
Lecture 19

Instructor’s Comments: Existence repeated here for convenience or if you
didn’t want to do it before

Theorem: (Unique Factorization Theorem) (UFT) (Fundamental Theorem of Arith-
metic)

Every integer n > 1 can be factored uniquely as a product of prime numbers, up to
reordering.

Note: Prime numbers are just the product of a single number.

Proof: Existence.

Assume towards a contradiction that not every number can be factored into prime
numbers. Let n be the smallest such number (which exists by WOP). Then either n is
prime, a contradiction, or n = ab with 1 < a, b < n. However, since a, b < n, the numbers
a and b can be written as a product of primes (since n was minimal). Thus n = ab is a
product of primes, contradicting the definition of n.

Uniqueness

Instructor’s Comments: Cannot do uniqueness yet

Assume towards a contradiction that there exists a natural number n > 1 such that

n = p1p2...pk = q1q2...qm

where each pi and qj are primes (not necessarily distinct) and further assume that this n
is minimal (WOP). By definition, p1 | n = q1q2...qm. Hence, by the generalized Euclid’s
Lemma, we see that p1 | qj for some 1 ≤ j ≤ m. Hence, since p1 and qj are prime numbers,
we have that p1 = qj. Without loss of generality, we may reorder the primes qj so that qj
is the first prime, that is, p1 = q1. Canceling out these primes gives

N0 := p2...pk = q2...qm

Now N0 < n and so, the above representations must be equal up to reordering by the
minimality of n. Hence, k = m and we may reorder so that

p` = q` for all 2 ≤ ` ≤ k

Multiplying N0 by p1 shows that the two representations of the factorizations of n are
the same up to reordering. This contradicts the existence of n hence all numbers can be
written uniquely as a product of primes up to reordering of primes.

Instructor’s Comments: This is a difficult proof. I would advise taking
some time and really going through it. Call this 10 minutes

Theorem: (Euclid’s Theorem) (ET) There exists infinitely many primes.
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Proof: Assume towards a contradiction that there exists finitely many primes, say
p1, p2, ..., pn. Consider the number

N = 1 +
n∏

i=1

pi

By the Fundamental Theorem of Arithmetic (UFT), N can be written as a product of
primes. In particular, there exists a prime p | N by the Generalized Euclid’s Lemma.
Since we have only finitely many primes, p = p1 for some 1 ≤ i ≤ n. Since p | N and

p

∣∣∣∣∣
n∏

i=1

pi , we conclude by Divisibility of Integer Combinations that

p

∣∣∣∣∣
(
N −

n∏
i=1

pi

)
= 1

This is a contradiction since no prime divides 1 (you could use Bounds by Divisibility
since primes are bigger than 1). Hence, there must be infinitely many primes. �

To complete the gaps in the previous proofs, we need to talk about the two forms of
Euclid’s Lemma. To do this, we will need to talk about greatest common divisors and
more importantly, Bézouts Lemma.

Instructor’s Comments: This is the 7 minute mark

Instructor’s Comments: Think of this as a sort of ’converse’ to BL

Theorem: GCD Characterization Theorem (GCDCT) If d > 0, d | a, d | b and there
exist integers x and y such that ax + by = d, then d = gcd(a, b).

Proof: Let e = gcd(a, b). Since d | a and d | b, by definition and the maximality of
e we have that d ≤ e. Again by definition, e | a and e | b so by Divisibility of Integer
Combinations, e | (ax+ by) implying that e | d. Thus, by Bounds by Divisibility, |e| ≤ |d|
and since d, e > 0, we have that e ≤ d. Hence d = e. �

Example: 6 > 0, 6 | 30, 6 | 42 and 30(3) + 42(−2) = 6 and hence by the GCD
Characterization Theorem, we have that gcd(30, 42) = 6.

Example: Prove if a, b, x, y ∈ Z, are such that gcd(a, b) 6= 0 and ax + by = gcd(a, b),
then gcd(x, y) = 1.

Proof: Since gcd(a, b) | a and gcd(a, b) | b, we divide by gcd(a, b) 6= 0 to see that

a

gcd(a, b)
x +

b

gcd(a, b)
y = 1

Since 1 | x and 1 | y and 1 > 0, GCD Characterization Theorem implies that gcd(x, y) = 1.
�

Instructor’s Comments: This is the 20 minute mark

2



Handout or Document Camera or Class Exercise

Prove or disprove the following:

(i) If n ∈ N then gcd(n, n + 1) = 1.

(ii) Let a, b, c ∈ Z. If ∃ x, y ∈ Z such that ax2 + by2 = c then gcd(a, b) | c.

(iii) Let a, b, c ∈ Z. If gcd(a, b) | c then ∃ x, y ∈ Z such that ax2 + by2 = c.

Solution:

(i) n + 1 = n(1) + 1 and so by the GCD Characterization Theorem, gcd(n + 1, n) =
gcd(n, 1) = 1. Hence this is true.

(ii) gcd(a, b) | a and gcd(a, b) | b. Thus, by Divisibility of Integer Combinations,
gcd(a, b) | (ax2 + by2) which implies that gcd(a, b) | c. Hence this is true.

(iii) This is false. Suppose that a = 3, b = 0 and c = 6. Then gcd(a, b) = 3 | 6 = c
however, 3x2 + 0y2 = 6 implies that x2 = 2, a contradiction.

Instructor’s Comments: This is the 30-35 minute mark. At the end of this
lecture, I think it would be wise to talk about the midterm a bit. It is coming
up so I’ve left a bit of extra time to review for the midterm.
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