These notes were created by a suggestion from Ryan Trelford based on the Fall 2015
offering of Math 135. These were the notes I used in this semester written out completely
with commentary. Many pages from this file were given as handouts/displayed on a
document camera. I have made note of this by using the heading “Handout/Document
Camera” as used. Please feel free to modify, change, recast, or reproduce these notes in
any way you see fit so long as the content continues to help students and be beneficial to
learning mathematics. In the header is a toggle for Instructor Comments; these are timing
cues and some helpful hints for first time instructors. Special thanks to Alain Gamache
and Haochen Yang for catching many of my typos in the early versions of this document.

-Carmen Bruni (January 2016)



Lecture 1

Introduction course information. Refer to Lecture 1 beamer presentation.

Instructor’s Comments: Mention Difference between Reading, Writing and
Discovering proofs. Text book is cheap and should be purchased. Get people
excited about proofs!

Lecture 2

Claim: If n is a positive integer, then n? 4 1 is not a perfect square.

Proof: Let n be a positive integer. Then n? < n? +1 <n?+2n+ 1= (n+ 1)2. Since
there are no integer squares between n? and (n + 1)?, we are done. |

Question: What if we change n? + 1 to n? + 13?

Note: When demonstrating this statement, we would need a proof. When showing the
statement is false, we need a counterexample.

Solution: This is false. Consider what happens when n = 6. Then n? + 13 = 6> + 13 =
49 = (7)%

Question: What if we change n? + 1 to 1141n? + 17

Solution: This is true for all n < 10%*. Despite being true for a large number of values,
this does not constitute a proof. It turns out in this case this is also false. Consider
n = 30693385322765657197397208. You can check this in Sage/Python that this does
indeed give a counter example (that is, 1141n2 + 1 is a perfect square). Interested readers
should check out Pell’s Equations.

Instructor’s Comments: This is the 12 minute mark
Definition: A statement is a sentence that is either true or false.
Definition: A proposition is a claim that requires a proof.
Definition: A theorem is a strong proposition.

Definition: A lemma is a weak proposition.
Definition: A corollary follows immediately from a proposition.

Definition: An aziom is a given truth.

Example: Axiom: The square of a real number is nonnegative.

Example: Axiom: The sum of two even numbers is even. (You could prove this however
if you wanted)

Note: In general, axioms are statements that a fellow typical math 135 student should
know before entering this class.



Instructor’s Comments: This is the 20 minute mark
Example: Show that for § € R, sin(36) = 3sin(f) — 4sin®(6).
Note: € means ’in; or 'belongs to’ and R is the set of real numbers.
Proof: Recall these three axioms hold for all z,y € R:

1) sin®(z) 4 cos®(z) = 1
2) sin(x £+ y) = sin(x) cos(y) £ sin(y) cos(z)
3) cos(x +y) = cos(z) cos(y) F sin(z) sin(y)

To prove equalities, we do left hand side to right hand side proofs (or vice versa). We
can also meet in the middle and do half starting with the left hand side and half starting
with the right hand side.

LHS = sin(30)
= sin(26 + 0)
= sin(26) cos(6) + sin(f) cos(20) Use identity 2) with x = 20 and y = 0
= (2sin(0) cos(f)) cos(f) + sin(#)(cos?(#) — sin*(#)) Use identity 2) and 3) with z =y =0
= 3sin(f) cos*(#) — sin®(9))

= 3sin(0)(1 — sin®(9)) — sin*(9)) Use identity 1) with = = 6
= 3sin(f) — 4sin®(0)
= RHS

Note: Make sure to identify the uses of trigonometric identities above. Be explicit.
Instructor’s Comments: This is the 30-33 minute mark

In what follows, we will discuss good and bad proofs of Stewart’s Theorem. Try to
prove the theorem yourself.

Instructor’s Comments: This is the 38 minute mark
Then analyze the proofs for improvement.

Instructor’s Comments: This will take you to the 46 minute mark



Handout or Document Camera or Class Exercise

Stewart’s Theorem Let ABC' be a triangle with AB = ¢, AC = b and BC = a.
If P is a point on BC with BP =m, PC =n and AP =d,
then dad + man = bmb + cnc.

Proof. Proof A

A =m?+d* —2mdcosf
> =n®+d* — 2ndcos b’
b2 =n?+ d® + 2ndcosf

m2—02+d2_b2—n2—d2

—2md N 2nd
nc® —nm? —nd* = —mb* + mn* + md*
nc® —mb* = mn® + md® + nm? + nd*
cne + bmb = nm(n +m) + d*(m + n)
cne + bmb = man + dad
[

Note: Unclear what 6 and ¢’ are. No explanation. Division by variables should be careful
about 0.



Handout or Document Camera or Class Exercise

Stewart’s Theorem Let ABC' be a triangle with AB = ¢, AC = b and BC = a.
If P is a point on BC with BP =m, PC =n and AP =d,
then dad + man = bmb + cnc.

Proof. Proof B
The Cosine Law on AAPB tells us that
> =m? + d* — 2mdcos (LAPB).
Subtracting ¢? from both sides gives
0=—c®+m?+d* — 2mdcos (LAPB).
Adding 2md cos ZAPB to both sides gives
2mdcos (/APB) = —c* +m? + d°.

Dividing both sides by 2md gives

—2+m?+ d?

cos (LAPB) = Sy

Now, the Cosine Law on AAPC tells us that

b* =n? + d* — 2ndcos LAPC.
Since ZAPC and ZAPB are supplementary angles, then

cos LZAPC = cos (m — LAPB) = —cos (LAPB).

Substituting into our previous equation, we see that

b* =n? + d* + 2nd cos LAPB.
Subtracting n? from both sides gives

b> —n? = d* + 2ndcos (LAPB).
Then subtracting d? from both sides gives

b* —n? —d* = 2ndcos (LAPB).



Dividing both sides by 2nd gives

b* —n? — d?

5 = cos (LAPB).

Now we have two expressions for cos (ZAPB) and equate them to yield

-+ m?+ d? _ b —n? — d?
2md N 2nd ’

Multiplying both sides by 2mnd shows us that
n(—c +m? + d*) = m(b*> —n* — d*).
Next we distribute to get
—nc +nm? + nd* = mb* — mn® — md>.
Adding nc? + mn? + md? to both sides gives
nm? + mn® + nd* + md* = mb* + nc*.
Factoring twice gives:
nm(m +n) + d*(m + n) = mb*> + nc*.
Since P lies on BC, then a = m + n so we substitute to yield
nma + d*a = mb* 4+ nc’.

Finally, we can rewrite this as bmb + cnc = dad + man.. [

Note: Too verbose. Can shorten the explanation by not writing out every algebraic
manipulation.



Handout or Document Camera or Class Exercise

Stewart’s Theorem Let ABC' be a triangle with AB = ¢, AC = b and BC = a.
If P is a point on BC with BP =m, PC =n and AP =d,
then dad + man = bmb + cnc.

Proof. Proof C

Using the Cosine Law for supplementary angles ZAPB and ZAPC, and then clearing
denominators and simplifying gives dad + man = bmb + cnc as required. |

Note: No details given. Need to provide some evidence of algebraic manipulation.



