Lecture 39

Theorem: Complex nth Roots Theorem (CNRT) Any nonzero complex number has exactly $n \in \mathbb{N}$ distinct nth roots. The roots lie on a circle of radius $|z|$ centred at the origin and spaced out evenly by angles of $2 \pi / n$. Concretely, if $a=r e^{i \theta}$, then solutions to $z^{n}=a$ are given by $z=\sqrt[n]{r} e^{i(\theta+2 \pi k) / n}$ for $k \in\{0,1, \ldots, n-1\}$.

Proof: The proof is like the example yesterday and is left as additional reading.
Definition: An nth root of unity is a complex number z such that $z^{n}=1$. These are sometimes denoted by ζ_{n}.

Example: -1 is a second root of unity (and a fourth root of unity and a sixth root of unity etc.)

Instructor's Comments: This is the 10 minute mark; though likely the previous lecture spilled over to this lecture.

Handout or Document Camera or Class Exercise
Find all eighth roots of unity in standard form.

Solution: We want to solve $z^{8}=1$. We know that $\{ \pm 1, \pm i\}$ are solutions. We can draw to find the rest:

For another example, look at $z^{3}=1$:

Example: Solve $z^{5}=-16 \bar{z}$.
Instructor's Comments: Get students to guess the total number of solutions. Also get them to find a solution by inspection. The answer is surprising!

Solution: This is a tricky problem. One could convert to polar coordinates but I prefer to reason as follows. If I can't solve the equation as written, maybe I can simplify by taking lengths on both sides.

$$
\left|z^{5}\right|=|z|^{5}=|-16 \bar{z}|=16|\bar{z}|=16|z|
$$

This gives $|z|^{5}=16|z|$. Hence $|z|^{5}-16|z|=0$ giving $|z|\left(|z|^{4}-16\right)=0$. This gives either $|z|=0$ which translates to $z=0$ or $|z|^{4}=16$ which gives $|z|=2$. So assuming that $z \neq 0$, we multiply the original equation by z to yield

$$
z^{6}=-16 z \bar{z}=-16|z|^{2}=-64
$$

but this question we solved before! Therefore,

$$
z \in\{0, \pm 2 i, \pm \sqrt{3} \pm i\}
$$

Thus, there are seven solutions!
Instructor's Comments: This is the 40 minute mark; if you spilled over from the previous lecture, this is the 50 minute mark. Otherwise do the next problem (which is one we did before)

Example: Solve $z^{6}+2 z^{3}-3=0$.
Proof: From before, we factored this to $\left(z^{3}-1\right)\left(z^{3}+3\right)=0$ and thus $z^{3}=1$ or $z^{3}=-3$. From CNRT, we see that the solutions to $z^{3}=1=\cos (0)+i \sin (0)$ are given by

$$
z \in\left\{e^{i \cdot 0}, e^{i \cdot 2 \pi / 3}, e^{i \cdot 4 \pi / 3}\right\}
$$

and solutions to $z^{3}=-3=3(\cos (\pi)+i \sin (\pi))$ are given by

$$
z \in\left\{\sqrt[3]{3} e^{i \cdot \pi / 3}, \sqrt[3]{3} e^{i \cdot \pi}, \sqrt[3]{3} e^{i \cdot 5 \pi / 3}\right\}
$$

This completes the question.

