Lecture 34

Instructor's Comments: There's a large probability that you might have extra time in this lecture - there are ways to fill that time in later lectures with some extra complex numbers proofs.

Complex Numbers

Our current view of important sets:

$$
\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}
$$

These sets can be thought of as helping us to solve polynomial equations. However, $x^{2}+1=0$ has no solution in any of these sets.

Instructor's Comments: This is the 3 minute mark
Definition: A complex numbers (in standard form) is an expression of the form $x+y i$ where $x, y \in \mathbb{R}$ and i is the imaginary unit. Denote the set of complex numbers by

$$
\mathbb{C}:=\{x+y i: x, y \in \mathbb{R}\}
$$

Example: $1+2 i, 3 i, \sqrt{13}+\pi i, 2($ or $2+0 i)$.

Note:

(i) $\mathbb{R} \subseteq \mathbb{C}$
(ii) If $z=x+y i$, then $x=\operatorname{Re}(z)=\Re(z)$ is called the real part and $y=\operatorname{Im}(z)=\Im(z)$ is called the imaginary part.

Definition: Two complex numbers $z=x+y i$ and $w=u+v i$ are equal if and only if $x=u$ and $y=v$.

Definition: A complex number $z=x+y i$ is...
(i) Purely real (or simply real) if $\Im(z)=0$, that is, $z=x$
(ii) Purely Imaginary if $\Re(z)=0$, that is, $x=y i$.

We turn \mathbb{C} into a commutative ring by defining operations as follows:
(i) $(x+y i) \pm(u+v i):=(x \pm u)+(y \pm v) i$
(ii) $(x+y i)(u+v i):=(x u-v y)+(x v+u y) i$

By this definition, we have

$$
i^{2}=i \cdot i=(0+i)(0+i)=-1+0 i=-1 .
$$

Therefore, i is a solution of $x^{2}+1$. With this in mind, you can remember multiplication just by multiplying terms as you would with polynomials before.
$(x+y i)(u+v i)=x u+x v i+y i u+y i v i=x u+(x v+y u) i+y v i^{2}=x u-y v+(x v+u y) i$
Example:
(i) $(1+2 i)+(3+4 i)=4+6 i$
(ii) $(1+2 i)-(3+4 i)=-2-2 i$
(iii) $(1+2 i)(3+4 i)=3-8+(4+6) i=-5+10 i$

We note that \mathbb{C} is a field by observing that the multiplicative inverse of a nonzero complex numbers is

$$
(x+y i)^{-1}=\frac{x}{x^{2}+y^{2}}-\frac{y}{x^{2}+y^{2}} i
$$

Exercise: If $z \in \mathbb{C}$ and $z \neq 0$, then $z \cdot z^{-1}=1$
Instructor's Comments: This is the 20-25 minute mark.
For complex numbers u, v, w, z with v and z nonzero, the above is consistent with the usual fraction rules:

$$
\frac{u}{v}+\frac{w}{z}=\frac{u z+v w}{v z} \quad \text { and } \quad \frac{u}{v} \cdot \frac{w}{z}=\frac{u w}{v z}
$$

For $k \in \mathbb{N}$ and $z \in \mathbb{C}$, define

$$
z^{0}=1 \quad z^{1}=z \quad z^{k+1}=z \cdot z^{k}
$$

and further that $z^{-k}:=\left(z^{-1}\right)^{k}$. With these definitions, the usual exponent rules hold, namely

$$
z^{m+n}=z^{m} \cdot z^{n} \quad\left(z^{m}\right)^{n}=z^{m n}
$$

for $m, n \in \mathbb{Z}$.
Example: Write $\frac{1+2 i}{3-4 i}$ in standard form.

Solution:

$$
\begin{aligned}
\frac{1+2 i}{3-4 i} & =(1+2 i)(3-4 i)^{-1} \\
& =(1+2 i)\left(\frac{3}{3^{2}+4^{2}}-\frac{(-4)}{3^{2}+4^{2}} i\right) \\
& =(1+2 i)\left(\frac{3}{25}+\frac{4}{25} i\right) \\
& =\frac{3}{25}-\frac{8}{25}+\left(\frac{4}{25}+\frac{6}{25}\right) i \\
& =\frac{-5}{25}+\frac{10}{25} i \\
& =\frac{-1}{5}+\frac{2}{5} i
\end{aligned}
$$

Instructor's Comments: This is the 30 minute mark

Express the following in standard form
(i) $z=\frac{(1-2 i)-(3+4 i)}{5-6 i}$
(ii) $w=i^{2015}$

Solution:

(i)

$$
\begin{aligned}
z & =((1-2 i)-(3+4 i))(5-6 i)^{-1} \\
& =(-2-6 i)\left(\frac{5}{5^{2}+6^{2}}-\frac{(-6)}{5^{2}+6^{2}} i\right) \\
& =(-2-6 i)\left(\frac{5}{61}+\frac{6}{61} i\right) \\
& =\frac{-10}{61}+\frac{36}{61}+\left(\frac{-12}{61}-\frac{30}{61}\right) i \\
& =\frac{26}{61}-\frac{42}{61} i
\end{aligned}
$$

(ii) Recall that $i^{2}=-1$ and $i^{4}=1$. Thus,

$$
\begin{aligned}
w & =i^{2015} \\
& =\left(i^{4}\right)^{503} \cdot i^{3} \\
& =1^{503} \cdot i^{2} \cdot i \\
& =-i
\end{aligned}
$$

Instructor's Comments: This is the 40 minute mark - you can easily go on to the next lecture or use this time to catch up.

