
Lecture 10

Handout or Document Camera or Class Exercise

Example: Prove that if x ∈ R is such that x3 + 7x2 < 9, then x < 1.1.

Proof: We prove the contrapositive. Suppose that x ≥ 1.1 > 1. Then

x3 + 7x2 ≥ (1.1)3 + 7(1.1)2

=

(
11

10

)3

+ 7

(
11

10

)2

=
1331

1000
+ 7

(
121

100

)
=

1331 + 8470

1000

=
9801

1000
≥ 9

as required. �

Instructor’s Comments: This is the 10 minute mark
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Types of Implications

Let A,B,C be statements.

(i) (A ∧ B) ⇒ C These we have seen in say Divisibility of Integer Combinations or
Bounds by Divisibility.

(ii) A⇒ (B ∧ C).

Example: Let S, T, U be sets. If (S ∪ T ) ⊆ U , then S ⊆ U and T ⊆ U .

Proof: Suppose S ∪ T ⊆ U . If x ∈ S, then x ∈ S ∪ T ⊆ U . Thus x ∈ U . Thus,
S ⊆ U . By symmetry (or similarly), T ⊆ U . �

Instructor’s Comments: Here you can make note of the use of the word
‘similarly’. It should be used sparingly and only when the argument is
truly identical.

(iii) (A ∨B)⇒ C

Example: (x = 1 ∨ y = 2)⇒ x2y + y − 2x2 + 4x− 2xy = 2

Proof: Assume that (x = 1∨y = 2). Then one of these two values is true. If x = 1,
then

LHS = x2y + y − 2x2 + 4x− 2xy

= (1)2y + y − 2(1)2 + 4(1)− 2(1)y

= y + y − 2 + 4− 2y

= 2

= RHS.

If instead y = 2, then

LHS = x2y + y − 2x2 + 4x− 2xy

= x2(2) + (2)− 2x2 + 4x− 2x(2)

= 2x2 + 2− 2x2 + 4x− 4x

= 2

= RHS.

completing the proof. �

(iv) A⇒ (B ∨ C). (Elimination)

Example: If x2 − 7x + 12 ≥ 0 then x ≤ 3 ∨ x ≥ 4.

Proof: Suppose x2−7x+12 ≥ 0 and x > 3. Then 0 ≤ x2−7x+12 = (x−3)(x−4).
Now, x− 3 > 0 and so we must have that x− 4 ≥ 0. Hence x ≥ 4.

Instructor’s Comments: This is the 25-30 minute mark
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Handout or Document Camera or Class Exercise

How many years has it been since the Toronto Maple Leafs have won the Stanley Cup?

A) -3

B) 49

C) 1000000

D) 1500

Instructor’s Comments: Argue that many answers are ridiculous and so
only the plausible answer remains. Change the second answer to (current
year - 1967). You could also introduce contradiction by using a sudoku board
which can be fun.
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Proof by contradiction

Let S be a statement. Then S ∧ ¬S is false.

Instructor’s Comments: Mention we sometimes use # to denote a contra-
diction has been reached.

Example: There is no largest integer.

Proof: Assume towards a contradiction that M0 is the largest integer. Then, since
M0 < M0 +1 and M0 +1 ∈ Z, we have contradicted the definition of M0. Thus, no largest
integer exists. �

Instructor’s Comments: This is the 32-37 minute mark
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Handout or Document Camera or Class Exercise

Instructor’s Comments: The following is an example of reading proofs and
seeing the difference between the direct proofs and proofs by contradiction.

Example: Let n ∈ Z such that n2 is even. Show that n is even.

Direct Proof: As n2 is even, there exists a k ∈ Z such that

n · n = n2 = 2k.

Since the product of two integers is even if and only if at least one of the integers is even,
we conclude that n is even.

Proof By Contradiction: Suppose that n2 is even. Assume towards a contradiction
that n is odd. Then there exists a k ∈ Z such that n = 2k + 1. Now,

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

Hence, n2 is odd, a contradiction since we assumed in the statement that n2 is even. Thus
n is even.

Instructor’s Comments: This is the 40 minute mark.
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Instructor’s Comments: It should be noted that the Well Ordering Prin-
ciple is not officially in the Math 135 curriculum. Since it is an easier to
understand form of Mathematical Induction, I’ve chosen to include it.

Axiom Well Ordering Principle (WOP). Every subset of the natural numbers that is
nonempty contains a least element.
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Handout or Document Camera or Class Exercise

Instructor’s Comments: It’s conceivable that you might want to write out
the first proof and then display the other two proofs. Feel free to ignore these
proofs as well. I do however recommend the first one.

Example: Prove that
√

2 is irrational.

Proof: Assume towards a contradiction that
√

2 = a
b
∈ Q with a, b ∈ N (Think: Why

is it okay to use N instead of Z?).

Proof 1: Assume further that a and b share no common factor (otherwise simplify
the fraction first). Then 2b2 = a2. Hence a is even. Write a = 2k for some integer k.
Then 2b2 = a2 = (2k)2 = 4k2 and canceling a 2 shows that b2 = 2k2. Thus b2 is even and
hence b is even. This implies that a and b share a common factor, a contradiction.

Proof 2 (Well Ordering Principle): Let

S = {n ∈ N : n
√

2 ∈ N}.

Since b ∈ S, we have that S is nonempty. By the Well Ordering Principle, there must be
a least element of S, say k. Now, notice that

k(
√

2− 1) = k
√

2− k ∈ N

(positive since
√

2 >
√

1 = 1). Further,

k(
√

2− 1)
√

2 = 2k − k
√

2 ∈ N

and so k(
√

2 − 1) ∈ S. However, k(
√

2 − 1) < k which contradicts the definition of k.
Thus,

√
2 is not rational.

Proof 3 (Infinite Descent): Isolating from
√

2 = a
b
, we see that 2b2 = a2. Thus a2

is even hence a is even. Write a = 2k for some integer k. Then 2b2 = a2 = (2k)2 = 4k2.
Hence b2 = 2k2 and so b is even. Write b = 2` for some integer `. Then repeating the
same argument shows that k is even. So a = 2k = 4m for some integer m. Since we can
repeat this argument indefinitely and no integer has infinitely many factors of 2, we will
(eventually) reach a contradiction. Thus,

√
2 is not rational.

Instructor’s Comments: If you do all three proofs, notice that the simple
proof and the infinite descent proofs are similar.
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