Lecture 21

Instructor's Comments: This should be the lecture you give on the day of the midterm. It is a very light computational lecture.

Definition: For $x \in \mathbb{R}$, define the floor function $\lfloor x \rfloor$ to be the greatest integers less than or equal to x.

Example:

- (i) $\lfloor 2.5 \rfloor = 2 = \lfloor 2 \rfloor$
- (ii) $\lfloor \pi \rfloor = 3$
- (iii) $\lfloor 0 \rfloor = 0$
- (iv) $\lfloor -2.5 \rfloor = -3$

Example: Find gcd(56, 35)

56(1) + 35(0) = 56	Eqn [1]
56(0) + 35(1) = 35	Eqn $[2]$
56(1) + 35(-1) = 21	$q_1 = \lfloor \frac{56}{35} \rfloor = 1$ Eqn $[3] = [1] - q_1[2]$
56(-1) + 35(2) = 14	$q_2 = \lfloor \frac{35}{21} \rfloor = 1$ Eqn $[4] = [2] - q_2[3]$
56(2) + 35(-3) = 7	$q_3 = \lfloor \frac{21}{14} \rfloor = 1$ Eqn $[5] = [3] - q_3[4]$
56(-5) + 35(8) = 0	$q_4 = \lfloor \frac{14}{7} \rfloor = 2 \text{ Eqn } [6] = [4] - q_4[5]$

Therefore gcd(56, 35) = 7 = 56(2) + 35(-3). This process gives rise to the Extended Euclidean Algorithm.

Example: Find $x, y \in \mathbb{Z}$ such that $506x + 391y = \gcd(506, 391)$.

x	y	r	q
1	0	506	0
0	1	391	0
1	-1	115	$\lfloor \frac{506}{391} \rfloor = 1$
-3	4	46	$\lfloor \frac{391}{115} \rfloor = 3$
7	-9	23	$\lfloor \frac{115}{46} \rfloor = 2$
-17	22	0	$\left\lfloor \frac{46}{23} \right\rfloor = 2$

Therefore, $506(7) + 391(-9) = 23 = \gcd(506, 391)$.

Note: This process is known as the Extended Euclidean Algorithm.

Handout or Document Camera or Class Exercise

Use the Extended Euclidean Algorithm to find integers x and y such that 408x+170y = gcd(408, 170).

Solution:

x	y	r	q	
1	0	408	0	
0	1	170	0	
1	-2	68	$\lfloor \frac{408}{170} \rfloor = 2$	
-2	5	$\begin{array}{c} 68\\ 34 \end{array}$	$\left[\frac{170}{68}\right] = 2$	
5	-12	0	$\left\lfloor \frac{68}{34} \right\rfloor = 2$	

Therefore, $408(-2) + 170(5) = 34 = \gcd(408, 170)$.

Note:

- (i) Bézout's Lemma is the Extended Euclidean Algorithm in the textbook.
- (ii) With gcd(a, b), what if
 - 1. b > a? Then swap a and b. This works since gcd(a, b) = gcd(b, a).
 - 2. a < 0 or b < 0? Solution is to make all the terms positive. This works since

gcd(a,b) = gcd(-a,b) = gcd(a,-b) = gcd(-a,-b).

(iii) In practice, one can accomplish these goals by changing the headings then accounting for this in the final steps.

Handout or Document Camera or Class Exercise

Use the Extended Euclidean Algorithm to find integers x and y such that $399x - 2145y = \gcd(399, -2145)$.

Solution:

x	-y	r	q
0	1	2145	0
1	0	399	0
-5	1	150	$\left\lfloor \frac{2145}{399} \right\rfloor = 5$
11	-2	99	$\lfloor \frac{399}{150} \rfloor = 2$
-16	3	51	$\left\lfloor \frac{150}{99} \right\rfloor = 1$
27	-5	48	$\lfloor \frac{99}{51} \rfloor = 1$
-43	8	3	$\lfloor \frac{51}{48} \rfloor = 1$
27-(16)(-43)	-5-16(8)	0	$\lfloor \frac{48}{3} \rfloor = 1$

Therefore, x = -43, -y = 8 and so y = -8, gcd(399, -2145) = 3. Hence

 $399(-43) - 2145(-8) = 3 = \gcd(399, -2145)$