Lecture 37

Handout or Document Camera or Class Exercise

Express the following in terms of polar coordinates:

- (i) -3
- (ii) 1 i

Solution:

(i) Note that r = |-3| = 3 and $\theta = \arctan(0/-3) = 0$. Then, since -3 lives between the second and third quadrant, you need to add π to the previous answer. Thus $\theta = \pi$ and hence $-3 = 3\operatorname{cis}(\pi)$.

Instructor's Comments: Make sure to note the addition of pi above.

(ii) Note that $r = |1 - i| = \sqrt{1^2 + 1^2} = \sqrt{2}$. Hence

$$1 - i = \sqrt{2} \left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \right)$$

= $\sqrt{2} (\cos(7\pi/4) + i \sin(7\pi/4))$
= $\sqrt{2} \operatorname{cis}(7\pi/4)$

Instructor's Comments: This is the 10 minute mark.

Handout or Document Camera or Class Exercise

- (i) Write $\operatorname{cis}(15\pi/6)$ in standard form.
- (ii) Write $-3\sqrt{2} + 3\sqrt{6}i$ in polar form.

Solution:

- (i) $\operatorname{cis}(15\pi/6) = \cos(5\pi/2) + i\sin(5\pi/2) = i.$
- (ii) Note that

$$r = |-3\sqrt{2} + 3\sqrt{6}i|$$

= $\sqrt{(-3\sqrt{2})^2 + (3\sqrt{6})^2}$
= $\sqrt{18 + 54}$
= $\sqrt{72}$
= $6\sqrt{2}$

Therefore, $-3\sqrt{2} + 3\sqrt{6}i = 6\sqrt{2}\left(\frac{-1}{2} + \frac{\sqrt{3}}{2}i\right) = 6\sqrt{2}\operatorname{cis}(2\pi/3)$ where the last equality holds since

Instructor's Comments: This is the 20 minute mark

Theorem: (Polar Multiplication of Complex Numbers (PMCN)) If $z_1 = r_1 \operatorname{cis}(\theta_1)$ and $z_2 = r_2 \operatorname{cis}(\theta_2)$, then

$$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$$

Proof: We have

$$z_1 z_2 = r_1(\cos(\theta_1) + i\sin(\theta_1))r_2(\cos(\theta_2) + i\sin(\theta_2))$$

= $r_1 r_2(\cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2) + i(\cos(\theta_1)\sin(\theta_2) + \sin(\theta_1)\cos(\theta_2)))$
= $r_1 r_2(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))$
= $r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$

where in line 3 above, we used trig identities. This completes the proof.

Corollary: Multiplication by $i = \cos(\pi/2) + i\sin(\pi/2)$ gives a rotation by $\pi/2$.

Example: Using Polar Multiplication of Complex Numbers on $(\sqrt{6}+\sqrt{2}i)(-3\sqrt{2}+3\sqrt{6}i)$ gives

$$(\sqrt{6} + \sqrt{2}i)(-3\sqrt{2} + 3\sqrt{6}i) = 2\sqrt{2}\operatorname{cis}(\pi/6) \cdot 6\sqrt{2}\operatorname{cis}(2\pi/3)$$

= 24cis(\pi/6 + 2\pi/3) By PMCN
= 24cis(5\pi/6)
= 24(-\sqrt{3}/2 + i/2)
= -12\sqrt{3} + 12i

Instructor's Comments: This is the 30-35 minute mark.

Theorem: (De Moivre's Theorem (DMT)) If $\theta \in \mathbb{R}$ and $n \in \mathbb{Z}$, then

$$(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$$

or more compactly,

$$\operatorname{cis}(\theta)^n = \operatorname{cis}(n\theta).$$

Instructor's Comments: Emphasize here that we want to use induction but need to reduce to the natural numbers first

Proof: First note that when n = 0, we see that $(\cos(\theta) + i\sin(\theta))^0 = 1$ and that $\cos(\theta) + i\sin(\theta) = 1$ so the statement holds. For n > 0, we proceed by induction on n. For the base case, consider n = 1. Then

$$(\cos(\theta) + i\sin(\theta))^n = \cos(\theta) + i\sin(\theta) = \cos(n\theta) + i\sin(n\theta).$$

Now, assume that

$$(\cos(\theta) + i\sin(\theta))^k = \cos(k\theta) + i\sin(k\theta)$$

holds for some $k \in \mathbb{N}$. For the inductive step, note that

$$(\cos(\theta) + i\sin(\theta))^{k+1} = (\cos(\theta) + i\sin(\theta))^k (\cos(\theta) + i\sin(\theta))$$
$$= (\cos(k\theta) + i\sin(k\theta))(\cos(\theta) + i\sin(\theta)) \quad \text{Inductive hypothesis}$$
$$= \cos((k+1)\theta) + i\sin((k+1)\theta) \qquad \text{By PMCN}$$

For n < 0, we write n = -m for some $m \in \mathbb{N}$. Then

$$\operatorname{cis}(\theta)^{n} = \operatorname{cis}(\theta)^{-m}$$

$$= (\operatorname{cis}(\theta)^{m})^{-1}$$

$$= \operatorname{cis}(m\theta)^{-1}$$

$$= \frac{\cos(m\theta) - i\sin(m\theta)}{\cos^{2}(m\theta) + \sin^{2}(m\theta)}$$
Since $z^{-1} = \overline{z}/|z|^{2}$

$$= \cos(m\theta) - i\sin(m\theta)$$

and $\cos(-m\theta) + i\sin(-m\theta) = \cos(m\theta) - i\sin(m\theta)$ since cosine is even and sine is odd. This completes the proof.

Corollary: If $z = rcis(\theta)$ then $z^n = r^n cis(n\theta)$.

Instructor's Comments: This is the 50 minute mark.