Lecture 40

Handout or Document Camera or Class Exercise
What is the value of $\left|(\overline{-\sqrt{3}+i})^{5}\right|$?
A) $16 i$
B) 27
C) 32
D) -45
E) 64

Solution:

Instructor's Comments: Emphasize there are lots of ways to get the solution.

$$
\begin{aligned}
\left|(\overline{-\sqrt{3}+i})^{5}\right| & =\left|(-\sqrt{3}-i)^{5}\right| \\
& =|(-\sqrt{3}-i)|^{5} \\
& =\sqrt{(-\sqrt{3})^{2}+(-1)^{2}} \\
& =\sqrt{4}^{5} \\
& =32
\end{aligned}
$$

Instructor's Comments: This is the $\mathbf{7 - 1 0}$ minute mark depending on how many ways you find the above answer

Polynomials For us, a field will mean to include $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_{p}$ where p is a prime number. A ring will include the aforementioned fields as well as \mathbb{Z} and \mathbb{Z}_{m} for any $m \in \mathbb{N}$.

Definition: A polynomial in x over a ring R is an expression of the form

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

where $a_{0}, a_{1}, \ldots a_{n} \in R$ and $n \geq 0$ is an integer. Denote the set (actually a ring) of all polynomials over R by $R[x]$.

Instructor's Comments: We will predominately use fields in the above definition. Some of the theorems we do will only work in the case of fields. For simplicity I will state all the theorems with fields to match the textbook though in many cases, a ring is all you need.

Example:

(i) $(2 \pi+i) z^{3}-\sqrt{7} z+\frac{55}{4} i \in \mathbb{C}[z]$.
(ii) $[5] x^{2}+[3] x+[1] \in \mathbb{Z}_{7}[x]$. We usually write this as $5 x^{2}+3 x+1 \in \mathbb{Z}_{7}[x]$.
(iii) $x^{2}+\frac{1}{x}$ is not a polynomial.
(iv) $x+\sqrt{x}$ is not a polynomial.
(v) $1+x+x^{2}+\ldots$ is not a polynomial.

Definition:

(i) The coefficient of $a_{n} x^{n}$ is a_{n}
(ii) A term of a polynomial is any $a_{i} x^{i}$
(iii) The degree of a polynomial is n provided $a_{n} x^{n}$ is the term with the largest exponent on x and nonzero coefficient.
(iv) 0 is the zero polynomial (all coefficients are 0). The degree of the zero polynomial is undefined (some books say it is negative infinity for reasons we will see later)
(v) A root of a polynomial $p(x) \in R[x]$ is a value $a \in R$ such that $p(a)=0$.
(vi) If the degree of a polynomial is

- 1 , then the polynomial is linear.
- 2, then the polynomial is quadratic.
- 3, then the polynomial is cubic.
(vii) $\mathbb{C}[x]$ are the complex polynomials, $\mathbb{R}[x]$ are the real polynomials, $\mathbb{Q}[x]$ are the rational polynomials, $\mathbb{Z}[x]$ are the integral polynomials.
(viii) Let
$f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} \quad$ and $\quad g(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\ldots+b_{1} x+b_{0}$ be polynomials over $R[x]$. Then $f(x)=g(x)$ if and only if $a_{i}=b_{i}$ for all $i \in$ $\{0,1, \ldots, n\}$.
(ix) x is an indeterminate (or a variable). It has no meaning on it's own but can be replaced by a value whenever it makes sense to do so.
(x) Operations on polynomials: Addition, Subtraction, Multiplication (See next page)

Instructor's Comments: This is probably the 25-30 minute mark. The lecture is a bit dry but we need to be on the same page.

Handout or Document Camera or Class Exercise
Simplify $\left(x^{5}+x^{2}+1\right)(x+1)+\left(x^{3}+x+1\right)$ in $\mathbb{Z}_{2}[x]$

Solution:

$$
\begin{aligned}
\left(x^{5}+x^{2}+1\right)(x+1)+\left(x^{3}+x+1\right) & =x^{6}+x^{5}+x^{3}+x^{2}+x+1+x^{3}+x+1 \\
& =x^{6}+x^{5}+2 x^{3}+x^{2}+2 x+2 \\
& =x^{6}+x^{5}+x^{2}
\end{aligned}
$$

Example: Prove that $(a x+b)\left(x^{2}+x+1\right)$ over \mathbb{R} is the zero polynomial if and only if $a=b=0$.

Proof: Expanding gives

$$
(a x+b)\left(x^{2}+x+1\right)=a x^{3}+(a+b) x^{2}+(a+b) x+b .
$$

This is the zero polynomial if and only if $a=0, a+b=0$ and $b=0$ which holds if and only if $a=b=0$.

Instructor's Comments: This is the 40 minute mark
Theorem: (Division Algorithm for Polynomials (DAP)) Let \mathbb{F} be a field. If $f(x), g(x) \in$ $\mathbb{F}[x]$ and $g(x) \neq 0$ then there exists unique polynomials $q(x)$ and $r(x)$ in $\mathbb{F}[x]$ such that

$$
f(x)=q(x) g(x)+r(x)
$$

with $r(x)=0$ or $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$.
Proof: Exercise (or extra reading).

Note:

(i) $q(x)$ is the quotient.
(ii) $r(x)$ is the remainder.
(iii) If $r(x)=0$, then $g(x)$ divides $f(x)$ and we write $g(x) \mid f(x)$. Otherwise, $g(x) \nmid f(x)$. In this case, we say that $g(x)$ is a factor of $f(x)$. If a polynomial has no nonconstant polynomial factor of smaller degree, we say that the polynomial is irreducible.

Instructor's Comments: Note here that we're generalizing the definition of \mid. This reduces to the definition we had for integers.

Example: Show over \mathbb{R} that

$$
(x-1) \nmid\left(x^{2}+1\right)
$$

Proof: By DAP, there exists $q(x)$ and $r(x)$ polynomials over \mathbb{R} such that

$$
x^{2}+1=(x-1) q(x)+r(x)
$$

To show that $r(x) \neq 0$, it suffices to show that $r(a) \neq 0$ for some $a \in \mathbb{F}$. Take $x=1$. Then

$$
(1)^{2}+1=(1-1) q(1)+r(1)
$$

giving $2=r(1)$. Therefore, $r(x) \neq 0$ hence $(x-1) \nmid x^{2}+1$.
Instructor's Comments: My guess is that you will need to push this to the next lecture which is fine.

Long Division

Let's divide

$$
f(z)=i z^{3}+(i+3) z^{2}+(5 i+3) z+(2 i-2)
$$

by $g(z)=z+(i+1)$.

$$
\begin{array}{r}
\frac{i z^{2}+4 z+(i-1)}{z+(i+1))} \\
-\frac{\left(i z^{3}+(i+3) z^{2}+(5 i+3) z+(2 i-2) z^{2}\right)}{4 z^{2}+(5 i+3) z} \\
\frac{-\left(4 z^{2}+(4 i+4) z\right)}{(i-1) z+(2 i-2)} \\
-((i-1) z-2)
\end{array}
$$

