Lecture 15

Instructor's Comments: If you did the surveys, you could go over them at the beginning

Handout or Document Camera or Class Exercise

Fibonacci Sequence Definition: Define a sequence by $f_1 = 1$, $f_2 = 1$ and

$$f_n = f_{n-1} + f_{n-2} \qquad \text{For all } n \ge 3$$

so $f_3 = 2$, $f_4 = 3$, $f_5 = 5$, and so on.

- (i) Prove that $\sum_{r=1}^{n} f_r^2 = f_n f_{n+1}$ for all $n \in \mathbb{N}$.
- (ii) Prove that $f_n < \left(\frac{7}{4}\right)^n$ for all $n \in \mathbb{N}$.

Solution: We prove only the first one. The second can be found on the Math 135 resources page

http://www.cemc.uwaterloo.ca/~cbruni/Math135Resources.php

(i) Base case: n = 1

$$LHS = \sum_{r=1}^{n} f_r^2$$
$$= \sum_{r=1}^{1} f_r^2$$
$$= f_1^2$$
$$= 1^2$$
$$= 1$$

and

RHS =
$$f_n f_{n+1} = f_1 f_2 = (1)(1) = 1 = LHS$$

(ii) Inductive Hypothesis. Assume that

$$\sum_{r=1}^k f_r^2 = f_k f_{k+1}$$

holds for some $k \in \mathbb{N}$.

(iii) Inductive Step. We want to show that

$$\sum_{r=1}^{k+1} f_r^2 = f_{k+1} f_{k+2}.$$

We begin with the left and proceed towards the right

LHS =
$$\sum_{r=1}^{k+1} f_r^2$$

= $\sum_{r=1}^{k} f_r^2 + f_{k+1}^2$
= $f_k f_{k+1} + f_{k+1}^2$ Induction Hypothesis
= $f_{k+1}(f_k + f_{k+1})$
= $f_{k+1}f_{k+2}$ By definition of Fibonacci Sequence
= RHS

Hence $\sum_{r=1}^{n} f_r^2 = f_n f_{n+1}$ for all $n \in \mathbb{N}$ by the Principle of Mathematical Induction.

Instructor's Comments: This easily is the 20-30 minute mark. Students might struggle with the notation.

Definition: Closed form: "Easy to put into a calculator" (This is not a formal definition!)

Example: Find a closed form expression for

$$P_n = \prod_{r=2}^n \left(1 - \frac{1}{r^2}\right)$$

where $n \ge 2$ and prove it is correct by induction.

Proof: We begin with some guessing and napkin (discovery) work.

$$P_{2} = \prod_{r=2}^{2} \left(1 - \frac{1}{r^{2}} \right) = \left(1 - \frac{1}{2^{2}} \right) = 1 - \frac{1}{4} = \frac{3}{4}$$

$$P_{3} = \prod_{r=2}^{3} \left(1 - \frac{1}{r^{2}} \right) = \left(1 - \frac{1}{2^{2}} \right) \left(1 - \frac{1}{3^{2}} \right) = (1 - \frac{1}{4})(1 - \frac{1}{9}) = \frac{3}{4} \cdot \frac{8}{9} = \frac{2}{3} = \frac{4}{6}$$

$$P_{4} = \prod_{r=2}^{4} \left(1 - \frac{1}{r^{2}} \right) = \left(1 - \frac{1}{2^{2}} \right) \left(1 - \frac{1}{3^{2}} \right) \left(1 - \frac{1}{4^{2}} \right) = (1 - \frac{1}{4})(1 - \frac{1}{9})(1 - \frac{1}{16}) = \frac{3}{4} \cdot \frac{8}{9} \cdot \frac{15}{16} = \frac{5}{8}$$

Claim: $P_5 = \frac{6}{10}$ and in general $P_n = \frac{n+1}{2n}$ for all $n \ge 2$. We prove this by induction.

(i) Base case: n = 2

$$P_2 = \prod_{r=2}^{2} \left(1 - \frac{1}{r^2} \right) = \left(1 - \frac{1}{2^2} \right) = 1 - \frac{1}{4} = \frac{3}{4} = \frac{n+1}{2n}$$

(ii) Inductive Hypothesis. Assume that P(k) is true for some $k \ge 2$ and $k \in \mathbb{N}$, that is, assume

$$\prod_{r=2}^{k} \left(1 - \frac{1}{r^2}\right) = \frac{k+1}{2k}$$

(iii) Inductive Step. We want to show that

$$\prod_{r=2}^{k+1} \left(1 - \frac{1}{r^2} \right) = \frac{(k+1)+1}{2(k+1)} = \frac{k+2}{2k+2}$$

We proceed starting from the left.

$$\begin{aligned} \text{LHS} &= \prod_{r=2}^{k+1} \left(1 - \frac{1}{r^2} \right) \\ &= \prod_{r=2}^k \left(1 - \frac{1}{r^2} \right) \cdot \left(1 - \frac{1}{(k+1)^2} \right) \\ &= \frac{k+1}{2k} \cdot \frac{(k+1)^2 - 1}{(k+1)^2} \end{aligned} \qquad \text{Inductive} \\ &= \frac{k+1}{2k} \cdot \frac{k^2 + 2k}{(k+1)^2} \\ &= \frac{k+1}{2k} \cdot \frac{k(k+2)}{(k+1)^2} \\ &= \frac{k+2}{2(k+1)} \\ &= \text{RHS} \end{aligned}$$

Hypothesis

Therefore, by the Principle of Mathematical Induction, we have that

$$P_n = \frac{n+1}{2n}$$

for all $n \ge 2$.

Instructor's Comments: This is the 50 minute mark.