Handout or Document Camera or Class Exercise

Stewart’s Theorem Let ABC' be a triangle with AB = ¢, AC = b and BC = a.
If P is a point on BC with BP =m, PC =n and AP =d,
then dad + man = bmb + cnc.

Proof. Proof D
The Cosine Law on AAPB tells us that
> =m?+ d* — 2mdcos LZAPB.
Similarly, the Cosine Law on AAPC tells us that
b =n® + d* — 2nd cos LAPC.
Since ZAPC and ZAPB are supplementary angles, we have
b* =n? + d? + 2ndcos LAPB.
Equating expressions for cos ZAPB yields

—+m?+ d? _ b —n? — d?
2md N 2nd ’

Clearing the denominator and rearranging gives
nm? + mn® + nd* + md* = mb* + nc?.
Factoring yields
mn(m +n) + d*(m +n) = mb* + nc*.
Substituting a = (m + n) gives dad + man = bmb + cnc as required. [ |

Note: Overall a good proof. Perhaps some more information on why the supplementary
angle step holds would be good. Justifying why division by a variable is allowed (that is,
nonzero variables) would be a plus and perhaps labeling previous equations to reference in
the future would help this proof slightly. This would be an acceptable answer regardless
of these minor quibbles.

Instructor’s Comments: This concludes up to the 46-48 minute mark



Handout or Document Camera or Class Exercise

Find the flaw in the following arguments:
(i) For a,b € R,

a=b
a’> = ab
a’? — b =ab— b

(a —b)(a+b) =bla—Db)

a+b=10 ERROR: division by 0 since a = b
b+b=10

2b=">

2=1

Instructor’s Comments: This is the end of lecture 2. Begin Lecture 3
with the next two examples.

x_7r+3
2
20 =7+ 3

(iii) For x € R,

(x—1)2>0
2 —2x+1>0
22 +1> 2

T >2



Lecture 3
Handout or Document Camera or Class Exercise

Find the flaw in the following arguments:

(i) (Last class)

T+ 3
Tr =

2
20 =7+ 3

ERROR: |3 — z| = |7 — x|

3=m
(iii) For z € R,
(x—1)*>0
2> —2r+1>0
22 +1> 2
T+ % > 2 ERROR: Division by 0. Also flip sign if x < 0

Instructor’s Comments: This is the 5 minute mark



Example: Let z,y € R. Prove that
5%y — 3y? < ot + 2%y + o
Proof: Since 0 < (22 — 2y)?, we have

0 < (2% —2y)?

0 < at — 42y + 4y
5%y — 3y* < 2t — 42’y + 4y* + 5Py — 3y°
507y — 3y? < ot + 2%y + 97

Alternate proof:

RHS = 2% + 2%y + 2
= z* + 2%y + y? + 52y — 5y + 3y* — 32
= ' — 42y + 4y* + 52’y — 3y°
= (2® — 2y)* 4 52’y — 3y°
> 5xy — 3y°
= LHS

Note: To discover this proof. Play around with the given inequality on a napkin (rough
work). Manipulate it until you reach a true statement. Then write your proof starting
with the given true statement to reach the desired inequality. Notice that starting with
the given inequality is NOT wvalid since you do not know whether or not it is true to
begin with. New truth can only be derived from old truth. (Analogy: You need a solid
foundation to build a house). Here is a sample of my napkin work:

5a*y — 3y° < at + 2%y + ¢
0 < 2* + 2%y +y* — 5a’y + 3y°
0 <z — 422y + 44
0 < (2 —2y)*
The last statement is clearly true thus so long as I can reverse my steps, I have a valid

proof. Note that you must write the proof starting with the true statement and deriving
the new truth statements.

Instructor’s Comments: This is the 20 minute mark
Throughout the remainder of this lecture, let A, B, C be statements.

Definition: —-A is NOT A.

ATA
T| F
F| T

Note: : Truth tables can be used both as definitions of operators (as was done here) or
in proofs (as will be done later). Make sure you understand the difference.

Definition: A A Bis A and B. Further, AV B is A or B.

11
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Instructor’s Comments: This is the 26 minute mark

12



Handout or Document Camera or Class Exercise
Which of the following are true?

e 7 is irrational and 3 > 2

10 is even and 1 = 2

7 is larger than 6 or 15 is a multiple of 3
e 5 <6

24 is a perfect square or the vertex of parabola z? + 2x + 3 is (1,1)

2.3 is not an integer

20% of 50 is not 10

7 is odd or 1 is positive and 2 # 2

Solution: In order: True, False, True, True, False, True, False, True.

Note: For the last one above, the order of operations for logical operators (mathemat-
ically) is =, A, V. If you change this order, the last bullet becomes false. This is not
required knowledge in MATH 135 but you should make a note. Further, this is not
consistent across programming languages.

Instructor’s Comments: This is the 32 minute mark. It is possible to move
this to the end of the lecture near the other similar handout if you want to
avoid swapping back and forth from projector to notes.

13



Definition: The symbol = in logic means “logically equivalent”, that is, in a truth
table, the LHS and RHS are equivalent (share the same truth values for all possibilities;
share the same truth values in columns, etc.). Example: Show that =(—A4) = A.
Proof:

A | —A | (A
T| F T
F| T F
Since the first and last columns are equal, A == —(—A).

Note: It is important to have a concluding statement like above. Make sure the reader

knows why you know you have proven your statement.
Theorem: De Morgan’s Law (DML)

—\(A\/B)E—\A/\—!B
(AAB)=-AV B

We prove only the first. The second is left as an exercise.

A|B|AVvB|—~(AVB)|-A|-B|-AAN-B
T|T T F F F F
T|F T F F T F
F|T T F T F F
F|F F T T | T T

Since the fourth and the last columns are equal, we have that =(AV B) = -A A -B
as required. [

Instructor’s Comments: It is worth noting that this is the first time an
acronym is used. I am not certain if this acronym is in the textbook. This
would be a good time to emphasize when using a theorem or a result, you
should use the acronym or name.

Example: For Homework, prove that AN (BVC)=(AAB)V (AAC).

Instructor’s Comments: This is the 40 minute mark

Definition: Implication (A = B)

RO NS
W
e5

In A = B, we call A the hypothesis and B the conclusion.

Note: Notice that if the hypothesis is false, the implication is always evaluated as true.
Similarly, if the conclusion is true, the implication is always evaluated as true.

Note: To prove A = B, we assume A is true and then show that B is true.

14



Note: To use A = B, we prove A is true and then use B as true.

Proposition: Let A and B be statements. Then A = B=-AV B.

Proof:
A|B|A=B|—-A|-AVB
T|T T F T
T|F F F F
F|T T T T
F|F T T T

Since the third and fifth columns are equal, we see that A = B =-AV B.

15



Handout or Document Camera or Class Exercise

In the following, identify the hypothesis, the conclusion and state whether the state-
ment is true or false.

e If \/2 is rational then 2 < 3

If (14+1=2) then 5-2 =11

If C is a circle, then the area of C is 7r?

If 5 is even then 5 is odd

If4—-—3=2thenl+1=3

Solution: True, False, True, True, True.

Instructor’s Comments: This is the 50 minute mark

16



Lecture 4

Handout or Document Camera or Class Exercise

Instructor’s Comments: Clicker Questions to start every 4th lecture.

