Lecture 37

Handout or Document Camera or Class Exercise
Express the following in terms of polar coordinates:
(i) -3
(ii) $1-i$

Solution:

(i) Note that $r=|-3|=3$ and $\theta=\arctan (0 /-3)=0$. Then, since -3 lives between the second and third quadrant, you need to add π to the previous answer. Thus $\theta=\pi$ and hence $-3=3 \operatorname{cis}(\pi)$.

Instructor's Comments: Make sure to note the addition of pi above.
(ii) Note that $r=|1-i|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$. Hence

$$
\begin{aligned}
1-i & =\sqrt{2}\left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right) \\
& =\sqrt{2}(\cos (7 \pi / 4)+i \sin (7 \pi / 4)) \\
& =\sqrt{2} \operatorname{cis}(7 \pi / 4)
\end{aligned}
$$

Instructor's Comments: This is the 10 minute mark.
(i) Write $\operatorname{cis}(15 \pi / 6)$ in standard form.
(ii) Write $-3 \sqrt{2}+3 \sqrt{6} i$ in polar form.

Solution:

(i) $\operatorname{cis}(15 \pi / 6)=\cos (5 \pi / 2)+i \sin (5 \pi / 2)=i$.
(ii) Note that

$$
\begin{aligned}
r & =|-3 \sqrt{2}+3 \sqrt{6} i| \\
& =\sqrt{(-3 \sqrt{2})^{2}+(3 \sqrt{6})^{2}} \\
& =\sqrt{18+54} \\
& =\sqrt{72} \\
& =6 \sqrt{2}
\end{aligned}
$$

Therefore, $-3 \sqrt{2}+3 \sqrt{6} i=6 \sqrt{2}\left(\frac{-1}{2}+\frac{\sqrt{3}}{2} i\right)=6 \sqrt{2} \operatorname{cis}(2 \pi / 3)$ where the last equality holds since

Instructor's Comments: This is the 20 minute mark

Theorem: (Polar Multiplication of Complex Numbers (PMCN)) If $z_{1}=r_{1} \operatorname{cis}\left(\theta_{1}\right)$ and $z_{2}=r_{2} \operatorname{cis}\left(\theta_{2}\right)$, then

$$
z_{1} z_{2}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)
$$

Proof: We have

$$
\begin{aligned}
z_{1} z_{2} & =r_{1}\left(\cos \left(\theta_{1}\right)+i \sin \left(\theta_{1}\right)\right) r_{2}\left(\cos \left(\theta_{2}\right)+i \sin \left(\theta_{2}\right)\right) \\
& =r_{1} r_{2}\left(\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)+i\left(\cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right)+\sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right)\right)\right) \\
& =r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right) \\
& =r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

where in line 3 above, we used trig identities. This completes the proof.
Corollary: Multiplication by $i=\cos (\pi / 2)+i \sin (\pi / 2)$ gives a rotation by $\pi / 2$.

Example: Using Polar Multiplication of Complex Numbers on $(\sqrt{6}+\sqrt{2} i)(-3 \sqrt{2}+3 \sqrt{6} i)$ gives

$$
\begin{array}{rlr}
(\sqrt{6}+\sqrt{2} i)(-3 \sqrt{2}+3 \sqrt{6} i) & =2 \sqrt{2} \operatorname{cis}(\pi / 6) \cdot 6 \sqrt{2} \operatorname{cis}(2 \pi / 3) \\
& =24 \operatorname{cis}(\pi / 6+2 \pi / 3) & \\
& =24 \operatorname{cis}(5 \pi / 6) & \\
& =24(-\sqrt{3} / 2+i / 2) \\
& =-12 \sqrt{3}+12 i & \text { By PMCN } \\
&
\end{array}
$$

Instructor's Comments: This is the 30-35 minute mark.
Theorem: (De Moivre's Theorem (DMT)) If $\theta \in \mathbb{R}$ and $n \in \mathbb{Z}$, then

$$
(\cos (\theta)+i \sin (\theta))^{n}=\cos (n \theta)+i \sin (n \theta)
$$

or more compactly,

$$
\operatorname{cis}(\theta)^{n}=\operatorname{cis}(n \theta)
$$

Instructor's Comments: Emphasize here that we want to use induction but need to reduce to the natural numbers first

Proof: First note that when $n=0$, we see that $(\cos (\theta)+i \sin (\theta))^{0}=1$ and that $\cos (0 \theta)+i \sin (0 \theta)=1$ so the statement holds. For $n>0$, we proceed by induction on n. For the base case, consider $n=1$. Then

$$
(\cos (\theta)+i \sin (\theta))^{n}=\cos (\theta)+i \sin (\theta)=\cos (n \theta)+i \sin (n \theta) .
$$

Now, assume that

$$
(\cos (\theta)+i \sin (\theta))^{k}=\cos (k \theta)+i \sin (k \theta)
$$

holds for some $k \in \mathbb{N}$. For the inductive step, note that

$$
\begin{aligned}
(\cos (\theta)+i \sin (\theta))^{k+1} & =(\cos (\theta)+i \sin (\theta))^{k}(\cos (\theta)+i \sin (\theta)) & & \\
& =(\cos (k \theta)+i \sin (k \theta))(\cos (\theta)+i \sin (\theta)) & & \text { Inductive hypothesis } \\
& =\cos ((k+1) \theta)+i \sin ((k+1) \theta) & & \text { By PMCN }
\end{aligned}
$$

For $n<0$, we write $n=-m$ for some $m \in \mathbb{N}$. Then

$$
\begin{array}{rlr}
\operatorname{cis}(\theta)^{n} & =\operatorname{cis}(\theta)^{-m} \\
& =\left(\operatorname{cis}(\theta)^{m}\right)^{-1} \\
& =\operatorname{cis}(m \theta)^{-1} & \\
& =\frac{\cos (m \theta)-i \sin (m \theta)}{\cos ^{2}(m \theta)+\sin ^{2}(m \theta)} \quad \text { Since } z^{-1}=\bar{z} /|z|^{2} \\
& =\cos (m \theta)-i \sin (m \theta) &
\end{array}
$$

and $\cos (-m \theta)+i \sin (-m \theta)=\cos (m \theta)-i \sin (m \theta)$ since cosine is even and sine is odd. This completes the proof.

Corollary: If $z=r \operatorname{cis}(\theta)$ then $z^{n}=r^{n} \operatorname{cis}(n \theta)$.
Instructor's Comments: This is the 50 minute mark.

