
Lecture 13

Principle of Mathematical Induction (POMI)

Axiom: If sequence of statements P (1), P (2), ... satisfy

(i) P (1) is true

(ii) For any k ∈ N, if P (k) is true then P (k + 1) is true

then P (n) is true for all n ∈ N.

Instructor’s Comments: Here describe the domino analogy. Explain that
you’re creating a chain of implications P (1) ⇒ P (2), P (2) ⇒ P (3), and so on
and you want the chain to begin.

In practice, these arguments proceed as follows:

(i) Prove the base case, that is, verify that P (1) is true

(ii) Inductive hypothesis: Let k ∈ N be an arbitrary number. Assume that P (k) is true.

(iii) Inductive conclusion. Deduce that P (k + 1) is true.

(iv) Then conclude by the Principle of Mathematical Induction (POMI) that P (n) holds

Instructor’s Comments: Emphasize the for some part in the IH step. Note
also that the induction proof needn’t start at 1 (it could start at 0 or −1 etc.)

Example: Prove that
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

for all n ∈ N.

Proof: Let P (n) be the statement that

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

holds. We prove P (n) is true for all natural numbers n by the Principle of Mathematical
Induction.

(i) Base case: When n = 1, P (1) is the statement that

1∑
i=1

i2 =
(1)((1) + 1)(2(1) + 1)

6
.

This holds since

(1)((1) + 1)(2(1) + 1)

6
=

1(2)(3)

6
= 1 =

1∑
i=1

i2.
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(ii) Inductive Hypothesis. Assume that P (k) is true for some k ∈ N. This means that

k∑
i=1

i2 =
k(k + 1)(2k + 1)

6
.

(iii) Inductive Step. We now need to show that

k+1∑
i=1

i2 =
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6
.

To do this, we will start with the left hand side, reduce to the assumption made in
the inductive hypothesis and then conclude the right hand side.

LHS =
k+1∑
i=1

i2

=
k∑

i=1

i2 + (k + 1)2

=
k(k + 1)(2k + 1)

6
+ (k + 1)2 Inductive Hypothesis

= (k + 1)

(
k(2k + 1)

6
+ k + 1

)
= (k + 1)

(
2k2 + k

6
+

6k + 6

6

)
= (k + 1)

(
2k2 + 7k + 6

6

)
=

(k + 1)(k + 2)(2k + 3)

6
= RHS

Hence,
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

is true for all natural numbers n by the Principle of Mathematical Induction. �

Instructor’s Comments: It is important to note where you used the induc-
tive hypothesis!

Note: Now, we can finally solve the Tower of Hanoi example for the 100 level tower:

Vtower =
100∑
i=1

Vi

=
100∑
i=1

πi2(1)

= π
100∑
i=1

i2

= π
(100)(101)(2(100) + 1)

6
= 338350π
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Instructor’s Comments: This could easily be 25-30 minutes of your lecture.
The rest of the time is spent doing examples:

Handout or Document Camera or Class Exercise

Prove that
n∑

i=1

i =
n(n+ 1)

2

holds for all natural numbers n.

Solution:

(i) Base case:

(1)(1 + 1)

2
= 1 =

n∑
i=1

i.

(ii) Inductive Hypothesis. Assume that

k∑
i=1

i =
k(k + 1)

2

holds for some k ∈ N

(iii) Inductive step. For k + 1,

k+1∑
i=1

i =
k∑

i=1

i+ (k + 1)

=
k(k + 1)

2
+ (k + 1) Inductive Hypothesis

= (k + 1)(k
2

+ 1)

=
(k + 1)(k + 2)

2

Therefore, the claim holds by the Principle of Mathematical Induction for all n ∈ N.
�

Instructor’s Comments: This is the 40 minute mark
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Instructor’s Comments: An example where we don’t start at 1

Example: Prove that n! > 2n for all n ∈ N with n ≥ 4.

Proof: We proceed by mathematical induction.

(i) Base case: When n = 4, notice that 4! = 24 > 16 = 24 so the inequality holds in
this case.

(ii) Inductive Hypothesis: Assume that k! > 2k for some k ∈ N with k ≥ 4.

(iii) Inductive Step: Notice that

(k + 1)! = (k + 1)k!

> (k + 1)2k Inductive Hypothesis

> (1 + 1)2k Since k ≥ 4 > 1

= 2k+1

Thus, the conclusion holds for all k ∈ N with k ≥ 4 by the Principle of Mathematical
Induction. �
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Handout or Document Camera or Class Exercise

Examine the following induction “proofs”. Find the mistake

Question: For all n ∈ N, n > n+ 1.

Proof: Let P (n) be the statement: n > n + 1. Assume that P (k) is true for some
integer k ≥ 1. That is, k > k + 1 for some integer k ≥ 1. We must show that P (k + 1)
is true, that is, k + 1 > k + 2. But this follows immediately by adding one to both sides
of k > k + 1. Since the result is true for n = k + 1, it holds for all n by the Principle of
Mathematical Induction.

Instructor’s Comments: No base cases!

Question: All horses have the same colour. (Cohen 1961).

Proof:

Base Case: If there is only one horse, there is only one colour.

Inductive hypothesis and step: Assume the induction hypothesis that within any
set of n horses for any n ∈ N, there is only one colour. Now look at any set of n+1 horses.
Number them: 1, 2, 3, ..., n, n+ 1. Consider the sets {1, 2, 3, ..., n} and {2, 3, 4, ..., n+ 1}.
Each is a set of only n horses, therefore by the induction hypothesis, there is only one
colour. But the two sets overlap, so there must be only one colour among all n+1 horses.

Instructor’s Comments: However, the logic of the inductive step is in-
correct for n = 1, because the statement that ”the two sets overlap” is false
(there are only n + 1 = 2 horses prior to either removal, and after removal
the sets of one horse each do not overlap. This is the 50 minute mark
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