Lecture 28

Handout or Document Camera or Class Exercise
Which of the following satisfies $x \equiv 40(\bmod 17)$?
(Do not use a calculator.)
A) $x=173$
B) $x=15^{5}+19^{3}-4$
C) $x=5 \cdot 18^{100}$
D) $x=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13$
E) $x=17^{0}+17^{1}+17^{2}+17^{3}+17^{4}+17^{5}+17^{6}$

Solution:

A) $x=173 \equiv 3(\bmod 17)$
B) $x=15^{5}+19^{3}-4 \equiv(-2)^{5}+2^{3}-4 \equiv-32+8-4 \equiv 2+4 \equiv 6(\bmod 17)$
C) $x=5 \cdot 18^{100} \equiv 5(1)^{100} \equiv 5(\bmod 17)$
D) $x=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \equiv 6 \cdot 35 \cdot(-6)(-4) \equiv 6 \cdot 1 \cdot 24 \equiv 6 \cdot 7 \equiv 42 \equiv 8(\bmod 17)$
E) $x=17^{0}+17^{1}+17^{2}+17^{3}+17^{4}+17^{5}+17^{6} \equiv 1(\bmod 17)$

Answer is the second option since $x \equiv 40 \equiv 6(\bmod 17)$.
Instructor's Comments: This is the 5-10 minute mark

Instructor's Comments: Try to make the next exercise only take you to the 10 minute mark.

Example: Show that there are no integer solutions to $x^{2}+4 y=2$.
Proof: Assume towards a contradiction that there exist integers x and y such that $x^{2}+4 y=2$. Reducing modulo 4 yields $x^{2} \equiv 2(\bmod 4)$. Trying all the possibilities yields

$$
\begin{aligned}
(0)^{2} & \equiv 0(\bmod 4) \\
(1)^{2} & \equiv 1(\bmod 4) \\
(2)^{2} & \equiv 0(\bmod 4) \\
(3)^{2} & \equiv 1(\bmod 4)
\end{aligned}
$$

Hence there are no integer solutions.
Note: Notice that sometimes, you end up with many solutions. For example, $x^{2} \equiv$ $1(\bmod 8)$ has 4 solutions (all the odd numbers work! This is an exercise to check)

Instructor's Comments: Now comes what I think is the hardest to grasp concept in this course; the abstraction of Z / mZ. I personally am going to discuss rings here and take a bit more time here to save a bit of time later on in the course. I will introduce the notion of a ring and field here so that when we get to complex numbers, it will go a bit quicker. This will cause me to spend more time here on topics but I think that's okay.

\mathbb{Z}_{m} or $\mathbb{Z} / m \mathbb{Z}$ The integers modulo m

Definition: The congruence or equivalence class modulo m of an integer a is the set of integers

$$
[a]:=\{x \in \mathbb{Z}: x \equiv a(\bmod m)\}
$$

Note: := means "defined as".
Further, define

$$
\mathbb{Z}_{m}=\mathbb{Z} / m \mathbb{Z}:=\{[0],[1], \ldots,[m-1]\}
$$

Definition: A commutative ring is a set R along with two closed operations + and . such that for $a, b, c \in R$ and
(i) Associative $(a+b)+c=a+(b+c)$ and $(a b) c=a(b c)$.
(ii) Commutative $a+b=b+a$ and $a b=b a$.
(iii) Identities: there are [distinct] elements $0,1 \in R$ such that $a+0=a$ and $a \cdot 1=a$.
(iv) Additive inverses: There exists an element $-a$ such that $a+(-a)=0$.
(v) Distributive Property $a(b+c)=a b+a c$.

Example: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$. Not \mathbb{N}
Definition: If in addition, every nonzero element has a multiplicative inverse, that is an element a^{-1} such that $a \cdot a^{-1}=1$, we say that R is a field.

Example: \mathbb{Q}, \mathbb{R}. Not \mathbb{N} or \mathbb{Z}.
Instructor's Comments: This should take you tot he 25-30 minute mark
Definition: We make \mathbb{Z}_{m} a ring by defining addition and subtraction and multiplication by $[a] \pm[b]:=[a \pm b]$ and $[a] \cdot[b]:=[a b]$. This makes $[0]$ the additive identity and $[1]$ the multiplicative identity.

Instructor's Comments: Note that the $[a+b]$ means add then reduce modulo m. There is something subtle going on here that might be lost on students.

There is one issue we need to resolve here; the issue of being well defined. How do we know that the above definition does not depend on the representatives chosen for $[a]$ and [b]?

Example: For example, in \mathbb{Z}_{6}, is it true that $[2][5]=[14][-13]$?
Instructor's Comments: Note that $[2]=[14]$ and $[5]=[-13]$. To properly prove well-definedness, you would have to do this for all possible representations of $[a]$. Since this will create a notational disaster, I think it's best to try to illustrate the point with a concrete example.

Proof: Note that in \mathbb{Z}_{6}, we have

$$
\mathrm{LHS}=[2][5]=[2 \cdot 5]=[10]=[4]
$$

and also

$$
\text { RHS }=[14][-13]=[14(-13)]=[-182]=[-2]=[4]
$$

completing the proof.
Definition: The members $[0],[1], \ldots,[m-1]$ are sometimes called representative members.

Instructor's Comments: Minimum this is the 35 minute mark.

Instructor's Comments: In practice, this was the 50 minute mark but either way that's okay - hopefully you can squeeze in the addition table.

Addition table for \mathbb{Z}_{4}

+	$[0]$	$[1]$	$[2]$	$[3]$
$[0]$	$[0]$	$[1]$	$[2]$	$[3]$
$[1]$	$[1]$	$[2]$	$[3]$	$[0]$
$[2]$	$[2]$	$[3]$	$[0]$	$[1]$
$[3]$	$[3]$	$[0]$	$[1]$	$[2]$

