Anourceneits:
· A0 due tomorrow @ 8:25 AM.
Office hours MTh: 1:00-2:00 ;F 10:00-11:00
Wen/ M 4:30-5:30.
READ A1.
·Clicker Fridays.

The state of the s

Theorem 0.1. Stewart's Theorem Let ABC be a triangle with AB = c, AC = b and BC = a. If P is a point on BC with BP = m, PC = n and AP = d, then dad + man = bmb + cnc.

Proof. Proof A

$$c^{2} = m^{2} + d^{2} - 2md \cos \theta$$

$$b^{2} = n^{2} + d^{2} - 2nd \cos \theta'$$

$$b^{2} = n^{2} + d^{2} + 2nd \cos \theta$$

$$\frac{m^{2} - c^{2} + d^{2}}{-2md} = \frac{b^{2} - n^{2} - d^{2}}{2nd}$$

$$nc^{2} - nm^{2} - nd^{2} = -mb^{2} + mn^{2} + md^{2}$$

$$nc^{2} - mb^{2} = mn^{2} + md^{2} + nm^{2} + nd^{2}$$

$$cnc + bmb = nm(n + m) + d^{2}(m + n)$$

$$cnc + bmb = man + dad$$

NO EXPLANATION
WHAT IS O S. O'?

Theorem 0.2. Stewart's Theorem Let ABC be a triangle with AB = c, AC = b and BC = a.

If P is a point on BC with BP = m, PC = n and AP = d, then dad + man = bmb + cnc.

Proof. Proof B

The Cosine Law on $\triangle APB$ tells us that

$$c^2 = m^2 + d^2 - 2md\cos(\angle APB).$$

Subtracting c^2 from both sides gives

$$0 = -c^2 + m^2 + d^2 - 2md\cos(\angle APB).$$

Adding $2md\cos \angle APB$ to both sides gives

$$2md\cos(\angle APB) = -c^2 + m^2 + d^2.$$

Dividing both sides by 2md gives

$$\cos\left(\angle APB\right) = \frac{-c^2 + m^2 + d^2}{2md}. \not$$

Now, the Cosine Law on $\triangle APC$ tells us that

$$b^2 = n^2 + d^2 - 2nd\cos\angle APC.$$

Since $\angle APC$ and $\angle APB$ are supplementary angles, then

$$\cos \angle APC = \cos (\pi - \angle APB) = -\cos (\angle APB).$$

Substituting into our previous equation, we see that

$$b^2 = n^2 + d^2 + 2nd\cos\angle APB.$$

Subtracting n^2 from both sides gives

$$b^2 - n^2 = d^2 + 2nd\cos(\angle APB).$$

Then subtracting d^2 from both sides gives

$$b^2 - n^2 - d^2 = 2nd\cos(\angle APB).$$

Dividing both sides by 2nd gives

$$\frac{b^2 - n^2 - d^2}{2nd} = \cos(\angle APB). \quad \checkmark$$

Now we have two expressions for $\cos(\angle APB)$ and equate them to yield

$$\frac{-c^2 + m^2 + d^2}{2md} = \frac{b^2 - n^2 - d^2}{2nd}.$$

Multiplying both sides by 2mnd shows us that

$$n(-c^2 + m^2 + d^2) = m(b^2 - n^2 - d^2).$$

Next we distribute to get

$$-nc^2 + nm^2 + nd^2 = mb^2 - mn^2 - md^2.$$

Adding $nc^2 + mn^2 + md^2$ to both sides gives

$$nm^2 + mn^2 + nd^2 + md^2 = mb^2 + nc^2.$$

Factoring twice gives:

$$nm(m+n) + d^2(m+n) = mb^2 + nc^2.$$

Since P lies on BC, then a = m + n so we substitute to yield

$$nma + d^2a = mb^2 + nc^2.$$

Finally, we can rewrite this as bmb + cnc = dad + man..

MAX (00 LING.