Suppose A, B and C' are all true statements.

The compound statement (—A) V (B A —=C) is
A) True
B) False

Solution: The answer is False.

Instructor’s Comments: This should take about 5 minutes. For all clicker
questions, if the results are poor - get them to talk to each other and repoll.

17



Recall:
Proposition: Let A and B be statements. Then A = B=-AV B.

Proposition: Let A and B be statements. Then =(A = B) = A A =B. Reworded, the
negation of an implication is the hypothesis and the negation of the conclusion.

Proof:
(A= B)=-(-AVB) By the above proposition
= —(-A) A B De Morgan’s Law
=AN-B By proposition from class
This completes the proof. [ |

Instructor’s Comments: This is the 10 minute mark. Note it is important
to do the negation of implication with them.

Definition: Denote the set of integers by Z.
Note: We use Z since this is the first letter of the word integer... in German! (Zahlen)

Definition: Let m,n € Z. We say that m divides n and write m | n if (and only if)
there exists a k € Z such that mk = n. Otherwise, we write m { n, that is, when there is
no integer k satisfying mk = n.

Note: The “(and only if)” part will be explained in a few lectures.

Instructor’s Comments: I tell my students that definitions in mathematics
should be if and only if however mathematicians are sloppy and do not do this
in practice.

Example:

(i) 316

Instructor’s Comments: This is the 17 minute mark

Example: Does 7 | 377 This question doesn’t make sense since in the definition of |,
we required both m and n to be integers (there are ways to extend the definition but here
we're restricting ourselves to talk only about integers when we use |).

18



Example: (Direct Proof Example) Prove n € ZA 14 |n = 7| n.

Proof: Let n € Z and suppose that 14 | n. Then 3k € Z s.t. 114k = n. Then (7-2)k = n.
By associativity, 7(2k) = n. Since 2k € Z, we have that 7 | n.

Note: The symbol 4 means “there exists”. the letters s.t. mean “ such that”.

Instructor’s Comments: This is the 30 minute mark. It is not necessary
to mention associativity above but I'll introduce rings at some point and so
this seems like a good opportunity to remind students of what things they
can take as axioms.

Recall: An integer n is
(i) Evenif 2 | n
(i) Odd if 2| (n—1).

Proposition: Let n € Z. Suppose that 22" is an odd integer. Show that 272" is an odd
integer.

Proof: Note that the hypothesis is only true when n = 0. If n < 0, then 22" is not an
integer. If n > 0 then 22" = 222"~ and since 2n — 1 > 0, we see that 22" is even. Hence
n =0 and thus 22" = 1 = 272", Thus 272" is an odd integer. |

Note: Ask yourself when is the hypothesis true. Then consider that/those case(s).
Breaking up into cases is a great way to prove statements. Sometimes breaking a statement
into even and odd, or positive and negative are great strategies.

Instructor’s Comments: This is the 40 minute mark. Ask the students to
attempt to give you a good definition of prime. This is a good exercise for
students to make precise definitions.

Definition: An integer p is said to be prime if (and only if) p > 1 and its only positive
divisors are 1 and p.

Example: Show that p and p + 1 are prime only when p = 2.

Instructor’s Comments: Can do this example if you have time. Otherwise
it’s fine to leave it as an exercise

Proposition: Bounds by Divisibility (BBD).
al|bAb#0=|a|l <D

Proof: Let a,b € Z such that a | b and b # 0. Then 3k € Z such that ak = b. Since
b # 0, we know that k # 0. Thus, |a| < |a||k| = |ak| = |b] as required. |

Instructor’s Comments: This is probably the 50 minute mark. If you have
time, state TD and DIC below.

Proposition: Transitivity of Divisibility (TD)

albAb|c=alc

19



Proof: There exists a k € Z such that ak = b. There exists an ¢ € Z such that b/ = c.
This implies that (ak)f¢ = ¢ and hence a(kf) = c. Since kl € Z, we have that a | c. |

Proposition: Divisibility of Integer Combinations (DIC). Let a,b,c € Z. If a | b and
a | c. Then for any =,y € Z, we have a | (bx + cy).

20



Lecture 5
Proposition: Transitivity of Divisibility (TD)
albAblc=alc

Proof: There exists a k € Z such that ak = b. There exists an ¢ € Z such that b¢ = c.
This implies that (ak)¢ = ¢ and hence a(kf) = c. Since k¢ € Z, we have that a | c. |

Proposition: Divisibility of Integer Combinations (DIC). Let a,b,c € Z. If a | b and
a | c. Then for all z,y € Z, we have a | (bx + cy).

Proof: Since a | b, 3k € Z such that ak = b. Since a | ¢, 3¢ € Z such that al = c¢. Then
for all integers x and v,

bx + cy = akx + aly = a(kz + ly)
Since kx + ly € Z, by definition we see that a | (bx + cy). [

Question: Prove that if m € Z and 14 | m then 7 | (135m + 693).

Proof: Suppose m € Z and 14 | m. Since 7 | 14 (since 7-2 = 14), by transitivity we have
that 7 | m. As 7 | 693 (since 7-99 = 693), we have by Divisibility of Integer Combinations
(DIC) that

7 | m(135) + 693(1)

and thus 7| (135m + 693). |
Note: In DIC we set b=m, v = 135, c =693 and y = 1.

Instructor’s Comments: This should be the 10-13 minute mark
Definition: Let A, B be statements. The converse of A = B is B = A.

Example: If S is the statement:
If p, p+ 1 are prime, then p = 2.
Then the converse of S is
If p =2, then p, p+ 1 are prime.
Note in this case that the statement and it’s converse are both true.
Recall: Bounds by Divisibility (BBD)

al|bAb#0=|a| <D

Example: The converse of Bounds by Divisibility (BBD) is
la| < |b] =a|bAbF#0
Note here, the converse is a false statement (for example 6 < 7).

Instructor’s Comments: This should be the 20 minute mark

Definition: If and only if A< B, Aiff B, A if and only if B.

21
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Note: Definitions in mathematics should (almost) always be if and only if definitions.
Mathematicians generally are sloppy and don’t do this. We will try to be careful in this
course but you have been warned for other courses.

Exercise: Show that A< B= (A= B)A(B=A)
Example: In AABC, show that b = ccos A if and only if ZC = 7.
Proof: Suppose that b = ccos A. By the Cosine Law,

a’> =b%+ ¢? — 2bccos A
a’> = b* 4 ¢ — 2bb
a2 =2 p?
a+v=¢
Is the converse of the Pythagorean Theorem true? Let’s find out! Using the cosine law
again,
& =a®>+b* —2abcosC
& =c*—2abcosC
0= —2abcosC
Therefore, cos C' = 0 since 0 < ZC < 7, we see that ZC = 7/2.

Now we prove the converse. Suppose that ZC' = /2. Then AABC' is a right angled
triangle! Hence, cos A = 2 and thus ccos A = b as required. [ |

Instructor’s Comments: This should be the 35 minute mark. Emphasize
proving the converse in iff proofs.

22



Handout or Document Camera or Class Exercise

Prove the following. Suppose that x,y > 0. Show that x = y if and only if %ﬂ = ./1y.

Instructor’s Comments: Give 5 minutes to try it and 5 minutes to take it
up.

