Lecture 25

Instructor's Comments: First part is to recall the definition of congruence. This is extremely important. Get students to do this on their own

Definition: Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. Then a is congruent to b modulo n if and only if $n \mid(a-b)$ and we write $a \equiv b(\bmod n)$. This is equivalent to saying there exists an integer k such that $a-b=k n$ or $a=b+k n$.

Instructor's Comments: This is the 5 minute mark

Instructor's Comments: Write on the board and get students to prove. These are follow your nose proofs

Congruence is an Equivalence Relation (CER)

Let $n \in \mathbb{N}$. Let $a, b, c \in \mathbb{Z}$. Then
(i) (Reflexivity) $a \equiv a(\bmod n)$.
(ii) $($ Symmetry $) a \equiv b(\bmod n) \Rightarrow b \equiv a(\bmod n)$.
(iii) $($ Transitivity $) a \equiv b(\bmod n)$ and $b \equiv c(\bmod n) \Rightarrow a \equiv c(\bmod n)$.

Proof:

(i) Since $n \mid 0=(a-a)$, we have that $a \equiv a(\bmod n)$.
(ii) Since $n \mid(a-b)$, there exists an integer k such that $n k=(a-b)$. This implies that $n(-k)=b-a$ and hence $n \mid(b-a)$ giving $b \equiv a(\bmod n)$.
(iii) Since $n \mid(a-b)$ and $n \mid(b-c)$, by Divisibility of Integer Combinations, $n \mid$ $((a-b)+(b-c))$. Thus $n \mid(a-c)$ and hence $a \equiv c(\bmod n)$

Instructor's Comments: This is the 20 minute mark

Example: Without a calculator, determine if $167 \equiv 2015(\bmod 4)$ is true.
Solution: Since $2015 \equiv 3(\bmod 4)($ valid as $4 \mid 2012=2015-3)$ and $167 \equiv 3(\bmod 4)$ (valid as $4 \mid 164=167-3$), we see by symmetry that $3 \equiv 2015(\bmod 4)$ and hence by transitivity that $167 \equiv 2015(\bmod 4)$.

Alternate Solution: Does $4 \mid(2015-167)=1848$?
Instructor's Comments: This is the 25 minute mark

Instructor's Comments: Write on board and get students to prove on their own

Properties of Congruence (PC) Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{Z}$. If $a \equiv a^{\prime}(\bmod m)$ and $b \equiv b^{\prime}$ $(\bmod m)$, then
(i) $a+b \equiv a^{\prime}+b^{\prime}(\bmod m)$
(ii) $a-b \equiv a^{\prime}-b^{\prime}(\bmod m)$
(iii) $a b \equiv a^{\prime} b^{\prime}(\bmod m)$

Proof:

(i) Since $m \mid\left(a-a^{\prime}\right)$ and $n \mid\left(b-b^{\prime}\right)$, we have by Divisibility of Integer Combinations $m \mid\left(a-a^{\prime}+\left(b-b^{\prime}\right)\right)$. Hence $m \mid\left((a+b)-\left(a^{\prime}+b^{\prime}\right)\right)$ and so $a+b \equiv a^{\prime}+b^{\prime}(\bmod m)$.
(ii) Since $m \mid\left(a-a^{\prime}\right)$ and $n \mid\left(b-b^{\prime}\right)$, we have by Divisibility of Integer Combinations $m \mid\left(a-a^{\prime}-\left(b-b^{\prime}\right)\right)$. Hence $m \mid\left((a-b)-\left(a^{\prime}-b^{\prime}\right)\right)$ and so $a-b \equiv a^{\prime}-b^{\prime}(\bmod m)$.
(iii) Since $m \mid\left(a-a^{\prime}\right)$ and $n \mid\left(b-b^{\prime}\right)$, we have by Divisibility of Integer Combinations $m \mid\left(\left(a-a^{\prime}\right) b+\left(b-b^{\prime}\right) a^{\prime}\right)$. Hence $m \mid a b-a^{\prime} b^{\prime}$ and so $a b \equiv a^{\prime} b^{\prime}(\bmod m)$.

Instructor's Comments: This is the 40 minute mark

Corollary If $a \equiv b(\bmod m)$ then $a^{k} \equiv b^{k}(\bmod m)$ for $k \in \mathbb{N}$.
Example: Since $2 \equiv 6(\bmod 4)$, we have that $2^{2} \equiv 6^{2}(\bmod 4)$, that is, $4 \equiv 36(\bmod 4)$.
Example: Is $5^{9}+62^{2000}-14$ divisible by 7 ?
Solution: Reduce modulo 7. By Properties of Congruence, we have

$$
\begin{aligned}
5^{9}+62^{2000}-14 & \equiv(-2)^{9}+(-1)^{2000}-0(\bmod 7) \\
& \equiv-2^{9}+1(\bmod 7) \\
& \equiv-\left(2^{3}\right)^{3}+1(\bmod 7) \\
& \equiv-(8)^{3}+1(\bmod 7) \\
& \equiv-(1)^{3}+1(\bmod 7) \\
& \equiv 0(\bmod 7)
\end{aligned}
$$

Therefore, the number is divisible by 7 .
Instructor's Comments: This is the 50 minute mark. Some things to note above: In computations, we often don't cite every single time a basic proposition is used like PC or CER or the major corollary above. Be sure though while explaining to mention the use of the corollary above.

