Lecture 29
Handout or Document Camera or Class Exercise

Solve the following equations in Zj4. Express answers as [x] where 0 < z < 14.
i) [75] = [z] = [50]
i) [10][z] = [1]
i) [10][a] = 2]

Hint: Rewrite these using congruences.

Instructor’s Comments: Note to “properly” prove these, you would have
to prove these as an equality of sets.

Solution:

(i) [75] — [z] = [50] is equivalent to solving 75 — z = 50 (mod 14). Solving here gives
r =25=11 (mod 14).

(ii) [10][z] = [1] is equivalent to solving 10z = 1 (mod 14). Since ged(10,14) = 21 1,
we see by LCT1 that this has no solution.

(iii) [10][x] = [2] is equivalent to solving 10z = 2 (mod 14). Notice that z = 3 is a
solution and so by LCT1, we see that = 3 (mod 14/ ged(2, 14)) gives a complete
solution. This is the same as x = 3 (mod 7) or = 3,10 (mod 14) or x = [3], [10].

Instructor’s Comments: This is the 10 minute mark. The last point that
r = 3 (mod 7) and z = 3,10 (mod 14) are equivalent is lost on some students.
Remind them that the first meant x = 3 + 7k and that & has two options
- being even (which is equivalent to 3 modulo 14) or being odd (which is
equivalent to 10 modulo 14). A similar argument can be applied if it were say
7 to 21 etc.

Instructor’s Comments: If you want an extra problem with congruences,
try Solve [15][z] + [7] = [12] in Z;o. Otherwise mention this later.
Inverses
(i) [—a] is the additive inverse of [a], that is, [a] + [—a] = [0].
(i) If there exists an element [b] € Z,, such that [a][b] = [1] = [b][a], we call [b] the
multiplicative inverse of [a] and write [0] = [a]™! or b = a™! (mod m).
Example: [5][11] = [1] in Z;5. Therefore, [5]7! = [11] and [11]7! = [5].

Note: WARNING Multiplicative inverses do not always exist!



Example: [9][x] = [1] in Z;s has no solution. The left hand side is always [0] or [9] for
every value of [z]. Hence [9]7! does not exist in Zs.

Instructor’s Comments: This is the 15 minute mark
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Find the additive and multiplicative inverses of [7] in Z;. Give your answers in the
form [z] where 0 < z < 10.

Solution: Additive inverse: [—7] = [4]. For the multiplicative inverse, we want to solve
[7][z] = [1] = 7r =1 (mod 11)

You can solve this by turning this into the LDE 7x + 11y = 1 and solving that. However,
because the numbers are small, guessing and checking is a far more efficient strategy.
Notice that

7-3=21=10= —1 (mod 11)

Thus, 7(—3) = 1 (mod 11) and so [z] = [-3] = [8] is the inverse of [7] in Z1;.

Instructor’s Comments: This is the 25 minute mark



Proposition: Let a € Z and m € N.
(i) [a]™! exists in Z,, if and only if ged(a,m) = 1.

(ii) [a]™! is unique if it exists.

Proof:
(i)
[a] ™! exists & [a][z] = [1] is solvable in Z,,
& ar +my = 1 is a solvable LDE
& ged(a,m) =1 GCDOO
completing the proof. [ |
(ii) Assume [a]! exists. Suppose there exists a [b] € Z,, such that [a][b] = [1] = [b][a].
Then
[a] = {a][b] = [a] 1]
[1][6] = [a]
(6] = [a]

Instructor’s Comments: This is the 35 minute mark
Exercise: Solve [15][z] + [7] = [12] in Zo.
Instructor’s Comments: Solution: This is equivalent to solving
152 + 7 = 12 (mod 10).

Isolating for = gives
152 =5 (mod 10).

Since 15 =5 (mod 10), Properties of Congruences states that
5z =5 (mod 10).