Proof: Suppose first that fczﬂ = /7y. Then

T+y
;. VW
r+y=2yxy
(z +y)* = (2/zy)’
22 4+ 2zy + y? = day

w2 —2zy+y* =0
(z —y)*=0.

Therefore, x — y = 0 and thus x = y. Now, suppose first that = y. Then

2
2 2 2

and

RHS = 1y = /> =y

with the last equality holding since y > 0. Therefore, “1¥

Instructor’s Comments: This is the 45 minute mark.
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Definition: A set is a collection of elements.

Example:
(i) Z2=4..—2,-1,0,1,2,...}
(i) N={1,2,...}

(vi) S ={m2,{1,2}}

Note: For Math 135, the natural numbers begin with the element 1. (Some textbooks
or courses start with 0).

Note: z € S means z in S (or = belongs to §) and x ¢ S means z not in S.

Instructor’s Comments: If you have time here do these, otherwise start the
next lecture with these two points.

Note: {} and () are the empty set, a set with no elements.

Note: {0} is NOT the empty set. It is a set with one element, the element that is the
empty set.

24



Lecture 6

Note: {} and () are the empty set, a set with no elements.

Note: {0} is NOT the empty set. It is a set with one element, the element that is the
empty set.

Example: In set notation, write the set of positive integers less than 1000 and which
are multiples of 7.

Instructor’s Comments: Might be good to give students a minute to try
this

Solution: {n € N:n <1000 A7 | n}. Another answer is given by
(Th: ke NAK < 142}

Note: The : symbol means “such that”. Sometimes | is used as well (though because we
use it for divisibility, we won’t use it in this context very often if at all).

Instructor’s Comments: This is the 7 minute mark
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Handout or Document Camera or Class Exercise
Describe the following sets using set-builder notation:

(i) Set of even numbers between 5 and 14 (inclusive).
(ii) All odd perfect squares.
(iii) Sets of three integers which are the side lengths of a (non-trivial) triangle.

(iv) All points on a circle of radius 8 centred at the origin.

Instructor’s Comments: 5 minutes to try on their own and 5 to take up

Solution:
(i) {6,8,10,12,14} or {n e N:5<n <14 A2|n}
(i) {(2k+1)?: k € Z} (or N overlap doesn’t matter!)

(iii) {(a,b,c):a,b,ce NANa<b+cAb<a+cAc<a+b}
) {

(iv) {(z,y) :z,y e RAZ* +y? = 8%}

Instructor’s Comments: This is the 17 minute mark
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Set Operations. Let S and T be sets. Define
(i) #S or |S|. Size of the set S.
(ii) SUT ={z:x € SVzxeT} (Union)
(ili) SNT ={z:2 € SAz e T} (Intersection)
(iv) S—=T ={xe€S:ax¢T} (Set difference)
(v) S or S¢ (with respect to universe U) the complement of S, that is
S¢={recU:2¢S}=U-S
(vi) SxT ={(z,y) : x € S Ay €T} (Cartesian Product)
Example: (1,2) € Z xZ, (2,1) € Zx Z, BUT (1,2) # (2,1).
Note: Z x Z and {(n,n) : n € Z} are different sets!!!

Example:

Z={meZ:2|m}uU{2k+1:kecZ}
D={meZ:2|m}n{2k+1:keZ}

Instructor’s Comments: This is the 30-33 minute mark
Definition: Let S and T be sets. Then
(i) S CT: Sisasubset of T. Every element of S is an element of 7.

(ii) S € T S is a proper/strict subset of 7. Every element of S is an element of 7" and
some element of 7" is not in S.

(iii) S 2 T: S contains T'. Every element of T is an element of S.

(iv) S 2 T: S properly/strictly contains 7. Every element of T is an element of S and
some element of S is not in 7.

Definition: S =T means SC7T and T C S.
Example: {1,2} ={2,1}
Example: Prove {n e N:4|(n+1)} C{2k+1:kecZ}

Proof: Let m € {n € N:4 | (n+1)}. Then 4 | (m + 1). Thus, 3¢ € Z such that
40 =m + 1. Now

m=2020)—1=2(20) —2+2—1=2(20—1) + 1.
Hence m € {2k +1: k € Z}. |

Instructor’s Comments: This is the 40-43 minute mark. You might run
out of time in the next example. Carry forward to Lecture 7 as need be.

Example: Show S =T ifand onlyit SNT =SUT.
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Proof: Suppose S =T. To show SNT = SUT we need to show that SNT C SUT
and that SNT 2> SUT

First suppose that x € SNT. Then x € S and x € T. Hence x € SUT.

Next, suppose that v € SUT. Then x € S or x € T'. Since S =T we have in either
case that x € Sand x € T. Thus x € SNT. This shows that SNT = SUT and completes
the forward direction.

Now assume that SNT = SUT. We want to show that S = T which we do by
showing that S C T and T C S.

First, suppose that z € S. Then x € SUT =SNT. Hence z € T'.

Next, suppose that x € T. Then x € SUT = SNT. Hence x € S. Therefore, S =1T.
[ |

Instructor’s Comments: The last two points give a good learning moment
to explain when the word ‘similarly’ can be used. This is the 50 minute mark.
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Lecture 7
Quantified Statements

(i) For every natural number n, 2n* + 11n + 15 is composite.
(ii) There is an integer k such that 6 = 3k.
Symbolically, we write
(i) Vn € N, 2n? + 11n + 15 is composite.
(ii) Ik € Z such that 6 = 3k.

We call V and 3 quantifiers, n and k variables, N and Z domains and the rest are called
an open sentence (usually involving the variable(s)).

Note: Vz € S P(x) means for all z in S, statment P(z) holds. This is equivalent to
r €S = Px).

Proof: (of number 1 above) Let n be an arbitrary natural number. Then factoring gives
2n*+11n+15= (2n+5)(n+3). Since 2n+5 > 1 and n+3 > 1, we have 2n? + 11n+15
is composite.

Proof: (of number 2 above) Since 3-2 = 6, we see that k = 2 satisfies the given statement.
Example: SCT=VreSxzeT

Instructor’s Comments: This is the 7 minute mark
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Handout or Document Camera or Class Exercise

. . 22 43x—3 __
Example: Prove that there is an x € R such that =575 = 1.

Proof: When z = 2, note that % = ; =1.
Note: : The discovery of this proof is perhaps what is more interesting;:

x> +3x—3

=1 & 2°432x-3=22+3 & 224+2-6=0
2z + 3

and the last equation factors as (z — 2)(z + 3) = 0 and hence z = 2.

Instructor’s Comments: This is the 17 minute mark
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Note: : Vacuously true statements Va € (), P(x). Since there is no element in the empty
set, we define this statement to always be true as a matter of convention.

Example: Let a,b,c € Z. If Ve € Z, a| (bx + ¢) then a | (b+ ¢).

Proof: Assume Vz € Z, a | (bx + ¢). Then, for example, when x = 1, we see that
a| (b(1)+c). Thus a | (b+ c).

Instructor’s Comments: Note: If you’re running short on time, this next
example can be omitted

Example: 3Im € Z such that =L =5,

2m+4
Proof: When m = 3, note that 271::4 = 2(__33;14 = __—120 =5

Instructor’s Comments: This should be the 26-30 minute mark
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Handout or Document Camera or Class Exercise

Example: Show that for each x € R, we have that 2% +4x + 7 > 0.

