Lecture 41

Handout or Document Camera or Class Exercise

Compute the quotient and the remainder when

$$x^4 + 2x^3 + 2x^2 + 2x + 1$$

is divided by $g(x) = 2x^2 + 3x + 4$ in $\mathbb{Z}_5[x]$.

Solution:

$$3x^{2} + 4x + 4 = 9^{(n)}$$

$$3x^{2} + 4x + 4 = 9^{(n)}$$

$$3x^{2} + 3x + 4 = x^{4} + 2x^{3} + 2x^{2} + 2x + 1$$

$$-(x^{4} + 4x^{3} + 2x^{2})$$

$$3x^{3} + 0x^{2} + 2x$$

$$-(3x^{3} + 2x^{2} + x)$$

$$3x^{2} + x + 1$$

$$-(3x^{2} + 2x + 1)$$

$$3x^{2} + x + 1$$

$$-(3x^{2} + 2x + 1)$$

$$4x$$
Cemainder

Instructor's Comments: This is the 10 minute mark

Proposition: Let $f(x), g(x) \in \mathbb{F}[x]$ be nonzero polynomials. If $f(x) \mid g(x)$ and $g(x) \mid f(x)$, then f(x) = cg(x) for some $c \in \mathbb{F}$.

Proof: By definition, there exists q(x) and $\hat{q}(x)$ in $\mathbb{F}[x]$ such that

$$f(x) = g(x)q(x)$$
$$g(x) = f(x)\hat{q}(x)$$

Substituting the second equation into the first gives:

$$f(x) = f(x)\hat{q}(x)q(x) \implies f(x)(1-\hat{q}(x)q(x)) = 0$$

As $f(x) \neq 0$, we see that $1 = \hat{q}(x)q(x)$. In fact, $\hat{q}(x)$ and q(x) are nonzero. Now, note that $\deg(1) = 0$ and thus

$$0 = \deg(\hat{q}(x)q(x)) = \deg(\hat{q}(x)) + \deg(q(x))$$

(the last equality is an exercise - it holds in generality for nonzero polynomials). Therefore, $\deg(q(x)) = 0 = \deg(\hat{q}(x))$. Therefore, $q(x) = c \in \mathbb{F}$. Thus, substituting this into f(x) = g(x)q(x) gives f(x) = cg(x) completing the proof.

Instructor's Comments: This is the 25 minute mark

Theorem: (Remainder Theorem (RT)) Suppose that $f(x) \in \mathbb{F}[x]$ and that $c \in \mathbb{F}$. Then, the remainder when f(x) is divided by x - c is f(c).

Proof: By the Division Algorithm for Polynomials, there exists unique q(x) and r(x) in $\mathbb{F}[x]$ such that

$$f(x) = (x - c)q(x) + r(x)$$

with r(x) = 0 or $\deg(r(x)) < \deg(x - c) = 1$. Therefore, $\deg(r(x)) = 0$. In either case, r(x) = k for some $k \in \mathbb{F}$. Plug in x = c into the above equation to see that f(c) = r(c) = k. Hence r(x) = f(c).

Example: Find the remainder when $f(z) = z^2 + 1$ is divided by

- (i) z 1
- (ii) z + 1
- (iii) z + i + 1

Solution:

- (i) By the Remainder Theorem, the remainder is $f(1) = (1)^2 + 1 = 2$.
- (ii) Note that z + 1 = z (-1). By the Remainder Theorem, the remainder is $f(-1) = (-1)^2 + 1 = 2$.

Note: $z^2 + 1 = (z - 1)(z + 1) + 2$

(iii) Note that z + i + 1 = z - (-i - 1). By the Remainder Theorem, the remainder is $f(-i - 1) = (-i - 1)^2 + 1 = -1 + 2i + 1 + 1 = 2i + 1$.

Handout or Document Camera or Class Exercise

In $\mathbb{Z}_7[x]$, what is the remainder when $4x^3 + 2x + 5$ is divided by x + 6?

Solution: Since x+6 = x-1 in \mathbb{Z}_7 , we see by the Remainder Theorem that the remainder is $4(1)^3 + 2(1) + 5 = 11 \equiv 4 \pmod{7}$

Instructor's Comments: Ideally this is the 40 minute mark.

Theorem: (Factor Theorem (FT)) Suppose that $f(x) \in \mathbb{F}[x]$ and $c \in \mathbb{F}$. Then the polynomial x - c is a factor of f(x) if and only if f(c) = 0, that is, c is a root of f(x).

Proof: Note that x - c is a factor of f(x) if and only if r(x) = 0 via the Division Algorithm for Polynomials (DAP) which holds if and only if r(x) = f(c) = 0 via the Remainder Theorem (RT).

Handout or Document Camera or Class Exercise

Prove that there does not exist a real linear factor of

$$f(x) = x^8 + x^3 + 1.$$

Solution: By the factor theorem, it suffices to show that f(x) has no real roots. We will show that f(x) > 0 for all $x \in \mathbb{R}$.

Case 1: Suppose that $|x| \ge 1$. Then $x^8 + x^3 \ge 0$ and hence $f(x) = x^8 + x^3 + 1 > 0$.

Case 2: Suppose that |x| < 1. Then $|x^3| < 1$ and so $x^3 + 1 > 0$ and hence $f(x) = x^8 + x^3 + 1 > 0$.

Instructor's Comments: Note here that $-1 < x^3 < 1$ and $x^8 \ge 0$. This is the 50 minute mark.