Lecture 4

Handout or Document Camera or Class Exercise

Instructor's Comments: Clicker Questions to start every 4th lecture.

Suppose A, B and C are all true statements.

The compound statement $(\neg A) \lor (B \land \neg C)$ is

A) True

B) False

Solution: The answer is False.

Instructor's Comments: This should take about 5 minutes. For all clicker questions, if the results are poor - get them to talk to each other and repoll.

Recall:

Proposition: Let A and B be statements. Then $A \Rightarrow B \equiv \neg A \lor B$.

Proposition: Let A and B be statements. Then $\neg(A \Rightarrow B) \equiv A \land \neg B$. Reworded, the negation of an implication is the hypothesis and the negation of the conclusion.

Proof:

$\neg(A \Rightarrow B) \equiv \neg(\neg A \lor B)$	By the above proposition
$\equiv \neg(\neg A) \land \neg B$	De Morgan's Law
$\equiv A \land \neg B$	By proposition from class

This completes the proof.

Instructor's Comments: This is the 10 minute mark. Note it is important to do the negation of implication with them.

Definition: Denote the set of integers by \mathbb{Z} .

Note: We use \mathbb{Z} since this is the first letter of the word integer... in German! (Zählen)

Definition: Let $m, n \in \mathbb{Z}$. We say that m divides n and write $m \mid n$ if (and only if) there exists a $k \in \mathbb{Z}$ such that mk = n. Otherwise, we write $m \nmid n$, that is, when there is no integer k satisfying mk = n.

Note: The "(and only if)" part will be explained in a few lectures.

Instructor's Comments: I tell my students that definitions in mathematics should be if and only if however mathematicians are sloppy and do not do this in practice.

Example:

- (i) $3 \mid 6$
- (ii) $2 \mid 2$
- (iii) 7 | 49
- (iv) $3 \mid -27$
- (v) $6 \nmid 8$
- (vi) $55 \mid 0$
- (vii) $0 \mid 0$
- (viii) $0 \nmid 3$

Instructor's Comments: This is the 17 minute mark

Example: Does $\pi \mid 3\pi$? This question doesn't make sense since in the definition of \mid , we required both m and n to be integers (there are ways to extend the definition but here we're restricting ourselves to talk only about integers when we use \mid).

Example: (Direct Proof Example) Prove $n \in \mathbb{Z} \land 14 \mid n \Rightarrow 7 \mid n$.

Proof: Let $n \in \mathbb{Z}$ and suppose that $14 \mid n$. Then $\exists k \in \mathbb{Z}$ s.t. 114k = n. Then $(7 \cdot 2)k = n$. By associativity, 7(2k) = n. Since $2k \in \mathbb{Z}$, we have that $7 \mid n$.

Note: The symbol \exists means "there exists". the letters s.t. mean "such that".

Instructor's Comments: This is the 30 minute mark. It is not necessary to mention associativity above but I'll introduce rings at some point and so this seems like a good opportunity to remind students of what things they can take as axioms.

Recall: An integer n is

- (i) Even if $2 \mid n$
- (ii) Odd if 2 | (n-1).

Proposition: Let $n \in \mathbb{Z}$. Suppose that 2^{2n} is an odd integer. Show that 2^{-2n} is an odd integer.

Proof: Note that the hypothesis is only true when n = 0. If n < 0, then 2^{2n} is not an integer. If n > 0 then $2^{2n} = 2 \cdot 2^{2n-1}$ and since 2n - 1 > 0, we see that 2^{2n} is even. Hence n = 0 and thus $2^{2n} = 1 = 2^{-2n}$. Thus 2^{-2n} is an odd integer.

Note: Ask yourself when is the hypothesis true. Then consider that/those case(s). Breaking up into cases is a great way to prove statements. Sometimes breaking a statement into even and odd, or positive and negative are great strategies.

Instructor's Comments: This is the 40 minute mark. Ask the students to attempt to give you a good definition of prime. This is a good exercise for students to make precise definitions.

Definition: An integer p is said to be *prime* if (and only if) p > 1 and its only positive divisors are 1 and p.

Example: Show that p and p+1 are prime only when p=2.

Instructor's Comments: Can do this example if you have time. Otherwise it's fine to leave it as an exercise

Proposition: Bounds by Divisibility (BBD).

$$a \mid b \land b \neq 0 \Rightarrow |a| \le |b|$$

Proof: Let $a, b \in \mathbb{Z}$ such that $a \mid b$ and $b \neq 0$. Then $\exists k \in \mathbb{Z}$ such that ak = b. Since $b \neq 0$, we know that $k \neq 0$. Thus, $|a| \leq |a||k| = |ak| = |b|$ as required.

Instructor's Comments: This is probably the 50 minute mark. If you have time, state TD and DIC below.

Proposition: Transitivity of Divisibility (TD)

$$a \mid b \land b \mid c \Rightarrow a \mid c$$

Proof: There exists a $k \in \mathbb{Z}$ such that ak = b. There exists an $\ell \in \mathbb{Z}$ such that $b\ell = c$. This implies that $(ak)\ell = c$ and hence $a(k\ell) = c$. Since $k\ell \in \mathbb{Z}$, we have that $a \mid c$.

Proposition: Divisibility of Integer Combinations (DIC). Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $a \mid c$. Then for any $x, y \in \mathbb{Z}$, we have $a \mid (bx + cy)$.