Instructor’s Comments: For the next two pages, you should give students
say 5 minutes each (maybe more for the second handout) and then take them
up as a class for 5 minutes each

Proof: Let z € R be arbitrary. Then

P dr+T=at+4r+4—4+7
=(z+2)°+3
>0
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Handout or Document Camera or Class Exercise

Sometimes V and 3 are hidden! If you encounter a statement with quantifiers, take a
moment to make sure you understand what the question is saying/asking.
Examples:

2n? + 11n + 15 is never prime when n is a natural number.
If n is a natural number, then 2n? + 11n + 15 is composite.

=L =5 for some integer m.

2m+-4
. m_7 o . .
(iv) 5m=7 = 5 has an integer solution.
Solution:

(i) Vn € N,2n? + 11n + 15 is not prime.

(ii) Vn € N,2n? + 11n + 15 is composite.

)

)
(iii) Im € Z, ;;;Q = 5.
)

(iv) dm € Z, 2%;74 = 5.

Instructor’s Comments: This should be about the 46 minute mark
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Note: : Domain is important!

Let P(z) be the statement 2> = 2 and let S = {\/_, —\/5} Which of the following
are true?

(i) Ir € Z, P(x

)
(i) Vz € Z, P(z)
z)

) (
) (
(iii) 3z € R, P(
(iv) Yz € R, P(x)
(v) 3z € S, P(x)
(vi) Vz € S, P(x)

Solution:

Instructor’s Comments: This is the end of the lecture.

34



Lecture 8
Handout or Document Camera or Class Exercise
Consider the following statement.
{26 :keN}D{neZ:8|(n+4)}
A well written and correct direct proof of this statement could begin with

A) We will show that the statement is true in both directions.

B) Assume that 8 | 2n where n is an integer.

)
)
C) Letme{neZ:8|(n+4)}.
D) Let m € {2k : k € N}.

)

E) Assume that 8 | (2k +4).

Solution: Let me {n€Z:8| (n+4)}.

Instructor’s Comments: This is the 5 minute mark
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Handout or Document Camera or Class Exercise

Notes:

(i)

(i)

(i)

A single counter example proves that (Vx € S, P(x)) is false.
Claim: Every positive even integer is composite.

This claim is false since 2 is even but 2 is prime.

A single example does not prove that (Vz € S, P(x)) is true.
Claim: Every even integer at least 4 is composite.

This is true but we cannot prove it by saying ”6 is an even integer and is composite.”
We must show this is true for an arbitrary even integer x. (Idea: 2 | = so there
exists a k € N such that 2k = z and k # 1.)

A single example does show that (Jz € S, P(z)) is true.
Claim: Some even integer is prime.

This claim is true since 2 is even and 2 is prime.

What about showing that (3x € S, P(x)) is false?

Idea: (3x € S, P(x)) is false = Vo € S, = P(z) is true. This idea is central for proof
by contradiction which we will see later.

Instructor’s Comments: This is the 10-13 minute mark
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Negating Quantifiers Example: Negate the following:

(i) Everybody in this room was born before 2010.

Solution: Somebody in this room was not born before 2010.

(ii) Someone in this room was born before 1990

Solution: Everyone in this room was born after 1990.
(iii) Vo € R, |z| <5

Solution: —(Vz € R, |z| <5)=3Jz € R,|z| > 5
(iv) 3z e R, |z| <5

Solution: —(Jz € R, |z| <5)=Vr € R |z| > 5

Instructor’s Comments: Let them validate the truth of the above state-
ments. This could take you to the 20 minute mark easily

Note: A proof that a statement is false is called a disproof.
Example: Prove or disprove: Let a,b,c € Z. If a | bc then a | b or a | c.

Solution: This is false! A counter example is given by a = 6, b = 2 and ¢ = 3. Then
a|bcBUT 6+2 and 61 3.

Note: It turns out that this is true if you require additionally that a is prime. This is
called Euclid’s Lemma. We'll see a proof of this in 5 weeks. It is actually very nontrivial
to prove.

Instructor’s Comments: Get them to think about the prime condition.
The proof of this requires GCDs in the prime case to the best of my knowledge.
This is the 27 minute mark.
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Handout or Document Camera or Class Exercise

Which of the following are true?

(i) Ve e RVy e Ra® — g2 =11

)

(i) IreR,IJyeR a3 —y3=1

(iii) Vz e R,y e R,a® — 9 =1
)

(iv) IreR,Vy e R,a® — 9 =1

Solution:
(i) False (Choose x =y = 0)
(ii) True (Choose x =1 and y = 0)
(iii) True.
Proof: Let z € R be arbitrary. then choose y = v/2? — 1. Then
= - (V1) =2 - (2 1) =1
(iv) False. Idea: Negate and show the negation is true!
S(FAr eRWeER 2’ — P =1)=Vz e R, Iyc R, 2> —¢* #1

Proof: Let z € R be arbitrary. Take y = 2. Then 2% — 3 = 2% — 23 = 0 # 1.

Instructor’s Comments: This is the 40 minute mark



Handout or Document Camera or Class Exercise
List all elements of the set:

{neZ:n>1AN(meZAm>0Am|n)=(m=1Vvm=n))}Nn{necZ:n|42}

Solution: The first set is the set of all primes. The second set is the set of all divisors of 42,
namely
{£1,42, 43,46, 47, +£14, £21, £42}.

The intersection is therefore {2, 3, 7}.
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Check out http://www.cemc.uwaterloo.ca/~cbruni/Mathl35Resources.php| for symbol
cheat sheets and theorem cheat sheets and other goodies!

Instructor’s Comments: End of class
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Lecture 9

Handout or Document Camera or Class Exercise
Rewrite the following using as few English words as possible.

(i) No multiple of 15 plus any multiple of 6 equals 100.

(ii) Whenever three divides both the sum and difference of two integers, it also divides each
of these integers.

Solution:
(i) Ym,n € Z,(15m + 6n # 100)

(ii)) Vm,n € Z, (3| (m+n)A3|(m—n))=3|mA3|n)

Instructor’s Comments: This is the 10 minute mark
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Handout or Document Camera or Class Exercise

Write the following statements in (mostly) plain English.
(i) Vm € Z,((3k € Z,m = 2k) = (I € Z,Tm* + 4 = 2())

(i) neZ= (Im € Z,m>n)

Solution:
(i) If m is an even integer, then 7m? + 4 is even.

(ii) There is no greatest integer. (Alternatively, for every integer, there exists a greater inte-
ger).

Instructor’s Comments: This is the 20 minute mark
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Contrapositive

Note: Proofs are not always easy to discover. Sometimes you can convert a given problem to

an easier equivalent problem.
Example: 7{n=14tn=14|n="7|n
Definition: The contrapositive of H = C is -C = —H.

Note: H = C = —C = —H. This follows since

H=C=-HvC(C
=CV-H
=-(-C)V-H
=-C=-H
or by using a Truth table
H|C| H=C|-C|—-H|-C=-H
T | T T F F T
T|F F T F F
F|T T F T T
F|F T T T T

Since the third and sixth columns are equal, their headings are logically equivalent.

