Lecture 42

Handout or Document Camera or Class Exercise

Prove that a polynomial over any field F of degree n > 1 has at most n roots.

Instructor’s Comments: If you try this by contradiction, you will find your-
self using some sort of “ dot dot dot” type argument which ideally we’d like
to avoid. Try to steer students to the induction solution.

Solution: Let P(n) be the statement that all polynomials over F of degree n have at
most n roots. We prove this by induction on n.

Base Case: If n =1, let ax+b € Flz] , with a # 0. Solving for a root gives z = —a~'b
which exists since a is a nonzero element in a field and hence has a multiplicative inverse.

Induction Hypothesis: Assume that P(k) is true for some k € N.

Instructor’s Comments: It’s always a good idea to emphasize the for some
statement above.

Inductive step: Let p(x) € F|x] be a degree k + 1 polynomial. Either p(z) has no root
in which case we are done or p(z) has a root, say ¢ € F. By the Factor Theorem, z —cis a
factor of p(x). Write p(z) = (x—c)q(x) for some q(z) € F[z] of degree k. By the inductive
hypothesis, ¢(x) has at most k roots. Thus, p(z) has at most k + 1 roots. Therefore, by
the Principle of Mathematical Induction, P(n) is true for all natural numbers n. [

Instructor’s Comments: This could be the 15 minute mark



Definition: Let F be a field. We say a polynomial of positive degree in F[z] is reducible
in [F[z] if and only if it can be written as the product of two polynomials in F[z] of positive
degree. Otherwise, we say that the polynomial is irreducible in F[z]. For example, 2% + 1
is irreducible in R[z]| but reducible in Clz].

Example: Factor f(z) = 2*—223+32%—42+2 into a product of irreducible polynomials
over Zr.

Proof: Note that f(1) = 0 and thus, by the Factor Theorem, = — 1 is a factor. By long
division, we have that
f(x) = (z —1)(z® — 2® + 22 — 2)

Now, the sum of the coefficients of the cubic is still 0 hence z — 1 is another factor of
f(z)! By a second application of long division, we see that

fla) = (z = 1)*(z* +2)
Instructor’s Comments: Emphasize to students they should do the long
division.

Now, the Factor Theorem says that if 2% + 2 could be factored, it must have a root
since the factors must be linear. Checking the 7 possible roots gives

(0) ( )
(1) ( )
(22 +2=6 (mod 7)
(3)*+2=4 (mod 7)
(4> +2 =4 (mod 7)
(5)* +2 =6 (mod 7)
(6)* +2 =2 (mod 7)
Therefore, 22 4+ 2 has no root in Z; and the above form was completely factorized. [ |

Instructor’s Comments: This is the 20 minute mark. You want to empha-
size that even though the factor theorem shows that 1 is a root, it doesn’t say
with what multiplicity. Thus you need to do the long division in order to find
any additional factors (or use the gcd of the polynomial and it’s derivative
but we won’t be talking about this)

Definition: The multiplicity of a root ¢ € F of f(z) € F[z] is the largest & € N such
that (z — ¢)¥ is a factor of f(x).

Instructor’s Comments: Note we can take N above because we require that
c is a root of the polynomial.

Example: The multiplicity of 1 in the last example was 2.
Note: z* +22? + 1 = (2? 4+ 1)? over R[z] but does not split into linear factors over R.

Theorem: (Fundamental Theorem of Algebra (FTA)) Every non-constant complex
polynomial has a complex root.

Instructor’s Comments: The proof will not be done in Math 135
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Note:
(i) Roots need not be distinct.
(ii) 2% + 1 over R shows that this does not happen over all fields.

Example: Solve 2° — 22 + 2 — 1 = 0 over C.

Solution: Note that z — 1 is a factor (sum of coefficients is 0). Thus, either do long
division or note that

- tr—1=2*(r—1)+@-1)=@-)E*+1)=(z—1)(x—1d)(z+1).

Instructor’s Comments: This is the 30 minute mark



Handout or Document Camera or Class Exercise

Factor iz% + (3 —4)2? + (—3 — 2i)z — 6 as a product of linear factors. Hint: There is
an easy to find integer root!

Solution: By testing roots, notice that z = —1 and z = 2 are roots!

Instructor’s Comments: Note that you could look at the real part of this
polynomial when you plug in a real root r and get 3r*> — 3r — 6 which has the
two roots —1 and 2.

Hence (2 + 1)(z — 2) = 22 — 2 — 2 is a factor. Performing the long division yields

L2 ¥D a/#(Z)
.
Z - 22 6231320 2,62 )¢
i&g- c2t- 2.2
42* =3z =L
22t -%2 4
r O

Ty

and therefore, f(z) = (2 +1)(z — 2)(iz + 3).

Instructor’s Comments: Alternatively, you could note that since the con-
stant term of the polynomial is —6, the last linear factor must have +3 as its
constant term and since the leading coefficient is iz®, the leading coefficient
must be 1.



Instructor’s Comments: This is the 40 minute mark.

Theorem: (Complex Polynomials of Degree n Have n Roots (CPN)) A complex poly-
nomial f(z) of degree n > 1 can be written as

f(z)=clz—c1)(z —ca)(z — )
for some ¢ € C where ¢y, co, ..., ¢, € C are the (not necessarily distinct) roots of f(z).
Example: The polynomial 227 + 25 4 iz + 7 can be written as
2(z — z1)(z — z9)...(2 — 27)
for some roots z1, 23, ..., 27 € C.

Note: The factorization depends on the field! For example, factoring 2% — 24 — 23 + 22 —
22+ 2...

(i) ... over C, (z —i)(z +14)(z — V2)(z +V2)(z — 1)
(ii) ... over R, (22 4+ 1)(z — vV2)(z + V2)(z — 1)
(iii) ... over Q, (22 +1)(2* = 2)(2 — 1)

Instructor’s Comments: If you’re getting close, it might be best to stop here
and continue this on the next lecture.

Proof: (of CPN) We prove the given statement by induction on n.
Base Case: When n = 1, take az +b € C[z] where a # 0 and rewrite this as a(z — =2).

Inductive Hypothesis: Assume all polynomials over C of degree k can be written in
the given form for some k& € N.

Inductive Step: Take f(z) € C[z] of degree k + 1. By the Fundamental Theorem of
Algebra and the Factor Theorem there is a factor z — ¢gyq of f(2) for some ¢y € C.
Write

f(2) = (2 — ck1)9(2)
where g(z) has degree k. By the inductive hypothesis, write
g(z) =c(z—c1)...(z — )
for ¢y, cg, ...c;, € C. Combine to get

k+1

f(z) = cH(z —¢).

i=1

Therefore, by the Principle of Mathematical Induction, the given statement is true for all
n € N. [ |

Instructor’s Comments: This is the 50 minute mark



