## Lecture 32

Instructor's Comments: This is a make up lecture. You can choose to cover many extra problems if you wish or head towards cryptography. I will probably include the square and multiply algorithm at some point as an extra topic.

Handout or Document Camera or Class Exercise
Which of the following is equal to $[53]^{242}+[5]^{-1}$ in $\mathbb{Z}_{7}$ ?
(Do not use a calculator.)
A) $[5]$
B) $[4]$
C) $[3]$
D) $[2]$
E) [1]

Solution: Note that

$$
\begin{aligned}
53^{242}+5^{-1} & \equiv 4^{242}+3(\bmod 7) \\
& \equiv 4^{2} \cdot 4^{240}+3(\bmod 7) \\
& \equiv 2 \cdot\left(4^{6}\right)^{40}+3(\bmod 7) \\
& \equiv 2 \cdot 1^{40}+3(\bmod 7) \\
& \equiv 5
\end{aligned}
$$

Instructor's Comments: This is the 5-7 minute mark.

Theorem: Splitting the Modulus (SM) Let $m$ and $n$ be coprime positive integers. Then, for any integers $x$ and $a$, we have

$$
\begin{aligned}
& x \equiv a(\bmod m) \\
& x \equiv a(\bmod n)
\end{aligned}
$$

simultaneously if and only if $x \equiv a(\bmod m n)$.
Proof: $(\Leftarrow)$ Assume that $x \equiv a(\bmod m n)$. Then $m n \mid(x-a)$. Since $m \mid m n$, by transitivity, we have that $m \mid(x-a)$ and hence $x \equiv a(\bmod m)$. Similarly, $x \equiv a(\bmod n)$.
$(\Rightarrow)$ Assume that $x \equiv a(\bmod m)$ and $x \equiv a(\bmod n)$. Note that $x=a$ is a solution. Since $\operatorname{gcd}(m, n)=1$, by the Chinese Remainder Theorem, $x \equiv a(\bmod m n)$ gives all solutions.

Instructor's Comments: This is the 15 minute mark.

For what integers is $x^{5}+x^{3}+2 x^{2}+1$ divisible by 6 ?

Solution: We want to solve $x^{5}+x^{3}+2 x^{2}+1 \equiv 0(\bmod 6)$. By Splitting the Modulus, we see that

$$
\begin{aligned}
x^{5}+x^{3}+2 x^{2}+1 & \equiv 0(\bmod 2) \\
x^{5}+x^{3}+2 x^{2}+1 & \equiv 0(\bmod 3)
\end{aligned}
$$

Using equation 1 and plugging in $x \equiv 0(\bmod 2)$ and $x \equiv 1(\bmod 2)$ gives in both cases that

$$
x^{5}+x^{3}+2 x^{2}+1 \equiv 1(\bmod 2)
$$

Therefore, $x^{5}+x^{3}+2 x^{2}+1$ is never divisible by 6 .
Instructor's Comments: This is the 25 minute mark. From here you can choose to do more practice and have a full lecture on Cryptography or just do a half lecture on cryptography.

## Cryptography

Note: The practice/study of secure communication.
Alice wants to communicate with Bob and receive messages from Bob but Eve is listening to all the messages they send to each other.

Instructor's Comments: Include a picture

Alice needs to encrypt messages to Bob so that even if Eve can see them, she cannot read them. However Bob needs to be able to read them and so needs a way to decrypt them.

Note: A cryptosystem should not depend on the secrecy of the methods of encryption and decryption used (except for possibly secret keys). The method must be assumed to be known by all.

## Private Key Cryptography

Agree before hand on a secret encryption and decryption key.
Instructor's Comments: Mention ASCII encryption. Break up messages into many chunks and send those chunks.

Example: Caesar Cipher. Map a plain text message $M$ to a ciphertext (encrypted message) given by

$$
C \equiv M+3(\bmod 26)
$$

where $0 \leq C \leq 26$. In this way, one can encrypt letters to new letters. This worked well for Caesar mainly because most soldiers could not read (so even an unencrypted message might not have been understood).

Example: $\quad A P P L E$ gets translated as a sequence of numbers $0,15,15,11,4$ then encrypted by adding 3 to get $3,18,18,14,7$ and then converted back to letters $D S S O H$.

Cons of Private Key Cryptography
(i) Tough to share private key before hand.
(ii) Too many private keys to store.
(iii) Difficult to communicate with strangers.

## Public Key Cryptography

Analogy: Pad lock. A pad lock is easy to lock but difficult to unlock without the key. The main paradigm here is as follows:
(i) Alice produces a private key $d$ and a public key $e$.
(ii) Bob uses the public key $e$ to take a message $M$ and encrypt it to some ciphertext $C$
(iii) Bob then sends $C$ over an insecure channel to Alice.
(iv) Alice decrypts $C$ to $M$ using $d$.

Note:
(i) Encryption and decryption are inverses to each other.
(ii) $d$ and $e$ are different,
(iii) Only $d$ is secret.

Instructor's Comments: This is the 40 minute mark - maybe the 50 minute mark

Question: What makes a problem hard?
Instructor's Comments: Something along the lines of the first thing you try doesn't work, a problem that has resisted proof for many years etc.