Instructor’s Comments: This is the 32-37 minute mark
Example: Let z € R. Prove 23 — 522 + 3z # 15 = x # 5.
Proof: We prove the contrapositive. Let x = 5. Then

23 — 522 + 3z = (5)3 — 5(5)% 4 3(5)
=5 55415
= 15.

Example: Suppose a,b € R and ab € R — Q (the set of irrational numbers). Show either

a€ER—-—QorbeR—-Q.

Proof: Proceed by the contrapositive. Suppose that a is rational and b is rational.

dk, ¢, m,n € Z such that a = % and b= "2 with £,n # 0. Then
ab = l}—:’: eQ
as required.

Instructor’s Comments: This is the 50 minute mark.
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Lecture 10

Handout or Document Camera or Class Exercise

Example: Prove that if 2 € R is such that 2 + 722 < 9, then < 1.1.

Proof: We prove the contrapositive. Suppose that z > 1.1 > 1. Then

2?4 72? > (1.1)3 + 7(1.1)2

(MY (Y
—\ 10 10

_ 131 <121> 1331 + 8470
1000 100 1000

9801

1000

>9

as required.

Instructor’s Comments: This is the 10 minute mark
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Types of Implications

Let A, B, C be statements.

(i) (AA B) = C These we have seen in say Divisibility of Integer Combinations or Bounds
by Divisibility.

(i) A= (BAC).
Example: Let S,T,U be sets. If (SUT) C U, then SCU and T CU.

Proof: Suppose SUT CU. If x € S, then x € SUT CU. Thus x € U. Thus, S CU.
By symmetry (or similarly), 7" C U. ]

Instructor’s Comments: Here you can make note of the use of the word ‘sim-
ilarly’. It should be used sparingly and only when the argument is truly
identical.

(iii) (AVB)=C
Example: (z=1Vy=2)= 2%y +y— 22? + 4z — 22y = 2

Proof: Assume that (x =1V y = 2). Then one of these two values is true. If z = 1, then

LHS = 2%y 4+ y — 222 + 4z — 2zy
= (?y+y—2(1)> +4(1) —2(1)y
=y+y—2+4-2y
=2
= RHS.

If instead y = 2, then

LHS = 2%y 4+ y — 222 + 4z — 2xy
= 22(2) + (2) — 22% + 4z — 22(2)
=202 +2 — 227 + 4x — 4x
=2
= RHS.

completing the proof. [ |

(iv) A= (BVC). (Elimination)
Example: If 22 — 72+ 12> 0then z <3Vaz > 4.

Proof: Suppose 22 — 7z +12 > 0 and > 3. Then 0 < 22 — 7o + 12 = (v — 3)(z — 4).
Now, x — 3 > 0 and so we must have that x — 4 > 0. Hence z > 4.

Instructor’s Comments: This is the 25-30 minute mark
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Handout or Document Camera or Class Exercise

How many years has it been since the Toronto Maple Leafs have won the Stanley Cup?

A) -3

B) 49

C) 1000000
D) 1500

Instructor’s Comments: Argue that many answers are ridiculous and so only
the plausible answer remains. Change the second answer to (current year - 1967).
You could also introduce contradiction by using a sudoku board which can be fun.
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Proof by contradiction
Let S be a statement. Then S A =S is false.

Instructor’s Comments: Mention we sometimes use # to denote a contradiction
has been reached.

Example: There is no largest integer.

Proof: Assume towards a contradiction that My is the largest integer. Then, since My < My+1
and My + 1 € Z, we have contradicted the definition of My. Thus, no largest integer exists. W

Instructor’s Comments: This is the 32-37 minute mark
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Handout or Document Camera or Class Exercise
Instructor’s Comments: The following is an example of reading proofs and seeing
the difference between the direct proofs and proofs by contradiction.
Example: Let n € Z such that n? is even. Show that n is even.
Direct Proof: As n? is even, there exists a k € Z such that
n-n=n?=2k.

Since the product of two integers is even if and only if at least one of the integers is even, we
conclude that n is even.

Proof By Contradiction: Suppose that n? is even. Assume towards a contradiction that
n is odd. Then there exists a k € Z such that n = 2k + 1. Now,

n? = (2k 4+ 1)% = 4k? + 4k + 1 = 2(2k* + 2k) + 1.

Hence, n? is odd, a contradiction since we assumed in the statement that n? is even. Thus n is
even.

Instructor’s Comments: This is the 40 minute mark.
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Instructor’s Comments: It should be noted that the Well Ordering Principle is
not officially in the Math 135 curriculum. Since it is an easier to understand form
of Mathematical Induction, I’ve chosen to include it.

Axiom Well Ordering Principle (WOP). Every subset of the natural numbers that is nonempty
contains a least element.
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Handout or Document Camera or Class Exercise

Instructor’s Comments: It’s conceivable that you might want to write out the
first proof and then display the other two proofs. Feel free to ignore these proofs
as well. T do however recommend the first one.

Example: Prove that V/2 is irrational.

Proof: Assume towards a contradiction that v/2 = 7 € Q with a,b € N (Think: Why is it
okay to use N instead of Z7).

Proof 1: Assume further that a and b share no common factor (otherwise simplify the
fraction first). Then 2b> = a%. Hence a is even. Write a = 2k for some integer k. Then
20? = a? = (2k)? = 4k? and canceling a 2 shows that b2 = 2k%. Thus b? is even and hence b is
even. This implies that a and b share a common factor, a contradiction.

Proof 2 (Well Ordering Principle): Let
S={neN:nv2ecN}.

Since b € S, we have that S is nonempty. By the Well Ordering Principle, there must be a least
element of S, say k. Now, notice that

k(V2-1)=kvV2—-keN
(positive since v/2 > /1 = 1). Further,
k(V2 - 1)V2 =2k - kvV2 €N

and so k(v/2 — 1) € S. However, k(v/2 — 1) < k which contradicts the definition of k. Thus, v/2

is not rational.

Proof 3 (Infinite Descent): Isolating from v/2 = %, we see that 2b? = a?. Thus a? is even
hence a is even. Write a = 2k for some integer k. Then 2b* = a? = (2k)? = 4k?. Hence b* = 2k>
and so b is even. Write b = 2¢ for some integer £. Then repeating the same argument shows that
k is even. So a = 2k = 4m for some integer m. Since we can repeat this argument indefinitely
and no integer has infinitely many factors of 2, we will (eventually) reach a contradiction. Thus,
V/2 is not rational.

Instructor’s Comments: If you do all three proofs, notice that the simple proof
and the infinite descent proofs are similar.
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Lecture 11

Uniqueness
Definition: 3! means “There exists a unique”.
Note: To prove uniqueness, we can do one of the following:
(i) Assume Jz,y € S such that P(x) A P(y) is true and show = = y.

(ii) Argue by assuming that 3x,y € S are distinct such that P(z) A P(y), then derive a
contradiction.

