Lecture 40

Handout or Document Camera or Class Exercise

What is the value of $\left| \left(\overline{-\sqrt{3}+i} \right)^5 \right|$?

- A) 16*i*
- B) 27
- C) 32
- D) -45
- E) 64

Solution:

Instructor's Comments: Emphasize there are lots of ways to get the solution.

$$\left| \left(\overline{-\sqrt{3} + i} \right)^5 \right| = \left| \left(-\sqrt{3} - i \right)^5 \right|$$
$$= \left| \left(-\sqrt{3} - i \right) \right|^5$$
$$= \sqrt{(-\sqrt{3})^2 + (-1)^2}^5$$
$$= \sqrt{4}^5$$
$$= 32$$

Instructor's Comments: This is the 7-10 minute mark depending on how many ways you find the above answer

Polynomials For us, a field will mean to include $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_p$ where p is a prime number. A ring will include the aforementioned fields as well as \mathbb{Z} and \mathbb{Z}_m for any $m \in \mathbb{N}$.

Definition: A polynomial in x over a ring R is an expression of the form

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where $a_0, a_1, ..., a_n \in R$ and $n \ge 0$ is an integer. Denote the set (actually a ring) of all polynomials over R by R[x].

Instructor's Comments: We will predominately use fields in the above definition. Some of the theorems we do will only work in the case of fields. For simplicity I will state all the theorems with fields to match the textbook though in many cases, a ring is all you need.

Example:

- (i) $(2\pi + i)z^3 \sqrt{7}z + \frac{55}{4}i \in \mathbb{C}[z].$
- (ii) $[5]x^2 + [3]x + [1] \in \mathbb{Z}_7[x]$. We usually write this as $5x^2 + 3x + 1 \in \mathbb{Z}_7[x]$.
- (iii) $x^2 + \frac{1}{x}$ is not a polynomial.
- (iv) $x + \sqrt{x}$ is not a polynomial.
- (v) $1 + x + x^2 + \dots$ is not a polynomial.

Definition:

- (i) The coefficient of $a_n x^n$ is a_n
- (ii) A term of a polynomial is any $a_i x^i$
- (iii) The degree of a polynomial is n provided $a_n x^n$ is the term with the largest exponent on x and nonzero coefficient.
- (iv) 0 is the zero polynomial (all coefficients are 0). The degree of the zero polynomial is undefined (some books say it is negative infinity for reasons we will see later)
- (v) A root of a polynomial $p(x) \in R[x]$ is a value $a \in R$ such that p(a) = 0.
- (vi) If the degree of a polynomial is
 - 1, then the polynomial is linear.
 - 2, then the polynomial is quadratic.
 - 3, then the polynomial is cubic.
- (vii) $\mathbb{C}[x]$ are the complex polynomials, $\mathbb{R}[x]$ are the real polynomials, $\mathbb{Q}[x]$ are the rational polynomials, $\mathbb{Z}[x]$ are the integral polynomials.
- (viii) Let

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 and $g(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$
be polynomials over $R[x]$. Then $f(x) = g(x)$ if and only if $a_i = b_i$ for all $i \in \{0, 1, \dots, n\}$.

- (ix) x is an indeterminate (or a variable). It has no meaning on it's own but can be replaced by a value whenever it makes sense to do so.
- (x) Operations on polynomials: Addition, Subtraction, Multiplication (See next page)

Instructor's Comments: This is probably the 25-30 minute mark. The lecture is a bit dry but we need to be on the same page.

Handout or Document Camera or Class Exercise

Simplify $(x^5 + x^2 + 1)(x + 1) + (x^3 + x + 1)$ in $\mathbb{Z}_2[x]$

Solution:

$$(x^{5} + x^{2} + 1)(x + 1) + (x^{3} + x + 1) = x^{6} + x^{5} + x^{3} + x^{2} + x + 1 + x^{3} + x + 1$$
$$= x^{6} + x^{5} + 2x^{3} + x^{2} + 2x + 2$$
$$= x^{6} + x^{5} + x^{2}$$

Example: Prove that $(ax + b)(x^2 + x + 1)$ over \mathbb{R} is the zero polynomial if and only if a = b = 0.

Proof: Expanding gives

$$(ax+b)(x^2+x+1) = ax^3 + (a+b)x^2 + (a+b)x + b.$$

This is the zero polynomial if and only if a = 0, a + b = 0 and b = 0 which holds if and only if a = b = 0.

Instructor's Comments: This is the 40 minute mark

Theorem: (Division Algorithm for Polynomials (DAP)) Let \mathbb{F} be a field. If $f(x), g(x) \in \mathbb{F}[x]$ and $g(x) \neq 0$ then there exists unique polynomials q(x) and r(x) in $\mathbb{F}[x]$ such that

$$f(x) = q(x)g(x) + r(x)$$

with r(x) = 0 or $\deg(r(x)) < \deg(g(x))$.

Proof: Exercise (or extra reading).

Note:

- (i) q(x) is the quotient.
- (ii) r(x) is the remainder.
- (iii) If r(x) = 0, then g(x) divides f(x) and we write g(x) | f(x). Otherwise, $g(x) \nmid f(x)$. In this case, we say that g(x) is a factor of f(x). If a polynomial has no nonconstant polynomial factor of smaller degree, we say that the polynomial is irreducible.

Instructor's Comments: Note here that we're generalizing the definition of |. This reduces to the definition we had for integers.

Example: Show over \mathbb{R} that

$$(x-1) \nmid (x^2+1)$$

Proof: By DAP, there exists q(x) and r(x) polynomials over \mathbb{R} such that

$$x^{2} + 1 = (x - 1)q(x) + r(x)$$

To show that $r(x) \neq 0$, it suffices to show that $r(a) \neq 0$ for some $a \in \mathbb{F}$. Take x = 1. Then

$$(1)^2 + 1 = (1 - 1)q(1) + r(1)$$

giving 2 = r(1). Therefore, $r(x) \neq 0$ hence $(x - 1) \nmid x^2 + 1$.

Instructor's Comments: My guess is that you will need to push this to the next lecture which is fine.

Long Division

Let's divide

$$f(z) = iz^{3} + (i+3)z^{2} + (5i+3)z + (2i-2)$$

by g(z) = z + (i+1).

iz + 4z + (i-1) $iz^{3} + (i+3)z^{2} + (5i+3)z + (2i-2)$ Z+(i+ $(i_2^3 + (i_1)_2^2)$ $4z^{2} + (5i+3)z$ $(42^{2}+(4i+4))$ (i-1) Z +2i-2 (i-1 -'q(z)=iz+4z+lir(z) = 2i