Lecture 36

Handout or Document Camera or Class Exercise

Instructor's Comments: There are two clicker questions here. Choose the one you prefer. I like the first one because students often forget they can use LDEs to find inverses.

Let $[x]$ be the inverse of [241] in \mathbb{Z}_{1001}, if it exists, where $0 \leq x<1001$. Determine the sum of the digits of x.
A) 7
B) 9
C) 11
D) 12
E) $[x]$ does not exist

Solution: We use the Extended Euclidean Algorithm (EEA) on $241 x+1001 y=1$ to see that

x	y	r	q
0	1	1001	0
1	0	241	0
-4	1	37	$\left\lfloor\frac{1001}{241}\right\rfloor=4$
25	-6	19	$\left\lfloor\frac{211}{37}\right\rfloor=6$
-29	7	18	$\left\lfloor\frac{37}{19}\right\rfloor=1$
54	-13	1	$\left\lfloor\frac{19}{18}\right\rfloor=1$

Hence $241(54)+1001(-13)=1$ and so [54] is the inverse of $[241]$ in \mathbb{Z}_{1001}. Since $5+4=9$, the correct answer is B .

How many integers x satisfy all of the following three conditions?

$$
\begin{gathered}
x \equiv 6 \quad(\bmod 13) \\
4 x \equiv 3 \quad(\bmod 7) \\
-1000<x<1000
\end{gathered}
$$

A) 1
B) 7
C) 13
D) 22
E) 91

Solution: Note that multiplying $4 x \equiv 3(\bmod 7)$ by 2 gives $x \equiv 6(\bmod 7)$. By the Chinese Remainder Theorem or by Splitting the Modulus, we see that $x \equiv 6(\bmod 91)$. Thus, $x=6+91 k$. Using this with the range restriction gives

$$
\begin{aligned}
& -1000<6+91 k<1000 \\
& -1006<91 k<994
\end{aligned}
$$

Note that $91 \cdot 10=910$ and $91 \cdot 11=1001$. Therefore, the above condition with the fact that $k \in \mathbb{Z}$ reduces to $-11 \leq k \leq 10$ and thus, there are 22 solutions.

Instructor's Comments: This is the 10 minute mark; this is a longer problem

Definition: The modulus of $z=x+y i$ is the nonnegative real number

$$
|z|=|x+y i|:=\sqrt{x^{2}+y^{2}}
$$

Proposition: (Properties of Modulus (PM))
(i) $|\bar{z}|=|z|$
(ii) $z \bar{z}=|z|^{2}$
(iii) $|z|=0 \Leftrightarrow z=0$
(iv) $|z w|=|z||w|$
(v) $|z+w| \leq|z|+|w|$ (This is called the triangle inequality)

Instructor's Comments: Mention that properties 3,4,5 define a norm. I recommend not doing the proof of all of these. I would do 2,4 and 5. In fact, I would make 5 an in-class reading proof to get some reading practice in.

Proof: Throughout, let $z=x+y i$.
(i) Note that

$$
|\bar{z}|=|x-y i|=\sqrt{x^{2}+(-y)^{2}}=\sqrt{x^{2}+y^{2}}=|z|
$$

(ii) $z \bar{z}=(x+y i)(x-y i)=x^{2}+y^{2}=|z|^{2}$
(iii) $|z|=0$ if and only if $\sqrt{x^{2}+y^{2}}=0$ if and only if $x^{2}+y^{2}=0$ if and only if $x=y=0$ if and only if $z=0$.
(iv) Using the second property above and Properties of Conjugates, we have

$$
|z w|^{2}=(z w) \overline{z w}=z \bar{z} w \bar{w}=|z|^{2}|w|^{2}
$$

Hence, since all the numbers above are real, we have that $|z w|=|z||w|$.
(v) (See the handout on next page)

To prove $|z+w| \leq|z|+|w|$, it suffices to prove that

$$
|z+w|^{2} \leq(|z|+|w|)^{2}=|z|^{2}+2|z w|+|w|^{2}
$$

since the modulus is a positive real number. Using the Properties of Modulus and the Properties of Conjugates, we have

$$
\begin{aligned}
|z+w|^{2} & =(z+w)(\overline{z+w}) & & \text { PM } \\
& =(z+w)(\bar{z}+\bar{w}) & & \text { PCJ } \\
& =z \bar{z}+z \bar{w}+w \bar{z}+w \bar{w} & & \\
& =|z|^{2}+z \bar{w}+\overline{z \bar{w}}+|w|^{2} & & \text { PCJ and PM }
\end{aligned}
$$

Now, from Properties of Conjugates, we have that

$$
z \bar{w}+\overline{z \bar{w}}=2 \Re(z \bar{w}) \leq 2|z \bar{w}|=2|z w|
$$

and hence

$$
|z+w|^{2}=|z|^{2}+z \bar{w}+\overline{z \bar{w}}+|w|^{2} \leq|z|^{2}+2|z w|+|w|^{2}
$$

completing the proof.

Instructor's Comments: This is the 25-30 minute mark

Revisit Inverses

Recall, we defined the inverse of z by

$$
z^{-1}=\frac{x}{x^{2}+y^{2}}-\frac{y}{x^{2}+y^{2}} i
$$

Note that

$$
z^{-1}=\frac{1}{z} \cdot \frac{\bar{z}}{\bar{z}}=\frac{\bar{z}}{z \cdot \bar{z}}=\frac{\bar{z}}{|z|^{2}}
$$

Argand Diagram

Instructor's Comments: This is the 35 minute mark.

Polar Coordinates

A point in the plane corresponds to a length and an angle:

Example: $\quad(r, \theta)=\left(3, \frac{\pi}{4}\right)$ corresponds to

$$
3 \cos (\pi / 4)+i(3 \sin (\pi / 4))=\frac{3}{\sqrt{2}}+\frac{3}{\sqrt{2}} i
$$

via the picture

Given $z=x+y i$, we see that

$$
\begin{gathered}
r=|z|=\sqrt{x^{2}+y^{2}} \\
\theta=\arccos (x / r)=\arcsin (y / r)=\arctan (y / x)
\end{gathered}
$$

Note: WARNING. The angle θ might be $\arctan (y / x)$ OR $\pi+\arctan (y / x)$ depending on which quadrant we are in. More on this next class.

Example: Write $z=\sqrt{6}+\sqrt{2} i$ using polar coordinates.
Solution: Note that $r=\sqrt{\sqrt{6}^{2}+\sqrt{2}^{2}}=\sqrt{8}=2 \sqrt{2}$. Further,

$$
\arctan (\sqrt{2} / \sqrt{6})=\arctan 1 / \sqrt{3}=\pi / 6
$$

Note: There is no need to add π to the above answer since the answer lies in the first quadrant.

Therefore, z corresponds to $(r, \theta)=(2 \sqrt{2}, \pi / 6)$.
Definition: The polar form of a complex number z is $z=r(\cos (\theta)+i \sin (\theta))$ where r is the modulus of z and θ is called an argument of z. This is sometimes denoted by $\arg (z)=\theta$. Further, denote $\operatorname{cis}(\theta):=\cos (\theta)+i \sin (\theta)$.

Example: If $z=\sqrt{6}+\sqrt{2} i$, then $z=2 \sqrt{2}(\cos (\pi / 6)+i \sin (\pi / 6))=2 \sqrt{2} \operatorname{cis}(\pi / 6)$.
Instructor's Comments: This is the 50 minute mark.