To prove uniqueness and existence, we also need to show that Jx € S such that P(z) is true.
Example: Suppose z € R —Z and m € Z such that x < m < x 4+ 1. Show that m is unique.
Proof: Assume that Im,n € Z such that

r<m<x+1 and r<n<z+1

Look at the value m — n. This value is largest when m is largest and n is smallest. Since
m < x+ 1 and n > x, we see that m — n < 1. Further, for this to be minimal, we could flip the
roles of m and n above to see that —1 < m —n. Thus —1 <m —n < 1 and m — n € Z. Hence
m —n = 0, that is m = n.
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Handout or Document Camera or Class Exercise
Let f(x) be the function defined by

f:(0,00) = (0,00)

T 2
Prove for all y € (0, 00) there exists a unique xz € (0,00) such that f(z) =y

Instructor’s Comments: Some things to note: This is the first time students
will realize that in order to properly define a function, a function has a domain and
codomain that are given. Note that the range is the set of all values the domain
maps into. The codomain might actually be larger than the range. They have not

seen this notation before so you’ll be wise to explain to them that this is the same
as f(x) = 2.

Proof: Existence. For each y € (0,00), let = /y. Then

Uniqueness. Suppose that there exists a, b € (0, 00) such that

fla) = f(b)
a? = b?
|a| = [0]
and since a,b > 0, we have that a = b. |

Instructor’s Comments: Use this as a lead in to Injections and Surjections. This
is the 15 minute mark.
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Injections and Surjections

Definition: Let S and T be sets. A function f:.S — T is said to be

(i) Injective (or one to one or 1: 1) if and only if
Ve,y €5, f(z) = fly) =z =y
(ii) Surjective (or onto) if and only if

Vy € T 3x € S such that f(z) =y

Example: A function that is one to one but not onto:

S T

Example: A function that is onto but not one to one:

S 1

Example: Prove

fR—=>R

Tz’

is not injective.
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Proof: Notice that

but —1 # 1. |
Instructor’s Comments: Emphasize that this is the negation of the definition
above. Disproving a for all means finding a counter example.

Example: Prove

fR—>R
z 223+ 1

is one to one.
Proof: Let z,y € R such that f(z) = f(y). Then

200 +1 =22 +1

2=y
3 — 3/y3
T=y
Thus f is injective. n

Example: Prove

f:R = (—00,1)
zr—1—e"
is onto.

Proof: We need to show that every y € (—oo, 1) has some x € R with f(z) =y.

Discovery:
1—e =y
et=1—y
—zx=In(1—-vy)

x=—1In(l—-1y)

Formal proof: Take x = —In(1 — y) for any y € (—o0,1). Notice that this is well defined
since In(1 — y) is defined on (—o0, 1). Then

fla)=1-e7"

— 1 _ e (=I(1-y)

=1 — (1-y)
=1-(1-y)
=Y
Therefore, f is an onto function. |

Instructor’s Comments: This is the 35-40 minute mark.

Division Algorithm
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This is just like grade school division. For example, 51/7 can be written as:
51 ="17(7)+2
where a =51, b =7, ¢ =7 and r = 2. Similarly, —35/6 can be written as
—-35=6(—6)+1

where a = —35, b=6, g = —6, and r = 1.
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Handout or Document Camera or Class Exercise

Theorem: (Division Algorithm) Let a € Z and b € N. Then 3lg,r € Z such that a = bg + r
where 0 < r < b.

Proof: Existence: Use the Well Ordering Principle on the set
S={a—bg:a—bg>0ANqeEL}
Uniqueness:

Suppose that a = ¢1b + r1 with 0 < r; < b. Also, suppose that a = ¢2b + 19 with 0 < ry < b
and 1 # ro. Without loss of generality, we can assume r; < 79.

Instructor’s Comments: Introduce the acronym WLOG. Explain that if two
integers are not equal, then one must be bigger than the other and the proof is
symmetric depending if r; < ry or ro < 7

Then 0 <7y —r1 < band (¢ —q2)b =192 —71.

Instructor’s Comments: Take the difference of the two a values. Given that
0 <rq,79 < b, the biggest value of ro — r is b.

Hence b | (72 — r1). By Bounds By Divisibility, b < 7o — r; which contradicts the fact that
rg —r1 < b.

Instructor’s Comments: This is a contradiction. Notice that we don’t need |[b|
as in (BBD) since b € N.

Therefore, the assumption that 1 # ry is false and in fact r; = ro. But then (¢1 — ¢2)b =
ro — r1 implies q1 = ¢o.

Instructor’s Comments: This is the 50 minute mark. Note you could leave
the division algorithm for extra reading if you’d like and replace it by an example
with a negative number. If you have time, I’"d recommend digesting the Division
algorithm proof carefully. If you’re really ahead try the following:

Define a line to be the set of points (z,y) satisfying y = mz + b for some m,b € R.
Show that if two lines have distinct slopes (m values) and that they intersect, then
this solution is unique.
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Lecture 12

Handout or Document Camera or Class Exercise

Let n € Z. Consider the following implication.
If(VxeR, <0V x+4+1>n), thenn=1.

The contrapositive of this implication is

) If n=1,then (Vx eR, <0 V z+1>n).
) Ifn=1,then (3zeR, >0 A z+1<n).
C) Ifn#1,then (Jz eR, >0 A z+1<n).
) Ifn#1,then (Vx €eR, x <0 V x+1>n).
)

None of the above.

Solution: None of the above (Watch the inequality signs above!).

Instructor’s Comments: This is the 5 minute mark. You will likely want to
repoll the students (when I first gave this problem, many of my students got this
wrong).

o7



Instructor’s Comments: This is a catch up lecture where if anything form the
previous lectures took too long, then you can use this lecture to catch up. The only
thing I would do in this lecture is show them sigma notation which I will do first
and then give the class a lot of time to do practice problems.

Introduction to Summations
Example: Tower of Hanoi:

In this modified version of the Tower of Hanoi, we create a tower with levels where each level
is a cylinder of height 1 and increasing radius begining with 1 and increasing by 1 at each level.
Below is a level 4 Tower of Hanoi

Question: What is the volume of the 4 level Tower of Hanoi?
Solution:

Viower = V1 +Va+ V3 + V)
— m(1)2(1) + 7(2)2(1) + 7(3)2(1) + 7(4)2(1)
=m+47 + 97 4 167
=307

Question: What about computing the volume of the 100 level Tower of Hanoi?
Solution:

VTower = Vl + V2 + ...+ VlOO
= 7(1)%(1) + 7(2)%(1) + ... + 7(100)(1)
=7+ 4m + ... + 100007

Note: There are two concerns here. How do we evaluate this last sum? How to we write the
above sum nicely and more formally without using dots?

Instructor’s Comments: This is the 10 minute mark.
Sigma and Pi Notation

Definition: Let {ay,...,a,} be a sequence of n real numbers. We write

n
Zai =a1+ag + ... +ap.

i=1
We call ¢ the index variable, 1 is the starting number, n is the upper bound. We can also write
> @
zeS

to mean the sum of elements in S.

28



Instructor’s Comments: Make sure you discuss the := symbol.

