Lecture 23

Instructor's Comments: If you ran out of time last lecture, you should give students the following tips.

When solving GCD problems, the following gives a rough order of how and when you should try a technique
(i) Bézout's Theorem (EEA) [Good when gcd is in hypothesis]
(ii) GCDWR [Good when terms in gcd depend on each other; good for computations]
(iii) GCDCT [Good when gcd is in conclusion]
(iv) Definition [Good when nothing else seems to work]
(v) GCDPF [Good when you're desperate]

Handout or Document Camera or Class Exercise
Find $x, y \in \mathbb{Z}$ such that $143 x+253 y=\operatorname{gcd}(143,253)$.
Determine which of the following equations are solvable for integers x and y :
(i) $143 x+253 y=11$
(ii) $143 x+253 y=155$
(iii) $143 x+253 y=154$

Instructor's Comments: The answers to these questions will be part of the lecture today.

Linear Diophantine Equations (LDE)

We want to solve $a x+b y=c$ where $a, b, c \in \mathbb{Z}$ under the condition that $x, y \in \mathbb{Z}$
Instructor's Comments: Relate this to solving for the equation of a line over the real case and invite students to think critically about the difference in the integer case.

Example: Solve the LDE $143 x+253 y=11$.
Solution: We can solve this using the Extended Euclidean Algorithm!

x	y	r	q
0	1	253	
1	0	143	
-1	1	110	1
2	-1	33	1
-7	4	11	3
23	-13	0	3

Therefore, $143(-7)+254(4)=11$. Are there other solutions?
Instructor's Comments: This is the 10-15 minute mark depending on the introduction. Students should do the EEA on their own and you should do it simultaneously.

Questions to ask about LDE's
(i) Is there a solution?
(ii) What is it?
(iii) Are there more than one?

Example: Solve the LDE

$$
143 x+253 y=155
$$

Solution: Assume towards a contradiction that there exist x_{0} and y_{0} integers such that

$$
143 x_{0}+253 y_{0}=155
$$

By before, $11 \mid 143$ and $11 \mid 253$. Hence by Divisibility of Integer Combinations, $143 x_{0}+$ $253 y_{0}$ is divisible by 11 . HOWEVER,

$$
11 \nmid 155=143 x_{0}+253 y_{0}
$$

which is a contradiction. Hence the original LDE has no integer solutions.
Instructor's Comments: This is the 25 minute mark.
What about

$$
143 x+253 y=154
$$

as an LDE? Now, notice that $154=11 \cdot 14$. Hence, since

$$
143(-7)+253(4)=11
$$

multiplying by 14 gives

$$
\begin{aligned}
143(-7 \cdot 14)+253(4 \cdot 14) & =11 \cdot 14 \\
143(-98)+253(56) & =154
\end{aligned}
$$

Instructor's Comments: This is the 35 minute mark.
These insights lead to the following theorem
Theorem: (LDET1) Let $d=\operatorname{gcd}(a, b)$. The LDE

$$
a x+b y=c
$$

has a solution if and only if $d \mid c$.
Proof: (\Rightarrow) Assume that $a x+b y=c$ has an integer solution, say $x_{0}, y_{0} \in \mathbb{Z}$. Since $d \mid a$ and $d \mid b$, by Divisibility of Integer Combinations, we have that $d \mid\left(a x_{0}+b y_{0}\right)=c$.
(\Leftarrow) Assume that $d \mid c$. Then, there exists an integer k such that $d k=c$. By Bézout's Lemma, there exist integers u and v such that $a u+b v=\operatorname{gcd}(a, b)=d$. Multiplying by k gives

$$
a(u k)+b(v k)=d k=c
$$

Therefore, a solution is given by $x=u k$ and $y=v k$.
Instructor's Comments: This is the 45 minute mark.
Example: Solve $20 x+35 y=5$ as an LDE.
Solution: Notice here that we can simplify the LDE by dividing by 5 first to give

$$
4 x+7 y=1
$$

An easy solution is given by $x=2$ and $y=-1$.
Now, look at $x_{2}=2+7$ and $y_{2}=-1-4$. Notice that

$$
\begin{aligned}
4 x_{2}+7 y_{2} & =4(2+7)+7(-1-4) \\
& =4(2)+4(7)+7(-1)+7(-4) \\
& =4(2)+7(-1) \\
& =4 x+7 y \\
& =1
\end{aligned}
$$

In fact, if I take $x_{2}=2+7(11)$ and $y_{2}=-1-4(11)$. Notice that

$$
\begin{aligned}
4 x_{2}+7 y_{2} & =4(2+7(11))+7(-1-4(11)) \\
& =4(2)+4(7)(11)+7(-1)+7(-4)(11) \\
& =4(2)+7(-1) \\
& =4 x+7 y \\
& =1
\end{aligned}
$$

and 11 above is very arbitrary. In fact, this gives us an insight into the complete characterization of solutions for an LDE.

