Lecture 44

Handout or Document Camera or Class Exercise
How many of the following statements are true?

- Every complex cubic polynomial has a complex root.
- When $x^{3}+6 x-7$ is divided by a quadratic polynomial $a x^{2}+b x+c$ in $\mathbb{R}[x]$, then the remainder has degree 1 .
- If $f(x), g(x) \in \mathbb{Q}[x]$, then $f(x) g(x) \in \mathbb{Q}[x]$.
- Every non-constant polynomial in $\mathbb{Z}_{5}[x]$ has a root in \mathbb{Z}_{5}.
A) 0
B) 1
C) 2
D) 3
E) 4

Solution: The first statement is true by the Fundamental Theorem of Algebra. The second is false since $x-1$ is a factor of the cubic polynomial and so there must be a quadratic factor as well. The third is true since $\mathbb{Q}[x]$ forms a ring. The last is false since say $f(x)=x(x-1)(x-2)(x-3)(x-4)+1$ has no roots over $\mathbb{Z}_{5}[x]$. Hence the answer is 2 .

Recall:
Theorem: (Conjugate Roots Theorem (CJRT)) If $c \in \mathbb{C}$ is a root of a polynomial $p(x) \in \mathbb{R}[x]$ (over \mathbb{C}) then \bar{c} is a root of $p(x)$.

Note: This is not true if the coefficients are not real, for example $(x+i)^{2}=x^{2}+2 i x-1$.
Example: Factor

$$
f(z)=z^{5}-z^{4}-z^{3}+z^{2}-2 z+2
$$

over \mathbb{C} as a product of irreducible elements of $\mathbb{C}[x]$ given that i is a root.
Proof: Note by CJRT that $\pm i$ are roots. By the Factor Theorem, we see that $(z-i)(z+$ $i)=z^{2}+1$ is a factor. Note that $z-1$ is also a factor since the sum of the coefficients is 0 .Hence, $\left(z^{2}+1\right)(z-1)=z^{3}-z^{2}+z-1$ is a factor. By long division,

we see that $f(z)=\left(z^{3}-z^{2}+z-1\right)\left(z^{2}-2\right)=(z-i)(z+i)(z-1)(z-\sqrt{2})(z+\sqrt{2})$ is a full factorization.

Factor $f(z)=z^{4}-5 z^{3}+16 z^{2}-9 z-13$ over \mathbb{C} into a product of irreducible polynomials given that $2-3 i$ is a root.

Factors are (using the Factor Theorem and CJRT)

$$
(z-(2-3 i))(z-(2+3 i))=z^{2}-4 z+13
$$

After long division,

$$
f(z)=\left(z^{2}-4 z+13\right)\left(z^{2}-z-1\right)
$$

By the quadratic formula on the last quadratic,

$$
\begin{aligned}
z & =\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-1)}}{2(1)} \\
& =\frac{1 \pm \sqrt{5}}{2}
\end{aligned}
$$

Hence, $f(z)=(z-(2-3 i))(z-(2+3 i))(z-(1+\sqrt{5}) / 2)(z-(1-\sqrt{5}) / 2)$.

Theorem: (Real Quadratic Factors (RQF)) Let $f(x) \in \mathbb{R}[x]$. If $c \in \mathbb{C}-\mathbb{R}$ and $f(c)=0$, then there exists a $g(x) \in \mathbb{R}[x]$ such that $g(x)$ is a real quadratic factor of $f(x)$.

Proof: Let $c \in \mathbb{C}$ be a root of $f(x)$ where $\operatorname{Im}(c) \neq 0$. Then by the Factor Theorem,

$$
f(x)=(x-c) q_{1}(x) \text { for some } q_{1}(x) \in \mathbb{C}[x] .
$$

Now, by the Conjugate Roots Theorem, \bar{c} is also a root of $f(x)$. Hence

$$
f(\bar{c})=(\bar{c}-c) q_{1}(\bar{c})=0 .
$$

Since $\operatorname{Im}(c) \neq 0$, then $\bar{c} \neq c$, or $\bar{c}-c \neq 0$ which in turn means $q_{1}(\bar{c})=0$. That is, \bar{c} is a root of $q_{1}(x)$ and so by using the Factor Theorem again, we get that

$$
q_{1}(x)=(x-\bar{c}) q_{2}(x) \text { where } q_{2}(x) \in \mathbb{C}[x] .
$$

We substitute to get

$$
f(x)=(x-c)(x-\bar{c}) q_{2}(x)=g(x) q_{2}(x)
$$

where $g(x)=(x-c)(x-\bar{c})$. By Properties of Conjugates and Properties of Modulus,

$$
g(x)=x^{2}-(c+\bar{c}) x+c \bar{c}=x^{2}-2 \operatorname{Re}(c) x+|c|^{2}
$$

Since $-2 \operatorname{Re}(c) \in \mathbb{R}$ and $|c|^{2} \in \mathbb{R}, g(x)$ is a real quadratic polynomial. All that remains is to show that $q_{2}(x)$ is in $\mathbb{R}[x]$. From above, in $\mathbb{C}[x]$, we have that

$$
f(x)=g(x) q_{2}(x)+r_{2}(x)
$$

where $r_{2}(x)$ is the zero polynomial. Using the Division Algorithm for Polynomials (DAP) in $\mathbb{R}[x]$, we get

$$
f(x)=g(x) q(x)+r(x)
$$

where $q(x)$ is in $\mathbb{R}[x]$ and the remainder $r(x)$ is the zero polynomial or $\operatorname{deg} r(x)<\operatorname{deg} g(x)$. Now, every real polynomial is a complex polynomial, so we can also view this as a statement in $\mathbb{C}[x]$. As for any field, DAP over \mathbb{C} tells us that the quotient and remainder are unique. Therefore $r(x)=r_{2}(x)$ is the zero polynomial and $q(x)=q_{2}(x)$ has real coefficients.

Prove that a real polynomial of odd degree has a real root.

Solution: Assume towards a contradiction that $p(x)$ is a real polynomial of odd degree without a root. By the Factor Theorem, we know that if $p(x)$ cannot have a real linear factor. By Real Factors of Real Polynomials, we see that

$$
p(x)=q_{1}(x) \ldots q_{k}(x)
$$

for some quadratic factors $q_{i}(x)$. Now, taking degrees shows that

$$
\operatorname{deg}(p(x))=2 k
$$

contradicting the fact that the degree was of $p(x)$ is odd. Hence, the polynomial must have a real root.