Example: Given the number 1271, find it's prime factorization.
Instructor's Comments: The answer is 31 times 41. The point here is that even for small numbers humans struggle with this. For not-very-large numbers, even computers struggle.

Factoring a number is a difficult problem and helps form the basis for RSA. If we could factor numbers easily, the RSA encryption we will talk about in the next lecture would be hard.

Instructor's Comments: This next question is completely optional as well. It doesn't add much to RSA. Question: Given $2^{n} \equiv 9(\bmod 11)$, find $n$.

Solution: The answer is $n=6$. However this isn't the real point of this question. The point is that to find 6 , you likely tried all the possibilities from

1 to 6 reducing reach time. This problem in general, that is, given $a, b$ and $a^{n} \in \mathbb{N}$ for some $n \in \mathbb{N}$ to determine $n$ is called the Discrete Logarithm Problem. There is currently no known efficient algorithm to solve it. Solving this would also help break the RSA encryption scheme.

Instructor's Comments: This is probably the 50 minute mark but if not, have fun with the square and multiply algorithm below. This topic is completely optional (as of W2016)

## Square and Multiply Algorithm

The idea of this algorithm is to enable computers to compute large powers of integers modulo a natural number $n$ quickly.

Example: Compute $5^{99}(\bmod 101)$
Solution: First, we compute successive square powers of 5:

$$
\begin{aligned}
5^{1} & \equiv 5(\bmod 101) \\
5^{2} & \equiv 25(\bmod 101) \\
5^{4} & \equiv(25)^{2} \equiv 625 \equiv 19(\bmod 101) \\
5^{8} & \equiv(19)^{2} \equiv 361 \equiv 58(\bmod 101) \\
5^{16} & \equiv(58)^{2} \equiv 31(\bmod 101) \\
5^{32} & \equiv(31)^{2} \equiv 52(\bmod 101) \\
5^{64} & \equiv(52)^{2} \equiv 78(\bmod 101)
\end{aligned}
$$

Now, write 99 in binary, that is, as a simple sum of powers of 2 with no power of 2 repeated.

$$
\begin{aligned}
64 & \leq 99<128 & & \text { Replace } 99 \text { with } 99-64=35 \\
32 & \leq 35<64 & & \text { Replace } 35 \text { with } 35-32=3 \\
2 & \leq 3<4 & & \text { Replace } 3 \text { with } 3-2=1 \\
1 & \leq 1<2 & & \text { Replace } 1 \text { with } 1-1=0
\end{aligned}
$$

Thus, $99=64+32+2+1=2^{6}+2^{5}+2^{1}+2^{0}$. Hence,

$$
\begin{aligned}
5^{99} & \equiv 5^{64} \cdot 5^{32} \cdot 5^{2} \cdot 5^{1}(\bmod 11) \\
& \equiv 78 \cdot 52 \cdot 25 \cdot 5(\bmod 11) \\
& \equiv 81(\bmod 11)
\end{aligned}
$$

Instructor's Comments: Note the minimal number of computations needed. In general, it would be 98 computations. Here it's $6+3=9$ computations. A huge savings.
(i) Show that $x=2^{129}$ solves $2 x \equiv 1(\bmod 131)$.
(ii) Use the square and multiply algorithm to find the remainder when $2^{129}$ is divided by 131 .
(iii) Solve $2 x \equiv 3(\bmod 131)$ for $0 \leq x \leq 130$.

## Solution:

(i) By Fermat's Little Theorem (valid since $\operatorname{gcd}(2,131)=1$,

$$
2\left(2^{129}\right) \equiv 2^{130} \equiv 1(\bmod 131)
$$

(ii) First, we create a chart of the powers of 2:

$$
\begin{aligned}
2^{1} & \equiv 2(\bmod 131) \\
2^{2} & \equiv 4(\bmod 131) \\
2^{4} & \equiv 16(\bmod 131) \\
2^{8} & \equiv 256 \equiv-6(\bmod 131) \\
2^{16} & \equiv(-6)^{2} \equiv 36(\bmod 131) \\
2^{32} & \equiv(36)^{2} \equiv 1296 \equiv-14(\bmod 131) \\
2^{64} & \equiv(-14)^{2} \equiv 196 \equiv 65(\bmod 131) \\
2^{128} & \equiv(65)^{2} \equiv 5^{2} \cdot 13^{2} \equiv 25 \cdot 169 \equiv 25 \cdot 38 \\
& \equiv 5 \cdot 190 \equiv 5 \cdot 59 \equiv 295 \equiv 33(\bmod 131)
\end{aligned}
$$

Hence, $2^{129} \equiv 2^{128} \cdot 2^{1} \equiv 33 \cdot 2 \equiv 66(\bmod 131)$.
(iii) Since $2 \cdot 66 \equiv 132 \equiv 1(\bmod 131)$, we see that $2 \cdot(66 \cdot 3) \equiv 3(\bmod 131)$ and since $66 \cdot 3 \equiv 198 \equiv 67(\bmod 131)$, we have completed the question.