This clearly has the solution x = 1. Hence, by Linear Congruence Theorem 1,
we have that

_ 10
r=1 (mOd 7gcd(5,10)>

gives the complete set of solutions. Thus, z =1 (mod 2) or z = 1,3,5,7,9 (mod 10).
Since the original question is framed in terms of congruence classes, our an-
swer should be as well and hence

[z € {[1], 3], [5], [7], 9]}

For extra practice, see if you can phrase this argument using Linear Con-
gruence Theorem 2.
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Instructor’s Comments: This is a good time to introduce the notation
TFAE

The following are equivalent [TFAE]

e a =) (mod m)

e m|(a—>b)

e JkeZ,a—b=km

e dkeZ,a=km+b

e o and b have the same remainder when divided by m
e [a] =[b] in Z,,.

Theorem: [LCT 2] Let a,c € Z and let m € N. Let ged(a,m) = d. The equation
la|[x] = [c] in Z,, has a solution if and only if d | ¢. Moreover, if [z] = [x] is one
particular solution, then the complete solution is

{[zo), [xo + 2], [wo + 2], ..., [wo + (d — 1)2]}

Instructor’s Comments: This is the 40 minute mark



Instructor’s Comments: This is the FLT part of the course. I think this
proof is fantastic and really creative so I like doing it. One could of course
prove FLT using induction and the binomial theorem, which I would say if
you have in the course you should do. You can choose to not to the proof or
maybe show why it’s true for a specific prime but I like actually showing the
proof. It’s elegant clever and really just awesome. I recommend being brave
and showing it. This proof will spill over to the next lecture. Keep shifting
content until you reach the square and multiply algorithm which is optional
material that you can afford to skip and catch up there.

Theorem: Fermat’s Little Theorem (F¢T). If p is a prime number and p { a then
a?~! =1 (mod p). Equivalently, [a?~!] = [1] in Z,.

Example:
(i) 5° =1 (mod 7)
(i) 4% =1 (mod 7)
(iii) 395 =1 (mod 7)
Note: p — 1 is in the exponent and not the base. For example, (5 — 1)* =4 (mod 5).

Note: p — 1 is not necessarily the smallest exponent such that a* = 1 (mod p). For
example 62 = 1 (mod 7).

Lemma: Let ged(a,p) = 1. Let
S:={a,2a,...,(p—1)a} T:={1,2,...,p—1}.

Then the elements of S are unique modulo p and for all s € S, there exists a unique
element ¢ € T such that s =t (mod p).

Proof: We first show that S contains p — 1 distinct nonzero elements modulo p.

Let ka,ma € S with 1 < k,;m < p — 1 integers. Now, if ka = ma (mod p), then
p | a(k—m). Since ged(a, p) = 1, we see that p | (k—m) by Coprimeness and Divisibility.
Since
—p<2-p<k-m<p-2<p

and p | (k —m), we see that k —m = 0, that is, k = m. Lastly, if ka = 0 (mod p), then
p | ka. By Euclid’s Lemma, p | k, a contradiction since 1 < k < p — 1 and p is prime, or
p | a also a contradiction since ged(a, p) = 1. Thus, S has p — 1 distinct nonzero elements
modulo p.

So if ka € S, then ka = n (mod p) for some 1 < n < p— 1 and this n is unique since
if in addition ka = ¢ (mod p) with 1 < ¢ < p — 1, subtracting the two congruences gives
p | (n—¥), a contradiction unless ¢ = n since

—p<2—-p<Ll—n<p-—-2<np.

This completes the proof. [ |



Proof: (of Fermat’s Little Theorem). Using the lemma, valid since p t a holds if and
only if ged(a,p) = 1 (by say GCDPF), we have that by the lemma S and 7" contain the
same elements modulo p and hence their products must be congruent modulo p. Thus,

HxEHy (mod p)

€S yeT
p—1 p—1
Hkaz Hj (mod p)
k=1 j=1
p—l p—1
ab~? Hk: = Hj (mod p)
k=1 j=1
p—1
Let @ = [[j = (1)(2)...(p — 1). Then
j=1

Qa"™" = Q (mod p)

Since ged(Q, p) = 1 (as Q is a product of numbers less than a prime p), we have that Q!
exists and hence

Q™'Qa*™' = Q7'Q (mod p)
and thus a?~! = 1 (mod p) completing the proof . |

Instructor’s Comments: This is the 50 minute mark. It’s a bit of an intense
proof but really cool.



