Lecture 43

Theorem: Rational Roots Theorem (RRT) If $f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0} \in \mathbb{Z}[x]$ and $r=\frac{s}{t} \in \mathbb{Q}$ is a root of $f(x)$ over \mathbb{Q} in lowest terms, then $s \mid a_{0}$ and $t \mid a_{n}$.

Proof: Plug r into $f(x)$:

$$
0=a_{n}\left(\frac{s}{t}\right)^{n}+\ldots+a_{1}\left(\frac{s}{t}\right)+a_{0} .
$$

Multiply by t^{n}

$$
0=a_{n} s^{n}+a_{n-1} s^{n-1} t+\ldots+a_{1} s t^{n-1}+a_{0} t^{n} .
$$

Rearranging gives

$$
a_{0} t^{n}=-s\left(a_{n} s^{n-1}+a_{n-1} s^{n-2} t+\ldots+a_{1} t^{n-1}\right)
$$

and hence $s \mid a_{0} t^{n}$. Since $\operatorname{gcd}(s, t)=1$, we see that $\operatorname{gcd}\left(s, t^{n}\right)=1$ (following from GCDPF) and hence $s \mid a_{0}$ by Coprimeness and Divisibility. Similarly, $t \mid a_{n}$.

Example: Find the roots of

$$
2 x^{3}+x^{2}-6 x-3 \in \mathbb{R}[x]
$$

Solution: By the Rational Roots Theorem, if r is a root, then writing $r=\frac{s}{t}$, we have that $s \mid-3$ and $t \mid 2$. This gives the following possibilities for r :

$$
\pm 1, \pm 3, \pm \frac{3}{2}, \pm \frac{1}{2}
$$

Trying each of these possibilities one by one shows that $r=-\frac{1}{2}$ is a root since

$$
2\left(\frac{-1}{2}\right)^{3}+\left(\frac{-1}{2}\right)^{2}-6\left(\frac{-1}{2}\right)-3=\frac{-1}{4}+\frac{1}{4}+3-3=0
$$

Hence $\left(x+\frac{1}{2}\right)$ or $(2 x+1)$ is a factor. By long division (or grouping and factoring), we see that

$$
2 x^{3}+x^{2}-6 x-3=(2 x+1)\left(x^{2}-3\right)=(2 x+1)(x-\sqrt{3})(x+\sqrt{3})
$$

Hence all real roots are given by $\frac{-1}{2}, \pm \sqrt{3}$.
Instructor's Comments: This is the 15 minute mark.

Factor $x^{3}-\frac{32}{15} x^{2}+\frac{1}{5} x+\frac{2}{15}$ as a product of irreducible polynomials over \mathbb{R}.

Solution: The above polynomial is equal to

$$
\frac{1}{15}\left(15 x^{3}-32 x^{2}+3 x+2\right)=f(x)
$$

By the Rational Roots Theorem, possible roots are

$$
\pm 1, \pm \frac{1}{3}, \pm \frac{1}{5}, \pm \frac{1}{15}, \pm 2, \pm \frac{2}{3}, \pm \frac{2}{5}, \pm \frac{2}{15},
$$

Note that $x=2$ is a root. Hence by the Factor Theorem, $x-2$ is a factor. By long division:

we have that $f(x)=\frac{1}{15}(x-2)\left(15 x^{2}-2 x-1\right)=\frac{1}{15}(x-2)(5 x+1)(3 x-1)$ completing the question.

Instructor's Comments: This is the 30 minute mark

Example: Prove that $\sqrt{7}$ is irrational.
Proof: Assume towards a contradiction that $\sqrt{7}=x \in \mathbb{Q}$. Square both sides gives

$$
7=x^{2} \quad \Longrightarrow \quad 0=x^{2}-7
$$

Therefore, as a polynomial, $x^{2}-7$ has a rational root. By the Rational Root Theorem, the only possible rational roots are given by $\pm 1, \pm 7$. By inspection, none of these are roots:

$$
(\pm 1)^{2}-7=-6 \neq 0 \quad(\pm 7)^{2}-7=42 \neq 0
$$

Hence, x cannot be rational.
Instructor's Comments: This is the 35 minute mark

Handout or Document Camera or Class Exercise
Prove that $\sqrt{5}+\sqrt{3}$ is irrational.

Solution: Assume towards a contradiction that $\sqrt{5}+\sqrt{3}=x \in \mathbb{Q}$. Squaring gives

$$
5+2 \sqrt{15}+3=x^{2} \quad \Longrightarrow \quad 2 \sqrt{15}=x^{2}-8
$$

Squaring again gives

$$
60=x^{4}-16 x^{2}+64 \quad \Longrightarrow \quad 0=x^{4}-16 x^{2}+4
$$

By the Rational Roots Theorem, the only possible roots are

$$
\pm 1, \pm 2, \pm 4
$$

A quick check shows that none of these work.
Instructor's Comments: This is the 45 minute mark

Theorem: (Conjugate Roots Theorem (CJRT)) If $c \in \mathbb{C}$ is a root of a polynomial $p(x) \in \mathbb{R}[x]$ (over \mathbb{C}) then \bar{c} is a root of $p(x)$.

Proof: Write $p(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0} \in \mathbb{R}[x]$ with $p(c)=0$. Then:

$$
\begin{array}{rlr}
p(\bar{c}) & =a_{n}(\bar{c})^{n}+\ldots+a_{1} \bar{c}+a_{0} & \\
& =\overline{a_{n}(c)^{n}}+\ldots+\overline{a_{1} c}+\overline{a_{0}} & \\
& \text { Since coefficients are real and PCJ. } \\
& =\overline{a_{n}(c)^{n}+\ldots+a_{1} c+a_{0}} & \\
& =\overline{p(c)} & \text { By PCJ } \\
& =0 &
\end{array}
$$

Instructor's Comments: This is the 50 minute mark.

