Lecture 14

Handout or Document Camera or Class Exercise

Instructor's Comments: In this lecture, you might want to consider giving a midterm survey of your teaching.

Prove $P(n): 6 \mid\left(2 n^{3}+3 n^{2}+n\right)$ holds $\forall n \in \mathbb{N}$.

Solution:

(i) Base case

$$
2 n^{3}+3 n^{2}+n=2+3+1=6
$$

and $6 \mid 6$. Hence $P(1)$ is true.
(ii) Inductive Hypothesis. Assume $P(k)$ is true for some $k \in \mathbb{N}$, that is, $\exists \ell \in \mathbb{Z}$ such that $6 \ell=2 k^{3}+3 k^{2}+k$.
(iii) Inductive Step: Prove that $P(k+1)$ is true.

$$
\begin{align*}
2(k+1)^{3}+3(k+1)^{2}+(k+1) & =2 k^{3}+6 k^{2}+6 k+2+3 k^{2}+6 k+3+k+1 \\
& =\left(2 k^{3}+3 k^{2}+k\right)+6 k^{2}+12 k+6 \\
& =6 \ell+6\left(k^{2}+2 k+1\right) \tag{IH}\\
& =6\left(\ell+(k+1)^{2}\right)
\end{align*}
$$

Hence, $6 \mid 2(k+1)^{3}+3(k+1)^{2}+(k+1)$. Thus $P(k+1)$ is true. Hence by the Principle of Mathematical Induction, we have that $P(n)$ is true for all $n \in \mathbb{N}$.

Instructor's Comments: This is the 10 minute mark

Instructor's Comments: This illustrates the need for something "stronger" than induction.

Let $\left\{x_{n}\right\}$ be a sequence defined by $x_{1}=4, x_{2}=68$ and

$$
x_{m}=2 x_{m-1}+15 x_{m-2} \quad \text { for all } m \geq 3
$$

Prove that $x_{n}=2(-3)^{n}+10 \cdot 5^{n-1}$ for $n \geq 1$.
Solution: We proceed by induction.
Base Case: For $n=1$, we have

$$
x_{1}=4=2(-3)^{1}+10 \cdot 5^{0}=2(-3)^{n}+10 \cdot 5^{n-1} .
$$

Inductive Hypothesis: Assume that

$$
x_{k}=2(-3)^{k}+10 \cdot 5^{k-1}
$$

is true for some $k \in \mathbb{N}$.
Inductive Step: Now, for $k+1$,

$$
\begin{aligned}
x_{k+1} & =2 x_{k}+15 x_{k-1} & \text { Only true if } k \geq 2!!! \\
& =2\left(2(-3)^{k}+10 \cdot 5^{k-1}\right)+15 x_{k-1} & \\
& =4(-3)^{k}+20 \cdot 5^{k-1}+15 x_{k-1} & \\
& =\ldots ? &
\end{aligned}
$$

Instructor's Comments: This is the 15 minute mark

Principle of Strong Induction (POSI)

Axiom: If sequence of statements $P(1), P(2), \ldots$ satisfy
(i) $P(1) \wedge P(2) \wedge \ldots \wedge P(b)$ are true for some $b \in \mathbb{N}$
(ii) $P(1) \wedge P(2) \wedge \ldots \wedge P(k)$ are true implies that $P(k+1)$ is true for all $k \in \mathbb{N}$ then $P(n)$ is true for all $n \in \mathbb{N}$.

Note: This is equivalent in strength to the Principle of Mathematical Induction and to the Well Ordering Principle!

Question: Let $\left\{x_{n}\right\}$ be a sequence defined by $x_{1}=4, x_{2}=68$ and

$$
x_{m}=2 x_{m-1}+15 x_{m-2} \quad \text { for all } m \geq 3
$$

Prove that $x_{n}=2(-3)^{n}+10 \cdot 5^{n-1}$ for $n \geq 1$.
Solution: We proceed by strong induction.
Base Case: For $n=1$, we have

$$
x_{1}=4=2(-3)^{1}+10 \cdot 5^{0}=2(-3)^{n}+10 \cdot 5^{n-1} .
$$

For $n=2$, we have $x_{2}=68$ and

$$
2(-3)^{2}+10 \cdot 5^{2-1}=18+50=68
$$

Inductive Hypothesis: Assume that

$$
x_{i}=2(-3)^{i}+10 \cdot 5^{i-1}
$$

is true for all $i \in\{1,2, \ldots, k\}$ for some $k \in \mathbb{N}$ and $k \geq 2$.
Inductive Step: Now, for $k+1$,

$$
\begin{aligned}
x_{k+1} & =2 x_{k}+15 x_{k-1} \\
& =2\left(2(-3)^{k}+10 \cdot 5^{k-1}\right)+15\left(2(-3)^{k-1}+10 \cdot 5^{k-2}\right) \\
& =4(-3)^{k}+20 \cdot 5^{k-1}+30(-3)^{k-1}+150 \cdot 5^{k-2} \\
& =-12(-3)^{k-1}+100 \cdot 5^{k-2}+30(-3)^{k-1}+150 \cdot 5^{k-2} \\
& =18(-3)^{k-1}+250 \cdot 5^{k-2} \\
& =2 \cdot(-3)^{2}(-3)^{k-1}+10 \cdot 5^{2} \cdot 5^{k-2} \\
& =2(-3)^{k+1}+10 \cdot 5^{k}
\end{aligned}
$$

Hence, $x_{k+1}=2(-3)^{k+1}+10 \cdot 5^{k}$. Thus, by the Principle of Strong Induction, we have that $x_{n}=2(-3)^{n}+10 \cdot 5^{n-1}$ for all $n \geq 1$.

Instructor's Comments: This is the 40 minute mark

Instructor's Comments: I would make them do half of this example - say the base cases and the inductive hypothesis

Suppose $x_{1}=3, x_{2}=5$ and for all $m \geq 3$,

$$
x_{m}=3 x_{m-1}+2 x_{m-2} .
$$

Prove that $x_{n}<4^{n}$ for all $n \in \mathbb{N}$.

Proof: Let $P(n)$ be the given statement. We prove $P(n)$ by strong induction.
(i) Base cases: $P(1)$ is true since $x_{1}=3<4$ and $P(2)$ is true since $x_{2}=5<16=4^{2}$.
(ii) Inductive Hypothesis: Assume that $P(i)$ is true for all $i \in\{1,2, \ldots, k\}$ for some $k \in \mathbb{N}$ with $k \geq 2$.
(iii) Inductive Step. For $k \geq 2$, we have

$$
\begin{array}{rlr}
x_{k+1} & =3 x_{k}+2 x_{k-1} & \text { Valid since } k+1 \geq 3 \\
& <3 \cdot 4^{k}+2 \cdot 4^{k-1} & \\
& <4^{k-1}(3 \cdot 4+2) & \\
& =4^{k-1}(14) & \\
& <4^{k-1}(16) & \\
& =4^{k+1} &
\end{array}
$$

Hence $P(k+1)$ is true and thus $P(n)$ is true for all $n \in \mathbb{N}$ by the Principle of Strong Induction.

Fibonacci Sequence Definition: Define a sequence by $f_{1}=1, f_{2}=1$ and

$$
f_{n}=f_{n-1}+f_{n-2} \quad \text { For all } n \geq 3
$$

so $f_{3}=2, f_{4}=3, f_{5}=5$, and so on.
Note: For a cool link between this sequence and music, check out Tool - Lateralus on Youtube!

Instructor's Comments: This is the 50 minute mark

