
Lecture 31

Handout or Document Camera or Class Exercise

Theorem: [Chinese Remainder Theorem (CRT) If
gcd(m1,m2) = 1, then for any choice of integers a1 and a2, there exists a solution to the
simultaneous congruences

n ≡ a1 (mod m1)

n ≡ a2 (mod m2)

Moreover, if n = n0 is one integer solution, then the complete solution is n ≡ n0

(mod m1m2).

Theorem: (Generalized CRT (GCRT)) If m1,m2, . . . ,mk are integers and gcd(mi,mj) =
1 whenever i 6= j, then for any choice of integers a1, a2, . . . , ak, there exists a solution to
the simultaneous congruences

n ≡ a1 (mod m1)

n ≡ a2 (mod m2)

...

n ≡ ak (mod mk)

Moreover, if n = n0 is one integer solution, then the complete solution is

n ≡ n0 (mod m1m2 . . .mk)

Instructor’s Comments: This is the 5 minute mark. Remark that the
statement of CRT is not nearly as useful as understanding the proof.
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Example: Solve

x ≡ 5 (mod 6)

x ≡ 2 (mod 7)

x ≡ 3 (mod 11)

From the first equation, x = 5 + 6k for some k ∈ Z. Plug this into the second equation
gives

5 + 6k ≡ 2 (mod 7)

6k ≡ −3 (mod 7)

−k ≡ −3 (mod 7)

k ≡ 3 (mod 7)

and hence k = 3 + 7` for some ` ∈ Z. Therefore, x = 5 + 6(3 + 7`) = 23 + 42`. Therefore
x ≡ 23 (mod 42). Now, we need to satisfy

x ≡ 23 (mod 42)

x ≡ 3 (mod 11)

Instructor’s Comments: This is done so that students can see the reduction
pattern that emerges.

Since x = 23 + 42`, plugging this into the final equation gives

23 + 42` ≡ 3 (mod 11)

−2` ≡ −20 (mod 11)

` ≡ 10 (mod 11) By Congruences and Divisibility [CD] valid since gcd(−2, 11) = 1

Hence, ` = 10 + 11m for some m ∈ Z. Combining gives

x = 23 + 42` = 23 + 42(10 + 11m) = 443 + 462m

Therefore, x ≡ 442 (mod 462).

Instructor’s Comments: This is the 20 minute mark.

Some twists to Chinese Remainder Problems: Example: Solve

3x ≡ 2 (mod 5)

2x ≡ 6 (mod 7)

Instructor’s Comments: The twist here is that the left hand sides are not
just x but they have a coefficient.

Solution: Treat each congruence separately and solve using Linear Congruence Theorem
1 (LCT1). By inspection x = 4 solves the first congruence (could also use Linear Diophan-
tine Equation techniques). Hence by LCT1, x ≡ 4 (mod 5/ gcd(3, 5)) or x ≡ 4 (mod 5).
Similarly, notice that x = 3 is a solution to the second congruence. Hence by LCT1 again,
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x ≡ 3 (mod 7/ gcd(2, 7)). This is equivalent to x ≡ 3 (mod 7). Thus, the above system
is equivalent to solving

x ≡ 4 (mod 5)

x ≡ 3 (mod 7)

which can be solved like a typical Chinese Remainder Theorem problem.

Instructor’s Comments: Don’t do this in class - included only because I
used to solve this this way.

Alternate Solution: Multiplying the first equation by 2 and the second equation by
4 gives

6x ≡ 4 (mod 5)

8x ≡ 24 (mod 7).

Simplifying gives

x ≡ 4 (mod 5)

x ≡ 3 (mod 7)

Then proceed like a typical Chinese Remainder Theorem problem.

Example: Solve

x ≡ 4 (mod 6)

x ≡ 2 (mod 8)

Instructor’s Comments: The twist here is that the moduli are not coprime.
Turns out that the engine that proves the Chinese Remainder Theorem is
exactly what one needs to do here. Sometimes however there are no solutions
and usually there are solutions but at a moduli smaller than the product.

Solution: Using the first equation gives x = 4 + 6k for some k ∈ Z. Plug this into the
second equation gives

4 + 6k ≡ 2 (mod 8)

6k ≡ −2 (mod 8)

6k ≡ 6 (mod 8)

Now, note that k = 1 is definitely a solution. By LCT1, we have that

k ≡ 1 (mod 8/(gcd(6, 8)))

gives all solution. Hence k ≡ 1 (mod 4) and thus k = 1 + 4` for some ` ∈ Z. Therefore,

x = 4 + 6(1 + 4`) = 10 + 24`

Therefore, x ≡ 10 (mod 24) gives the complete set of solutions.
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Instructor’s Comments: This is the 40 minute mark. Could even take your
time and make this a full lecture if you wanted. We’re reaching a catch up
lecture if you have fallen behind.

Example: Solve x2 ≡ 34 (mod 99).

This implies that 99 | (x2−34). Note that 9 | 99. Therefore 9 | (x2−34) by transitivity,
x2 ≡ 34 (mod 9). Note further that 11 | 99. Therefore, 11 | (x2− 34) by transitivity. this
implies that

x2 ≡ 34 (mod 11)

x2 ≡ 1 (mod 11)

x2 ≡ ±1 (mod 11) By trying all 11 possibilities

Similarly, x2 ≡ 34 ≡ 7 (mod 9) and so x ≡ ±4 (mod 9) (try all 9 possibilities).

This gives four systems of equations:

x ≡ 1 (mod 11) x ≡ 1 (mod 11)

x ≡ 4 (mod 9) x ≡ −4 (mod 9)

x ≡ −1 (mod 11) x ≡ −1 (mod 11)

x ≡ 4 (mod 9) x ≡ −4 (mod 9)

To finish solving this, we can use the Chinese Remainder Theorem 4 times to give the
solutions

x ≡ 23, 32, 67, 76 (mod 99)

This leads to the following theorem.

Theorem: Splitting the Modulus (SM) Let m and n be coprime positive integers. Then,
for any integers x and a, we have

x ≡ a (mod m)

x ≡ a (mod n)

simultaneously if and only if x ≡ a (mod mn).

Instructor’s Comments: This is the 50 minute mark. If not, start the proof.
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