Lecture 21

Instructor's Comments: This should be the lecture you give on the day of the midterm. It is a very light computational lecture.

Definition: For $x \in \mathbb{R}$, define the floor function $\lfloor x\rfloor$ to be the greatest integers less than or equal to x.

Example:

(i) $\lfloor 2.5\rfloor=2=\lfloor 2\rfloor$
(ii) $\lfloor\pi\rfloor=3$
(iii) $\lfloor 0\rfloor=0$
(iv) $\lfloor-2.5\rfloor=-3$

Example: Find $\operatorname{gcd}(56,35)$

$$
\begin{array}{rlrl}
56(1)+35(0) & =56 & & \text { Eqn }[1] \\
56(0)+35(1) & =35 & & \text { Eqn }[2] \\
56(1)+35(-1) & =21 & & q_{1}=\left\lfloor\frac{56}{35}\right\rfloor=1 \text { Eqn }[3]=[1]-q_{1}[2] \\
56(-1)+35(2) & =14 & & q_{2}=\left\lfloor\frac{35}{21}\right\rfloor=1 \text { Eqn }[4]=[2]-q_{2}[3] \\
56(2)+35(-3) & =7 & q_{3}=\left\lfloor\frac{21}{14}\right\rfloor=1 \text { Eqn }[5]=[3]-q_{3}[4] \\
56(-5)+35(8) & =0 & q_{4}=\left\lfloor\frac{14}{7}\right\rfloor=2 \text { Eqn }[6]=[4]-q_{4}[5]
\end{array}
$$

Therefore $\operatorname{gcd}(56,35)=7=56(2)+35(-3)$. This process gives rise to the Extended Euclidean Algorithm.

Example: Find $x, y \in \mathbb{Z}$ such that $506 x+391 y=\operatorname{gcd}(506,391)$.

x	y	r	q
1	0	506	0
0	1	391	0
1	-1	115	$\left\lfloor\frac{506}{391}\right\rfloor=1$
-3	4	46	$\left\lfloor\frac{391}{115}\right\rfloor=3$
7	-9	23	$\left\lfloor\frac{115}{46}\right\rfloor=2$
-17	22	0	$\left\lfloor\frac{46}{23}\right\rfloor=2$

Therefore, $506(7)+391(-9)=23=\operatorname{gcd}(506,391)$.
Note: This process is known as the Extended Euclidean Algorithm.

Handout or Document Camera or Class Exercise
Use the Extended Euclidean Algorithm to find integers x and y such that $408 x+170 y=$ $\operatorname{gcd}(408,170)$.

Solution:

x	y	r	q
1	0	408	0
0	1	170	0
1	-2	68	$\left\lfloor\frac{408}{170}\right\rfloor=2$
-2	5	34	$\left\lfloor\frac{170}{68}\right\rfloor=2$
5	-12	0	$\left\lfloor\frac{68}{34}\right\rfloor=2$

Therefore, $408(-2)+170(5)=34=\operatorname{gcd}(408,170)$.

Note:

(i) Bézout's Lemma is the Extended Euclidean Algorithm in the textbook.
(ii) With $\operatorname{gcd}(a, b)$, what if

1. $b>a$? Then swap a and b. This works since $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)$.
2. $a<0$ or $b<0$? Solution is to make all the terms positive. This works since

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(-a, b)=\operatorname{gcd}(a,-b)=\operatorname{gcd}(-a,-b) .
$$

(iii) In practice, one can accomplish these goals by changing the headings then accounting for this in the final steps.

Use the Extended Euclidean Algorithm to find integers x and y such that $399 x$ $2145 y=\operatorname{gcd}(399,-2145)$.

Solution:

x	$-y$	r	q
0	1	2145	0
1	0	399	0
-5	1	150	$\left\lfloor\frac{2145}{399}\right\rfloor=5$
11	-2	99	$\left\lfloor\frac{399}{150}\right\rfloor=2$
-16	3	51	$\left\lfloor\frac{150}{99}\right\rfloor=1$
27	-5	48	$\left\lfloor\frac{99}{5}\right\rfloor=1$
-43	8	3	$\left\lfloor\frac{51}{48}\right\rfloor=1$
$27-(16)(-43)$	$-5-16(8)$	0	$\left\lfloor\frac{48}{3}\right\rfloor=1$

Therefore, $x=-43,-y=8$ and so $y=-8, \operatorname{gcd}(399,-2145)=3$. Hence

$$
399(-43)-2145(-8)=3=\operatorname{gcd}(399,-2145)
$$

