
Lecture 28

Handout or Document Camera or Class Exercise

Which of the following satisfies x ≡ 40 (mod 17) ?

(Do not use a calculator.)

A) x = 173

B) x = 155 + 193 − 4

C) x = 5 · 18100

D) x = 2 · 3 · 5 · 7 · 11 · 13

E) x = 170 + 171 + 172 + 173 + 174 + 175 + 176

Solution:

A) x = 173 ≡ 3 (mod 17)

B) x = 155 + 193 − 4 ≡ (−2)5 + 23 − 4 ≡ −32 + 8− 4 ≡ 2 + 4 ≡ 6 (mod 17)

C) x = 5 · 18100 ≡ 5(1)100 ≡ 5 (mod 17)

D) x = 2 · 3 · 5 · 7 · 11 · 13 ≡ 6 · 35 · (−6)(−4) ≡ 6 · 1 · 24 ≡ 6 · 7 ≡ 42 ≡ 8 (mod 17)

E) x = 170 + 171 + 172 + 173 + 174 + 175 + 176 ≡ 1 (mod 17)

Answer is the second option since x ≡ 40 ≡ 6 (mod 17).

Instructor’s Comments: This is the 5-10 minute mark
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Instructor’s Comments: Try to make the next exercise only take you to
the 10 minute mark.

Example: Show that there are no integer solutions to x2 + 4y = 2.

Proof: Assume towards a contradiction that there exist integers x and y such that
x2 + 4y = 2. Reducing modulo 4 yields x2 ≡ 2 (mod 4). Trying all the possibilities yields

(0)2 ≡ 0 (mod 4)

(1)2 ≡ 1 (mod 4)

(2)2 ≡ 0 (mod 4)

(3)2 ≡ 1 (mod 4)

Hence there are no integer solutions. �

Note: Notice that sometimes, you end up with many solutions. For example, x2 ≡
1 (mod 8) has 4 solutions (all the odd numbers work! This is an exercise to check)

Instructor’s Comments: Now comes what I think is the hardest to grasp
concept in this course; the abstraction of Z/mZ. I personally am going to
discuss rings here and take a bit more time here to save a bit of time later
on in the course. I will introduce the notion of a ring and field here so that
when we get to complex numbers, it will go a bit quicker. This will cause me
to spend more time here on topics but I think that’s okay.

Zm or Z/mZ The integers modulo m

Definition: The congruence or equivalence class modulo m of an integer a is the set of
integers

[a] := {x ∈ Z : x ≡ a (mod m)}

Note: := means “defined as”.

Further, define
Zm = Z/mZ := {[0], [1], ..., [m− 1]}

Definition: A commutative ring is a set R along with two closed operations + and ·
such that for a, b, c ∈ R and

(i) Associative (a + b) + c = a + (b + c) and (ab)c = a(bc).

(ii) Commutative a + b = b + a and ab = ba.

(iii) Identities: there are [distinct] elements 0, 1 ∈ R such that a + 0 = a and a · 1 = a.

(iv) Additive inverses: There exists an element −a such that a + (−a) = 0.

(v) Distributive Property a(b + c) = ab + ac.

Example: Z, Q, R. Not N

Definition: If in addition, every nonzero element has a multiplicative inverse, that is
an element a−1 such that a · a−1 = 1, we say that R is a field.
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Example: Q, R. Not N or Z.

Instructor’s Comments: This should take you tot he 25-30 minute mark

Definition: We make Zm a ring by defining addition and subtraction and multiplication
by [a]± [b] := [a± b] and [a] · [b] := [ab]. This makes [0] the additive identity and [1] the
multiplicative identity.

Instructor’s Comments: Note that the [a+b] means add then reduce modulo
m. There is something subtle going on here that might be lost on students.

There is one issue we need to resolve here; the issue of being well defined. How do we
know that the above definition does not depend on the representatives chosen for [a] and
[b]?

Example: For example, in Z6, is it true that [2][5] = [14][−13]?

Instructor’s Comments: Note that [2] = [14] and [5] = [−13]. To properly
prove well-definedness, you would have to do this for all possible representa-
tions of [a]. Since this will create a notational disaster, I think it’s best to try
to illustrate the point with a concrete example.

Proof: Note that in Z6, we have

LHS = [2][5] = [2 · 5] = [10] = [4]

and also
RHS = [14][−13] = [14(−13)] = [−182] = [−2] = [4]

completing the proof. �

Definition: The members [0], [1], ..., [m− 1] are sometimes called representative mem-
bers.

Instructor’s Comments: Minimum this is the 35 minute mark.

Instructor’s Comments: In practice, this was the 50 minute mark but either
way that’s okay - hopefully you can squeeze in the addition table.

Addition table for Z4

+ [0] [1] [2] [3]
[0] [0] [1] [2] [3]
[1] [1] [2] [3] [0]
[2] [2] [3] [0] [1]
[3] [3] [0] [1] [2]
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