Lecture 15

Instructor's Comments: If you did the surveys, you could go over them at the beginning

Handout or Document Camera or Class Exercise
Fibonacci Sequence Definition: Define a sequence by $f_{1}=1, f_{2}=1$ and

$$
f_{n}=f_{n-1}+f_{n-2} \quad \text { For all } n \geq 3
$$

so $f_{3}=2, f_{4}=3, f_{5}=5$, and so on.
(i) Prove that $\sum_{r=1}^{n} f_{r}^{2}=f_{n} f_{n+1}$ for all $n \in \mathbb{N}$.
(ii) Prove that $f_{n}<\left(\frac{7}{4}\right)^{n}$ for all $n \in \mathbb{N}$.

Solution: We prove only the first one. The second can be found on the Math 135 resources page
http://www.cemc.uwaterloo.ca/~cbruni/Math135Resources.php
(i) Base case: $n=1$

$$
\begin{aligned}
\text { LHS } & =\sum_{r=1}^{n} f_{r}^{2} \\
& =\sum_{r=1}^{1} f_{r}^{2} \\
& =f_{1}^{2} \\
& =1^{2} \\
& =1
\end{aligned}
$$

and

$$
\mathrm{RHS}=f_{n} f_{n+1}=f_{1} f_{2}=(1)(1)=1=\mathrm{LHS}
$$

(ii) Inductive Hypothesis. Assume that

$$
\sum_{r=1}^{k} f_{r}^{2}=f_{k} f_{k+1}
$$

holds for some $k \in \mathbb{N}$.
(iii) Inductive Step. We want to show that

$$
\sum_{r=1}^{k+1} f_{r}^{2}=f_{k+1} f_{k+2}
$$

We begin with the left and proceed towards the right

$$
\begin{aligned}
\text { LHS } & =\sum_{r=1}^{k+1} f_{r}^{2} \\
& =\sum_{r=1}^{k} f_{r}^{2}+f_{k+1}^{2} \\
& =f_{k} f_{k+1}+f_{k+1}^{2} \\
& =f_{k+1}\left(f_{k}+f_{k+1}\right) \quad \text { Induction Hypothesis } \\
& =f_{k+1} f_{k+2} \\
& =\text { RHS } \quad \text { By definition of Fibonacci Sequence } \\
\text { Hence } \sum_{r=1}^{n} f_{r}^{2} & =f_{n} f_{n+1} \text { for all } n \in \mathbb{N} \text { by the Principle of Mathematical Induction. }
\end{aligned}
$$

Instructor's Comments: This easily is the $20-30$ minute mark. Students might struggle with the notation.

Definition: Closed form: "Easy to put into a calculator" (This is not a formal definition!)

Example: Find a closed form expression for

$$
P_{n}=\prod_{r=2}^{n}\left(1-\frac{1}{r^{2}}\right)
$$

where $n \geq 2$ and prove it is correct by induction.
Proof: We begin with some guessing and napkin (discovery) work.
$P_{2}=\prod_{r=2}^{2}\left(1-\frac{1}{r^{2}}\right)=\left(1-\frac{1}{2^{2}}\right)=1-\frac{1}{4}=\frac{3}{4}$
$P_{3}=\prod_{r=2}^{3}\left(1-\frac{1}{r^{2}}\right)=\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)=\frac{3}{4} \cdot \frac{8}{9}=\frac{2}{3}=\frac{4}{6}$
$P_{4}=\prod_{r=2}^{4}\left(1-\frac{1}{r^{2}}\right)=\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right)=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)=\frac{3}{4} \cdot \frac{8}{9} \cdot \frac{15}{16}=\frac{5}{8}$
Claim: $P_{5}=\frac{6}{10}$ and in general $P_{n}=\frac{n+1}{2 n}$ for all $n \geq 2$. We prove this by induction.
(i) Base case: $n=2$

$$
P_{2}=\prod_{r=2}^{2}\left(1-\frac{1}{r^{2}}\right)=\left(1-\frac{1}{2^{2}}\right)=1-\frac{1}{4}=\frac{3}{4}=\frac{n+1}{2 n}
$$

(ii) Inductive Hypothesis. Assume that $P(k)$ is true for some $k \geq 2$ and $k \in \mathbb{N}$, that is, assume

$$
\prod_{r=2}^{k}\left(1-\frac{1}{r^{2}}\right)=\frac{k+1}{2 k}
$$

(iii) Inductive Step. We want to show that

$$
\prod_{r=2}^{k+1}\left(1-\frac{1}{r^{2}}\right)=\frac{(k+1)+1}{2(k+1)}=\frac{k+2}{2 k+2}
$$

We proceed starting from the left.

$$
\begin{array}{rlr}
\text { LHS } & =\prod_{r=2}^{k+1}\left(1-\frac{1}{r^{2}}\right) \\
& =\prod_{r=2}^{k}\left(1-\frac{1}{r^{2}}\right) \cdot\left(1-\frac{1}{(k+1)^{2}}\right) & \\
& =\frac{k+1}{2 k} \cdot \frac{(k+1)^{2}-1}{(k+1)^{2}} & \text { Inductive Hypothesis } \\
& =\frac{k+1}{2 k} \cdot \frac{k^{2}+2 k}{(k+1)^{2}} & \\
& =\frac{k+1}{2 k} \cdot \frac{k(k+2)}{(k+1)^{2}} & \\
& =\frac{k+2}{2(k+1)} & \\
& =\text { RHS } &
\end{array}
$$

Therefore, by the Principle of Mathematical Induction, we have that

$$
P_{n}=\frac{n+1}{2 n}
$$

for all $n \geq 2$.

Instructor's Comments: This is the 50 minute mark.

