Lecture 23

Instructor's Comments: If you ran out of time last lecture, you should give students the following tips.

When solving GCD problems, the following gives a rough order of how and when you should try a technique

- (i) Bézout's Theorem (EEA) [Good when gcd is in hypothesis]
- (ii) GCDWR [Good when terms in gcd depend on each other; good for computations]
- (iii) GCDCT [Good when gcd is in conclusion]
- (iv) Definition [Good when nothing else seems to work]
- (v) GCDPF [Good when you're desperate]

Handout or Document Camera or Class Exercise

Find $x, y \in \mathbb{Z}$ such that $143x + 253y = \gcd(143, 253)$. Determine which of the following equations are solvable for integers x and y:

- (i) 143x + 253y = 11
- (ii) 143x + 253y = 155
- (iii) 143x + 253y = 154

Instructor's Comments: The answers to these questions will be part of the lecture today.

Linear Diophantine Equations (LDE)

We want to solve ax + by = c where $a, b, c \in \mathbb{Z}$ under the condition that $x, y \in \mathbb{Z}$

Instructor's Comments: Relate this to solving for the equation of a line over the real case and invite students to think critically about the difference in the integer case.

Example: Solve the LDE 143x + 253y = 11.

Solution: We can solve this using the Extended Euclidean Algorithm!

X	у	r	q
0	1	253	
1	0	143	
-1	1	110	1
2	-1	33	1
-7	4	11	3
23	-13	0	3

Therefore, 143(-7) + 254(4) = 11. Are there other solutions?

Instructor's Comments: This is the 10-15 minute mark depending on the introduction. Students should do the EEA on their own and you should do it simultaneously.

Questions to ask about LDE's

- (i) Is there a solution?
- (ii) What is it?
- (iii) Are there more than one?

Example: Solve the LDE

$$143x + 253y = 155$$

Solution: Assume towards a contradiction that there exist x_0 and y_0 integers such that

$$143x_0 + 253y_0 = 155$$

By before, $11 \mid 143$ and $11 \mid 253$. Hence by Divisibility of Integer Combinations, $143x_0 + 253y_0$ is divisible by 11. HOWEVER,

$$11 \nmid 155 = 143x_0 + 253y_0$$

which is a contradiction. Hence the original LDE has no integer solutions.

Instructor's Comments: This is the 25 minute mark.

What about

$$143x + 253y = 154$$

as an LDE? Now, notice that $154 = 11 \cdot 14$. Hence, since

$$143(-7) + 253(4) = 11$$

multiplying by 14 gives

$$143(-7 \cdot 14) + 253(4 \cdot 14) = 11 \cdot 14$$
$$143(-98) + 253(56) = 154$$

Instructor's Comments: This is the 35 minute mark.

These insights lead to the following theorem

Theorem: (LDET1) Let d = gcd(a, b). The LDE

ax + by = c

has a solution if and only if $d \mid c$.

Proof: (\Rightarrow) Assume that ax + by = c has an integer solution, say $x_0, y_0 \in \mathbb{Z}$. Since $d \mid a$ and $d \mid b$, by Divisibility of Integer Combinations, we have that $d \mid (ax_0 + by_0) = c$.

(\Leftarrow) Assume that $d \mid c$. Then, there exists an integer k such that dk = c. By Bézout's Lemma, there exist integers u and v such that $au + bv = \gcd(a, b) = d$. Multiplying by k gives

$$a(uk) + b(vk) = dk = c$$

Therefore, a solution is given by x = uk and y = vk.

Instructor's Comments: This is the 45 minute mark.

Example: Solve 20x + 35y = 5 as an LDE.

Solution: Notice here that we can simplify the LDE by dividing by 5 first to give

$$4x + 7y = 1$$

An easy solution is given by x = 2 and y = -1.

Now, look at $x_2 = 2 + 7$ and $y_2 = -1 - 4$. Notice that

$$4x_2 + 7y_2 = 4(2+7) + 7(-1-4)$$

= 4(2) + 4(7) + 7(-1) + 7(-4)
= 4(2) + 7(-1)
= 4x + 7y
= 1

In fact, if I take $x_2 = 2 + 7(11)$ and $y_2 = -1 - 4(11)$. Notice that

$$4x_2 + 7y_2 = 4(2 + 7(11)) + 7(-1 - 4(11))$$

= 4(2) + 4(7)(11) + 7(-1) + 7(-4)(11)
= 4(2) + 7(-1)
= 4x + 7y
= 1

and 11 above is very arbitrary. In fact, this gives us an insight into the complete characterization of solutions for an LDE.