Theorem 0.3. Stewart's Theorem Let ABC be a triangle with AB = c, AC = b and BC = a. If P is a point on BC with BP = m, PC = n and AP = d, $then \ dad + man = bmb + cnc.$

Proof. Proof C

Using the Cosine Law for supplementary angles $\angle APB$ and $\angle APC$, and then clearing denominators and simplifying gives dad + man = bmb + cncas required.

Heals more

Theorem 0.4. Stewart's Theorem Let ABC be a triangle with AB = c, AC = b and BC = a.

If P is a point on BC with BP = m, PC = n and AP = d, then dad + man = bmb + cnc.

Proof. Proof D

The Cosine Law on $\triangle APB$ tells us that

$$c^2 = m^2 + d^2 - 2md\cos\angle APB.$$

Similarly, the Cosine Law on $\triangle APC$ tells us that

$$b^2 = n^2 + d^2 - 2nd\cos\angle APC.$$

Since $\angle APC$ and $\angle APB$ are supplementary angles, we have

$$b^2 = n^2 + d^2 + 2nd\cos\angle APB.$$

Equating expressions for $\cos \angle APB$ yields

$$\frac{-c^2 + m^2 + d^2}{2md} = \frac{b^2 - n^2 - d^2}{2nd}.$$

Clearing the denominator and rearranging gives

$$nm^2 + mn^2 + nd^2 + md^2 = mb^2 + nc^2$$
.

Factoring yields

$$mn(m+n) + d^2(m+n) = mb^2 + nc^2.$$

Substituting a = (m + n) gives dad + man = bmb + cnc as required.

/ /		lecture,	let A, E	3,Cbe
state	e ments	·	,	
Defi.	7A	is NOT	A.	
	A	1 7 A		
	(
		is A AM		
1	4 V D	is A a	25.	
A	B	A1B	AU	B
<u> </u>				
		Ţ		
1		l		

Which of the following are true?

• π is irrational and 3 > 2

TRUE

• 10 is even and 1 = 2

FALSE

 $\bullet\,$ 7 is larger than 6 or 15 is a multiple of 3

TRUE

5 ≤ 6

TRUE

• 24 is a perfect square or the vertex of parabola $x^2 + 2x + 3$ is (1,1)

FALSE.

• 2.3 is not an integer

TRUE.

• 20% of 50 is not 10

FALSE.

• 7 is odd or 1 is positive and $2 \neq 2$

ORDER OF OPERATIONS.

 \neg , \wedge , \vee .

LAST BULLET IS TRUE.

Defin. The symbol = in logic means logically equivalent, that is, in a truth table Canal, A=7(7A

Theorem: (Pe Morgan's Law).

7(AVB) = 7A17B 7(AAR) = TAV7B AVB (7(AVB) /7A/7B/7A11B FIT FIFE FIFI FIT Since 7(AvB) has the same truth as Exi An(BUC) = (ANB)V(ANC)

Implication (A=PB)
Defini ABA=DB
La Azir B Ais Cillal the hundlacic
In A=DB, A is called the hypothesis B is called the conclusion.
The and show B is true.
To use A=DB, we prove Ais true and uso B as true.
rue and Use of as True.

In the following, identify the hypothesis, the conclusion and state whether the statement is true or false.

- If $\sqrt{2}$ is rational then 2 < 3
- TRUE
- If (1+1=2) then $5 \cdot 2 = 11$
- FALSE.
- If C is a circle, then the area of C is πr^2
- \bullet If 5 is even then 5 is odd
- If 4-3=2 then 1+1=3

Proposition: A=	DB=7	AVB.		
Pf: ABA=PE	3/7A/7	AVB		
FIF I T		14.		
	equal			
Divisibility. Linters) Zat	ilen.			
Petri. Let mn EZ divides n and wi	We say	that m		
divides n and wi	rite mln	if (and		
only if there exists a KEZ such that mK=n.				
Ex. 316, 212	, 7/49, 5	5/0,00.		