
Lecture 33

Instructor’s Comments: I like to introduce Exponentiation Ciphers first
and then tackle RSA - this way students can see the build up and see why one
prime is an insecure procedure whereas two primes gives a secure procedure.

Exponentiation Cipher
We begin describing RSA by first explaining exponentiation ciphers. Suppose Alice

and Bob want to share a message but there is an eavesdropper (Eve) watching their
communications.

Instructor’s Comments: Include picture while lecturing.

In an exponentiation cipher, Alice chooses a (large) prime p and an e satisfying

1 < e < (p− 1) and gcd(e, p− 1) = 1.

Alice then makes the pair (e, p) public and computes her private key d satisfying

1 < d < (p− 1) and ed ≡ 1 (mod p− 1)

which can be done quickly using the Euclidean Algorithm (the inverse condition above is
why we required that gcd(e, p− 1)).

To send a message M to Alice, an integer between 0 and p−1 inclusive, Bob computes
a ciphertext (encrypted message) C satisfying

0 ≤ C < p and C ≡M e (mod p).

Bob then sends C to Alice.

Alice then computes R ≡ Cd (mod p) with 0 ≤ R < p.

Instructor’s Comments: Include picture - this is the 10 minute mark
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Proposition: R ≡M (mod p).

Proof: If p | M , then all of M , C and R are 0 and the claim follows. So we assume
that p -M . Recall that ed ≡ 1 (mod p− 1) and so we have that there exists an integer k
such that ed = 1 + k(p− 1). Using this, we have

R ≡ Cd (mod p)

≡ (M e)d (mod p) by definition of C

≡M ed (mod p)

≡M (mod p) Corollary to F`T since ed ≡ 1 (mod p− 1).

as required �

Corollary: R = M

Proof: By the previous proposition, R ≡ M (mod p). Recall that 0 ≤ M,R < p and so
the values must be equal. �

Instructor’s Comments: This is the 20 minute mark.

The good news is that this scheme works. However, Eve can compute d just as easily
as Alice! Eve knows p, hence knows p−1 and can use the Euclidean algorithm to compute
d just like Alice. This means our scheme is not secure. To rectify this problem, we include
information about two primes.

RSA Alice chooses two (large) distinct primes p and q, computes n = pq and selects
any e satisfying

1 < e < (p− 1)(q − 1) and gcd(e, (p− 1)(q − 1)) = 1

Alice then makes the pair (e, n) public and compute her private key d satisfying

1 < d < (p− 1)(q − 1) and ed ≡ 1 (mod (p− 1)(q − 1))

again which can be done quickly using the Euclidean Algorithm (Alice knows p and q and
hence knows (p− 1)(q − 1)).

Instructor’s Comments: Note that in the textbook (d, n) is the private key
pair.

To send a message M to Alice, an integer between 0 and n−1 inclusive, Bob computes
a ciphertext C satisfying

0 ≤ C < pq and C ≡M e (mod pq).

Bob then sends C to Alice. Alice then computes R ≡ Cd (mod pq) with 0 ≤ R < pq.
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Instructor’s Comments: Include a diagram of what’s happening. This is the
30 minute mark.
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Proposition: R = M .

Proof: Since ed ≡ 1 (mod (p− 1)(q − 1)), transitivity of divisibility tells us that

ed ≡ 1 (mod p− 1) and ed ≡ 1 (mod q − 1).

Since gcd(e, (p− 1)(q− 1)) = 1, GCD Prime Factorization (or by definition) tells us that
gcd(e, p − 1) = 1 and that gcd(e, q − 1) = 1. Next, as C ≡ M e (mod pq), Splitting the
Modulus states that

C ≡M e (mod p) and C ≡M e (mod q)

Similarly, by Splitting the Modulus, we have

R ≡ Cd (mod p) and R ≡ Cd (mod q).

By the previous proposition applied twice, we have that

R ≡M (mod p) and R ≡M (mod q).

Now, an application of the Chinese Remainder Theorem (or Splitting the Modulus), valid
since p and q are distinct, gives us that R ≡M (mod pq). Recalling that 0 ≤ R,M < pq,
we see that R = M . �

Is this scheme more secure? Can Eve compute d? If Eve can compute (p− 1)(q − 1)
then Eve could break RSA. To compute this value given only n (which recall is pq), Eve
would need to factor n (or compute p+ q). Factoring n is a notoriously hard problem and
we know of no quick way of doing so. Eve could also break RSA if she could solve the
problem of computing M given M e (mod n).

Note: Let φ be the Euler Phi Function. This function has the valuation φ(n) = (p −
1)(q − 1) when n = pq a product of distinct primes.

Instructor’s Comments: This is the 40 minute mark
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Handout or Document Camera or Class Exercise

Let p = 2, q = 11 and e = 3

(i) Compute n, φ(n) and d.

(ii) Compute C ≡M e (mod n) when M = 8 (reduce to least nonnegative C).

(iii) Compute R ≡ Cd (mod n) when C = 6 (reduce to least nonnegative R).

Solution:

(i) Note n = 22, φ(n) = (2 − 1)(11 − 1) = 10 and lastly, 3d ≡ 1 (mod 10) and
multiplying by 7 gives d ≡ 7 (mod 10). Hence d = 7.

(ii) Note that

C ≡M e (mod 22)

≡ 83 (mod 22)

≡ 8 · 64 (mod 22)

≡ 8 · (−2) (mod 22)

≡ −16 (mod 22)

≡ 6 (mod 22)

(iii) The quick way to solve this is to recall the RSA theorem and hence M = 8. The
long way is to do the following:

R ≡ Cd (mod 22)

≡ 67 (mod 22)

≡ 6 · (63)2 (mod 22)

≡ 6 · (216)2 (mod 22)

≡ 6 · (−4)2 (mod 22)

≡ 6 · 16 (mod 22)

≡ 6 · (−6) (mod 22)

≡ −36 (mod 22)

≡ 8 (mod 22)
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Food for thought:

(i) How does Alice choose primes p and q? (Answer: Randomly choose odd numbers!
If p and q are 100 digit primes, then choosing 100 gives you more than a 50% chance
that you have a prime - can check using primality tests).

(ii) What if Eve wasn’t just a passive eavesdropper? What if Eve could change the
public key information before it reaches Bob? (This involves using certificates).

(iii) What are some advantages of RSA? (Believed to be secure, uses the same hardware
for encryption and decryption, computations can be done quickly using a square
and multiply algorithm).
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