Lecture 41
Handout or Document Camera or Class Exercise
Compute the quotient and the remainder when

$$
x^{4}+2 x^{3}+2 x^{2}+2 x+1
$$

is divided by $g(x)=2 x^{2}+3 x+4$ in $\mathbb{Z}_{5}[x]$.

Solution:

Instructor's Comments: This is the 10 minute mark
Proposition: Let $f(x), g(x) \in \mathbb{F}[x]$ be nonzero polynomials. If $f(x) \mid g(x)$ and $g(x) \mid$ $f(x)$, then $f(x)=c g(x)$ for some $c \in \mathbb{F}$.

Proof: By definition, there exists $q(x)$ and $\hat{q}(x)$ in $\mathbb{F}[x]$ such that

$$
\begin{aligned}
f(x) & =g(x) q(x) \\
g(x) & =f(x) \hat{q}(x)
\end{aligned}
$$

Substituting the second equation into the first gives:

$$
f(x)=f(x) \hat{q}(x) q(x) \quad \Longrightarrow \quad f(x)(1-\hat{q}(x) q(x))=0
$$

As $f(x) \neq 0$, we see that $1=\hat{q}(x) q(x)$. In fact, $\hat{q}(x)$ and $q(x)$ are nonzero. Now, note that $\operatorname{deg}(1)=0$ and thus

$$
0=\operatorname{deg}(\hat{q}(x) q(x))=\operatorname{deg}(\hat{q}(x))+\operatorname{deg}(q(x))
$$

(the last equality is an exercise - it holds in generality for nonzero polynomials). Therefore, $\operatorname{deg}(q(x))=0=\operatorname{deg}(\hat{q}(x))$. Therefore, $q(x)=c \in \mathbb{F}$. Thus, substituting this into $f(x)=g(x) q(x)$ gives $f(x)=c g(x)$ completing the proof.

Instructor's Comments: This is the 25 minute mark
Theorem: (Remainder Theorem (RT)) Suppose that $f(x) \in \mathbb{F}[x]$ and that $c \in \mathbb{F}$. Then, the remainder when $f(x)$ is divided by $x-c$ is $f(c)$.

Proof: By the Division Algorithm for Polynomials, there exists unique $q(x)$ and $r(x)$ in $\mathbb{F}[x]$ such that

$$
f(x)=(x-c) q(x)+r(x)
$$

with $r(x)=0$ or $\operatorname{deg}(r(x))<\operatorname{deg}(x-c)=1$. Therefore, $\operatorname{deg}(r(x))=0$. In either case, $r(x)=k$ for some $k \in \mathbb{F}$. Plug in $x=c$ into the above equation to see that $f(c)=r(c)=k$. Hence $r(x)=f(c)$.

Example: Find the remainder when $f(z)=z^{2}+1$ is divided by
(i) $z-1$
(ii) $z+1$
(iii) $z+i+1$

Solution:

(i) By the Remainder Theorem, the remainder is $f(1)=(1)^{2}+1=2$.
(ii) Note that $z+1=z-(-1)$. By the Remainder Theorem, the remainder is $f(-1)=$ $(-1)^{2}+1=2$.

Note: $z^{2}+1=(z-1)(z+1)+2$
(iii) Note that $z+i+1=z-(-i-1)$. By the Remainder Theorem, the remainder is $f(-i-1)=(-i-1)^{2}+1=-1+2 i+1+1=2 i+1$.

Handout or Document Camera or Class Exercise
In $\mathbb{Z}_{7}[x]$, what is the remainder when $4 x^{3}+2 x+5$ is divided by $x+6$?

Solution: Since $x+6=x-1$ in \mathbb{Z}_{7}, we see by the Remainder Theorem that the remainder is

$$
4(1)^{3}+2(1)+5=11 \equiv 4(\bmod 7)
$$

Instructor's Comments: Ideally this is the 40 minute mark.
Theorem: (Factor Theorem (FT)) Suppose that $f(x) \in \mathbb{F}[x]$ and $c \in \mathbb{F}$. Then the polynomial $x-c$ is a factor of $f(x)$ if and only if $f(c)=0$, that is, c is a root of $f(x)$.

Proof: Note that $x-c$ is a factor of $f(x)$ if and only if $r(x)=0$ via the Division Algorithm for Polynomials (DAP) which holds if and only if $r(x)=f(c)=0$ via the Remainder Theorem (RT).

Prove that there does not exist a real linear factor of

$$
f(x)=x^{8}+x^{3}+1 .
$$

Solution: By the factor theorem, it suffices to show that $f(x)$ has no real roots. We will show that $f(x)>0$ for all $x \in \mathbb{R}$.

Case 1: Suppose that $|x| \geq 1$. Then $x^{8}+x^{3} \geq 0$ and hence $f(x)=x^{8}+x^{3}+1>0$.
Case 2: Suppose that $|x|<1$. Then $\left|x^{3}\right|<1$ and so $x^{3}+1>0$ and hence $f(x)=$ $x^{8}+x^{3}+1>0$.

Instructor's Comments: Note here that $-1<x^{3}<1$ and $x^{8} \geq 0$. This is the 50 minute mark.

