Lecture 28
Handout or Document Camera or Class Exercise

Which of the following satisfies x = 40 (mod 17) ?

(Do not use a calculator.)

A
B) z =15 +19° -4

D

)
)

C) z =518
) x=2-3-5-7-11-13
)

E) =174+ 17"+ 172+ 173+ 17T  + 17° + 176

Solution:
A) =173 =3 (mod 17)
B) 2=15"+19-4=(-2)°"+2—-4=-32+8-4=2+4=6 (mod 17)

)
)
C) z=5-1810=5(1)1 =5 (mod 17)
D) =2-3-5-7-11-13=6-35-(—6)(-4) =6-1-24=6-7=42 =8 (mod 17)
E) 2 =174+ 17"+ 172+ 173 + 17" + 175 + 17 = 1 (mod 17)
Answer is the second option since z = 40 = 6 (mod 17).

Instructor’s Comments: This is the 5-10 minute mark



Instructor’s Comments: Try to make the next exercise only take you to
the 10 minute mark.

Example: Show that there are no integer solutions to z? + 4y = 2.

Proof: Assume towards a contradiction that there exist integers x and y such that
2?2 + 4y = 2. Reducing modulo 4 yields z*> = 2 (mod 4). Trying all the possibilities yields

(0)* =0 (mod 4)
(1)*=1 (mod 4)
(2)* =0 (mod 4)
(3)*=1 (mod 4)
Hence there are no integer solutions. [

Note: Notice that sometimes, you end up with many solutions. For example, 22 =
1 (mod 8) has 4 solutions (all the odd numbers work! This is an exercise to check)

Instructor’s Comments: Now comes what I think is the hardest to grasp
concept in this course; the abstraction of Z/mZ. I personally am going to
discuss rings here and take a bit more time here to save a bit of time later
on in the course. I will introduce the notion of a ring and field here so that
when we get to complex numbers, it will go a bit quicker. This will cause me
to spend more time here on topics but I think that’s okay.

Z, or Z/mZ The integers modulo m

Definition: The congruence or equivalence class modulo m of an integer a is the set of
integers
[a] ={z €Z:2x=a (mod m)}

Note: := means “defined as”.

Further, define
Ly = 7Z/mZ = {[0], [1], ..., [m — 1]}

Definition: A commutative ring is a set R along with two closed operations + and -
such that for a,b,c € R and

(i) Associative (a +b) +c=a+ (b+ ¢) and (ab)c = a(bc).
(ii) Commutative a +b = b+ a and ab = ba.
(iii) Identities: there are [distinct] elements 0,1 € R such that a +0=a and a-1 = a.
(iv) Additive inverses: There exists an element —a such that a + (—a) = 0.
(v) Distributive Property a(b+ ¢) = ab + ac.

Example: Z, Q, R. Not N

Definition: If in addition, every nonzero element has a multiplicative inverse, that is
an element a~! such that a-a™! = 1, we say that R is a field.



Example: Q, R. Not N or Z.
Instructor’s Comments: This should take you tot he 25-30 minute mark

Definition: We make Z,, a ring by defining addition and subtraction and multiplication
by [a] £ [b] := [a £ b] and [a] - [b] := [ab]. This makes [0] the additive identity and [1] the
multiplicative identity.

Instructor’s Comments: Note that the [a+b] means add then reduce modulo
m. There is something subtle going on here that might be lost on students.

There is one issue we need to resolve here; the issue of being well defined. How do we
know that the above definition does not depend on the representatives chosen for [a] and

[b]?
Example: For example, in Zg, is it true that [2][5] = [14][—13]?

Instructor’s Comments: Note that [2] = [14] and [5] = [-13]. To properly
prove well-definedness, you would have to do this for all possible representa-
tions of [a]. Since this will create a notational disaster, I think it’s best to try
to illustrate the point with a concrete example.

Proof: Note that in Zg, we have

LHS = [2][5] = [2- 5] = [10] = [4

and also

RHS = [14][—13] = [14(—13)] = [-182] = [-2] = [4]
completing the proof. [ |
Definition: The members [0], [1], ..., [m — 1] are sometimes called representative mem-
bers.

Instructor’s Comments: Minimum this is the 35 minute mark.

Instructor’s Comments: In practice, this was the 50 minute mark but either
way that’s okay - hopefully you can squeeze in the addition table.

Addition table for Z,
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