Lecture 25

Instructor's Comments: First part is to recall the definition of congruence. This is extremely important. Get students to do this on their own

Definition: Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. Then a is congruent to b modulo n if and only if $n \mid (a - b)$ and we write $a \equiv b \pmod{n}$. This is equivalent to saying there exists an integer k such that a - b = kn or a = b + kn.

Instructor's Comments: This is the 5 minute mark

Handout or Document Camera or Class Exercise

Instructor's Comments: Write on the board and get students to prove. These are follow your nose proofs

Congruence is an Equivalence Relation (CER) Let $n \in \mathbb{N}$. Let $a, b, c \in \mathbb{Z}$. Then

- (i) (Reflexivity) $a \equiv a \pmod{n}$.
- (ii) (Symmetry) $a \equiv b \pmod{n} \Rightarrow b \equiv a \pmod{n}$.
- (iii) (Transitivity) $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n} \Rightarrow a \equiv c \pmod{n}$.

Proof:

- (i) Since $n \mid 0 = (a a)$, we have that $a \equiv a \pmod{n}$.
- (ii) Since $n \mid (a-b)$, there exists an integer k such that nk = (a-b). This implies that n(-k) = b a and hence $n \mid (b-a)$ giving $b \equiv a \pmod{n}$.
- (iii) Since $n \mid (a b)$ and $n \mid (b c)$, by Divisibility of Integer Combinations, $n \mid ((a b) + (b c))$. Thus $n \mid (a c)$ and hence $a \equiv c \pmod{n}$

Instructor's Comments: This is the 20 minute mark

Example: Without a calculator, determine if $167 \equiv 2015 \pmod{4}$ is true.

Solution: Since $2015 \equiv 3 \pmod{4}$ (valid as $4 \mid 2012 = 2015 - 3$) and $167 \equiv 3 \pmod{4}$ (valid as $4 \mid 164 = 167 - 3$), we see by symmetry that $3 \equiv 2015 \pmod{4}$ and hence by transitivity that $167 \equiv 2015 \pmod{4}$.

Alternate Solution: Does $4 \mid (2015 - 167) = 1848$?

Instructor's Comments: This is the 25 minute mark

Handout or Document Camera or Class Exercise

Instructor's Comments: Write on board and get students to prove on their own

Properties of Congruence (PC) Let $a, a', b, b' \in \mathbb{Z}$. If $a \equiv a' \pmod{m}$ and $b \equiv b' \pmod{m}$, then

- (i) $a + b \equiv a' + b' \pmod{m}$
- (ii) $a b \equiv a' b' \pmod{m}$
- (iii) $ab \equiv a'b' \pmod{m}$

Proof:

- (i) Since $m \mid (a a')$ and $n \mid (b b')$, we have by Divisibility of Integer Combinations $m \mid (a a' + (b b'))$. Hence $m \mid ((a + b) (a' + b'))$ and so $a + b \equiv a' + b' \pmod{m}$.
- (ii) Since $m \mid (a a')$ and $n \mid (b b')$, we have by Divisibility of Integer Combinations $m \mid (a a' (b b'))$. Hence $m \mid ((a b) (a' b'))$ and so $a b \equiv a' b' \pmod{m}$.
- (iii) Since $m \mid (a a')$ and $n \mid (b b')$, we have by Divisibility of Integer Combinations $m \mid ((a a')b + (b b')a')$. Hence $m \mid ab a'b'$ and so $ab \equiv a'b' \pmod{m}$.

Instructor's Comments: This is the 40 minute mark

Corollary If $a \equiv b \pmod{m}$ then $a^k \equiv b^k \pmod{m}$ for $k \in \mathbb{N}$. **Example:** Since $2 \equiv 6 \pmod{4}$, we have that $2^2 \equiv 6^2 \pmod{4}$, that is, $4 \equiv 36 \pmod{4}$. **Example:** Is $5^9 + 62^{2000} - 14$ divisible by 7?

Solution: Reduce modulo 7. By Properties of Congruence, we have

$$5^{9} + 62^{2000} - 14 \equiv (-2)^{9} + (-1)^{2000} - 0 \pmod{7}$$
$$\equiv -2^{9} + 1 \pmod{7}$$
$$\equiv -(2^{3})^{3} + 1 \pmod{7}$$
$$\equiv -(8)^{3} + 1 \pmod{7}$$
$$\equiv -(1)^{3} + 1 \pmod{7}$$
$$\equiv 0 \pmod{7}$$

Therefore, the number is divisible by 7.

Instructor's Comments: This is the 50 minute mark. Some things to note above: In computations, we often don't cite every single time a basic proposition is used like PC or CER or the major corollary above. Be sure though while explaining to mention the use of the corollary above.