Lecture 38

Handout or Document Camera or Class Exercise
Write $(\sqrt{3}-i)^{10}$ in standard form.

Solution: Convert $\sqrt{3}-i$ to polar coordinates.

$$
\begin{aligned}
\sqrt{3}-i & =2\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right) \\
& =2 \operatorname{cis}(-\pi / 6) \\
& =2 \operatorname{cis}(11 \pi / 6)
\end{aligned}
$$

seen via the diagram

$$
\frac{\sqrt{3}}{2 / 3-1}
$$

Lastly,

$$
\begin{aligned}
(2 \operatorname{cis}(11 \pi / 6))^{10} & =2^{10} \operatorname{cis}(110 \pi / 6) \\
& =2^{10} \operatorname{cis}(55 \pi / 3) \\
& =2^{10} \operatorname{cis}(9(2 \pi)+\pi / 3) \\
& =2^{10} \operatorname{cis}(\pi / 3) \\
& =2^{10}\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \\
& =2^{9}+2^{9} \sqrt{3} i \\
& =512+512 \sqrt{3} i
\end{aligned}
$$

DMT
seen via the diagram

Instructor's Comments: This is the 10-15 minute mark

Complex Exponential Function

Definition: For a real θ, define

$$
e^{i \theta}:=\cos (\theta)+i \sin (\theta)=\operatorname{cis}(\theta)
$$

Note: Can write $z \in \mathbb{C}$ as $z=r e^{i \theta}$ where $r=|z|$ and θ is an argument of z.
Question: Why is this definition reasonable? While we can't prove the answer to this question, we can give convincing arguments.

Reason 1: Exponential Laws Work! For $\theta, \alpha \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$
\begin{aligned}
e^{i \theta} \cdot e^{i \alpha} & =e^{i(\theta+\alpha)} & & \text { PMCN } \\
\left(e^{i \theta}\right)^{n} & =e^{i n \theta} & & \text { DMT }
\end{aligned}
$$

Reason 2: Derivative with respect to θ makes sense.

$$
\begin{aligned}
\frac{d}{d \theta}(\cos (\theta)+i \sin (\theta)) & =-\sin (\theta)+i \cos (\theta) \\
& =i(\cos (\theta)+i \sin (\theta)) \\
& =i e^{i \theta}
\end{aligned}
$$

Reason 3: Power series.

$$
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \\
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots \\
\cos (x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots
\end{aligned}
$$

Using these and combining gives

$$
e^{i x}=\cos (x)+i \sin (x)
$$

Setting $\theta=\pi$ gives Euler's Formula:

$$
e^{i \pi}=\cos (\pi)+i \sin (\pi)=-1
$$

Instructor's Comments: This is the 25 minute mark.
Example: Write $\left(2 e^{11 \pi / 6}\right)^{6}$ in standard form.
Solution: By exponent rules (DMT), we have

$$
\begin{aligned}
\left(2 e^{11 \pi / 6}\right)^{6} & =2^{6} e^{11 \pi i} \\
& =2^{6}(\cos (11 \pi)+i \sin (11 \pi)) \\
& =2^{6}(-1+0 i) \\
& =-64
\end{aligned}
$$

Instructor's Comments: This is the 30 minute mark.

Example: Solve $z^{6}+2 z^{3}-3=0$
Solution: Factoring gives

$$
0=z^{6}+2 z^{3}-3=\left(z^{3}-1\right)\left(z^{3}+3\right)
$$

Hence $z^{3}=1$ or $z^{3}=-3$.
Question: Can we solve $z^{n}=w$ for a fixed $w \in \mathbb{C}$?
Note: We saw a case of this already with $n=2$ and $w=-r$. We'll delay the previous question until later.

Example: Solve $z^{6}=-64$.
Solution: We already saw that $2 e^{11 \pi / 6}$ was a solution. Note that $\pm 2 i$ are two others found by inspection. How do we find all the solutions in general? The answer involves using polar coordinates. Write $z=r e^{i \theta}$. Then

$$
z^{6}=r^{6} e^{i 6 \theta}=-64
$$

Taking the modulus yields $|r|^{6}\left|e^{i 6 \theta}\right|=64$. Since for any real α, we have

$$
\left|e^{i \alpha}\right|=|\cos (\alpha)+i \sin (\alpha)|=\sqrt{\cos ^{2}(\alpha)+\sin ^{2}(\alpha)}=1
$$

we see that $|r|^{6}=64$ and hence $r=2$ since r is a positive real number.
Instructor's Comments: This is the 40 minute mark.
Hence, we see that $-64=r^{6} e^{i 6 \theta}=64 e^{i 6 \theta}$ and so $e^{i 6 \theta}=-1$. Thus,

$$
\cos (6 \theta)+i \sin (6 \theta)=-1=\cos (\pi)+i \sin (\pi)
$$

Hence, this is true when $6 \theta=\pi+2 \pi k$ for all $k \in \mathbb{Z}$. Solving for θ gives

$$
\theta=\frac{\pi+2 \pi k}{6}=\frac{\pi}{6}+\frac{\pi}{3} k
$$

Now, when do two values of θ coincide with the same complex point? Answer: When they differ by multiples of 2π.

Claim: $\theta_{1}=\frac{\pi}{6}+\frac{\pi}{3} k_{1}$ and $\theta_{2}=\frac{\pi}{6}+\frac{\pi}{3} k_{2}$ are equal up to 2π rotations if and only if $k_{1} \equiv k_{2}(\bmod 6)$.

Proof: We have that

$$
\theta_{1}=\theta_{2}+2 \pi m \quad \text { for some } m \in \mathbb{Z}
$$

$$
\frac{\pi}{6}+\frac{\pi}{3} k_{1}=\frac{\pi}{6}+\frac{\pi}{3} k_{2}+2 \pi m
$$

$$
\begin{aligned}
\frac{\pi}{3} k_{1} & =\frac{\pi}{3} k_{2}+2 \pi m \\
k_{1} & =k_{2}+6 m \\
k_{1} & \equiv k_{2}(\bmod 6)
\end{aligned}
$$

and each of the above steps are if and only if steps. This completes the proof of the claim.

Hence $\theta=\frac{\pi}{6}+\frac{\pi}{3} k_{1}$ for $k_{1} \in\{0,1,2,3,4,5\}$. Thus,

$$
\theta \in\left\{\frac{\pi}{6}, \frac{3 \pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{9 \pi}{6}, \frac{11 \pi}{6}\right\}
$$

or rewritten as

$$
\theta \in\left\{\frac{\pi}{6}+\frac{\pi}{3} k_{1}: k_{1} \in\{0,1,2,3,4,5\}\right\}
$$

Therefore, $z=r e^{i \theta} \in\left\{2 e^{i(\pi / 6+\pi k / 3)}: k \in\{0,1,2,3,4,5\}\right\}$.

Instructor's Comments: In all likelihood, the 50 minute mark is somewhere above. Carry through to lecture 39 as needed.

