=n$. Then $(7 \cdot 2) k=n$. By associativity, $7(2 k)=n$. Since $2 k \in \mathbb{Z}$, we have that $7 \mid n$.

Note: The symbol \exists means "there exists". the letters s.t. mean " such that".
Instructor's Comments: This is the 30 minute mark. It is not necessary to mention associativity above but I'll introduce rings at some point and so this seems like a good opportunity to remind students of what things they can take as axioms.

Recall: An integer n is
(i) Even if $2 \mid n$
(ii) Odd if $2 \mid(n-1)$.

Proposition: Let $n \in \mathbb{Z}$. Suppose that $2^{2 n}$ is an odd integer. Show that $2^{-2 n}$ is an odd integer.

Proof: Note that the hypothesis is only true when $n=0$. If $n<0$, then $2^{2 n}$ is not an integer. If $n>0$ then $2^{2 n}=2 \cdot 2^{2 n-1}$ and since $2 n-1>0$, we see that $2^{2 n}$ is even. Hence $n=0$ and thus $2^{2 n}=1=2^{-2 n}$. Thus $2^{-2 n}$ is an odd integer.

Note: Ask yourself when is the hypothesis true. Then consider that/those case(s). Breaking up into cases is a great way to prove statements. Sometimes breaking a statement into even and odd, or positive and negative are great strategies.

Instructor's Comments: This is the 40 minute mark. Ask the students to attempt to give you a good definition of prime. This is a good exercise for students to make precise definitions.

Definition: An integer p is said to be prime if (and only if) $p>1$ and its only positive divisors are 1 and p.

Example: Show that p and $p+1$ are prime only when $p=2$.
Instructor's Comments: Can do this example if you have time. Otherwise it's fine to leave it as an exercise

Proposition: Bounds by Divisibility (BBD).

$$
a|b \wedge b \neq 0 \Rightarrow| a|\leq|b|
$$

Proof: Let $a, b \in \mathbb{Z}$ such that $a \mid b$ and $b \neq 0$. Then $\exists k \in \mathbb{Z}$ such that $a k=b$. Since $b \neq 0$, we know that $k \neq 0$. Thus, $|a| \leq|a||k|=|a k|=|b|$ as required.

Instructor's Comments: This is probably the 50 minute mark. If you have time, state TD and DIC below.

Proposition: Transitivity of Divisibility (TD)

$$
a|b \wedge b| c \Rightarrow a \mid c
$$

Proof: There exists a $k \in \mathbb{Z}$ such that $a k=b$. There exists an $\ell \in \mathbb{Z}$ such that $b \ell=c$. This implies that $(a k) \ell=c$ and hence $a(k \ell)=c$. Since $k \ell \in \mathbb{Z}$, we have that $a \mid c$.

Proposition: Divisibility of Integer Combinations (DIC). Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $a \mid c$. Then for any $x, y \in \mathbb{Z}$, we have $a \mid(b x+c y)$.