Similarly, we define

n
Hai = a1a9...ap H = Product of elements in S
i=1 €S

We make the following conventions when j > k are integers (that is, the start index exceeds the

end index)
k
DI
i=j

zel)

and further,

k
Hai:H:1
i=j

el

Note: Sums are linear:

k k k
For ¢,j,k € Z, E (caij:bi):cg aiig b;
i=j i=j i=j

Example:

4
(1) Y ?=1)2+(2°+ G+’ =1+4+9+16 =30
=1

4
(i) [ = 10*2)7%3)*@)? = (1)(4)(9)(16) = 576
i=1
3.5
(i) » i=1+2+3=6
i=1
2k
(iv) For k € N fixed, » 1/i =1/k+1/(k+1)+ ... + 1/(2k).
i=k
100 100
(v) So we can write the 100 level tower of Hanoi volume as Z it =7 Z i2
i=1 i=1

n

Definition: We define the factorial notation for n > 0 an integer by n! := H i. Note 0! = 1.
i=1

Example: 4! = (4)(3)(2)(1) = 24.

Note: We will see next week how to compute the sum in our volume computation of the 100
level Tower of Hanoi.

Instructor’s Comments: This is the 25-30 minute mark
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Handout or Document Camera or Class Exercise

Instructor’s Comments: I suggest letting students work on these and either
getting them to write solutions on the board or at least telling you which ones they
want to see solved.

Try some of the following problems:
e min{a,b} < %2 for all real numbers a and b.

e Let = be real. Then 22 — x > 0 if and only if z ¢ [0, 1].

If r is irrational, then % is irrational.

There do not exist integers p and ¢ satisfying p? — ¢* = 10.

The complete real solution to 22 + y? — 2y = —1is (x,y) = (0, 1).

e Let S and T be sets with respect to a universe U. Prove that SNT C SUT.

Let a,b,c € Z. Prove that if atb and a | (b+ ¢), then a { c.

Instructor’s Comments: Hints in order
(i) Direct proof with cases

(ii) iff, contrapositive

(iii) contrapositive

(iv) contradiction

(v) factor

(vi) set inclusion

(vii) contrapositive and elimination.
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Solution:

e Let a,b € R. Without loss of generality, suppose that @ < b. Then 2min{a, b} = 2a < a-+b.
Hence min{a,b} < %

e Let z be real. Then

>0 2(z—-1)>0

Sr>0ANz—-1>00rz<0Az—-1<0
Sr>lorx <0
<z ¢ [0,1].
e We proceed by the contrapositive. If % is rational, say % = ¢ with a,b € Z and b # 0,
thenrzge(@.

e Assume towards a contradiction that there exists integers p and ¢ satisfying p? — ¢% = 10.
Without loss of generality, we may assume that p,q > 0 since p? = (—p)? so if (p,q) is
a solution, then all of (+p, +¢) are solutions. Factoring gives (p — q)(p + ¢) = 10. Since
p—+q > 0, we have that p—¢q > 0. Since p—¢q < p+ ¢, we see that p—¢ =1 and p+¢ =10
orp—q=2and p+ ¢g=>5. Adding the two equalities gives 2p = 11 and 2p = 7, both of
which are a contradiction since p is an integer.

Instructor’s Comments: The previous problem can also be solved by a parity
argument.

e Isolating and factoring gives 22 + (y — 1)2 = 0. Hence x = 0 and y = 1.

e Suppose that x € SNT. We are required to show that + € S UT. By definition,
x€U—(SNT) and hence z € U and x ¢ SNT. Thus, if x € T, then x ¢ S and so
x € S. Otherwise, x € T' and hence x € T. Thus, x € SUT.

e We prove the contrapositive. Suppose that a | ¢. Then we need to show that a | b
or a {1 (b+ ¢). By elimination, we may assume that a | (b + ¢) (otherwise a 1 (b + ¢)
and the conclusion is true). Now, a | ¢ and a | (b + ¢) and so by Divisibility of Integer
Combinations, we have that a | ¢(—1) + (b+ ¢)(1) and hence a | b.
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Lecture 13

Principle of Mathematical Induction (POMI)
Axiom: If sequence of statements P(1), P(2), ... satisfy
(i) P(1) is true
(ii) For any k € N, if P(k) is true then P(k + 1) is true
then P(n) is true for all n € N.

Instructor’s Comments: Here describe the domino analogy. Explain that you’re
creating a chain of implications P(1) = P(2), P(2) = P(3), and so on and you want
the chain to begin.

In practice, these arguments proceed as follows:

(i) Prove the base case, that is, verify that P(1) is true

)
(ii) Inductive hypothesis: Let k € N be an arbitrary number. Assume that P(k) is true.
(iii) Inductive conclusion. Deduce that P(k + 1) is true.

)

(iv) Then conclude by the Principle of Mathematical Induction (POMI) that P(n) holds

Instructor’s Comments: Emphasize the for some part in the IH step. Note also
that the induction proof needn’t start at 1 (it could start at 0 or —1 etc.)

Example: Prove that

22 n+1(2n—|—1)

for all n € N.

Proof: Let P(n) be the statement that

Z 9 n+1)(2n+1)

holds. We prove P(n) is true for all natural numbers n by the Principle of Mathematical
Induction.

(i) Base case: When n =1, P(1) is the statement that

This holds since

(ii) Inductive Hypothesis. Assume that P(k) is true for some k € N. This means that

b k(R4 1)(2k+1)
S = MR UEREL)

=1
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(iii) Inductive Step. We now need to show that

k+1

k+D((E+D)+1D)2Kk+1)+1)
Z ? = 6 )

=1

To do this, we will start with the left hand side, reduce to the assumption made in the
inductive hypothesis and then conclude the right hand side.

k+1

LHS =) i
=1
k
= ZiQ + (k +1)?

(k: +1)(2k + 1)

+ (k+ 1) Inductive Hypothesis

kE(2k + 1)

=(k+1) +k+1>

(e
(2
a

2k2+7k+6>

(k+1)(k + 2)(2k + 3)
6
= RHS

Hence,

ZQ n+1(2n+1)

is true for all natural numbers n by the Principle of Mathematical Induction. |

Instructor’s Comments: It is important to note where you used the inductive
hypothesis!
Note: Now, we can finally solve the Tower of Hanoi example for the 100 level tower:

100

V;fower = Z ‘/z

(?50)(101)(2(100) +1)
6

= 3383507

Instructor’s Comments: This could easily be 25-30 minutes of your lecture. The
rest of the time is spent doing examples:

Handout or Document Camera or Class Exercise
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Prove that

Zn:i: n(n+1)

holds for all natural numbers n.

Solution:

(i) Base case:
n

D(1+1 )
ma >_1_;Z_

(ii) Inductive Hypothesis. Assume that

k

Zi _ k(k+1)
Lot 2
=1
holds for some k € N

(iii) Inductive step. For k + 1,

k+1 k

i=> i+ (k+1)
i=1 i=1
k(k+1
= (;_) +(k+1) Inductive Hypothesis

=(k+1)(E+1)
(k+1)(k+2)
B 2
Therefore, the claim holds by the Principle of Mathematical Induction for allm € N. W

Instructor’s Comments: This is the 40 minute mark
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Instructor’s Comments: An example where we don’t start at 1
Example: Prove that n! > 2" for all n € N with n > 4.
Proof: We proceed by mathematical induction.
(i) Base case: When n = 4, notice that 4! = 24 > 16 = 2% so the inequality holds in this case.
(ii) Inductive Hypothesis: Assume that k! > 2¥ for some k € N with k > 4.

(iii) Inductive Step: Notice that

(k+1)! = (k + 1)k!

> (k4 1)2" Inductive Hypothesis
> (1+1)2% Since k>4 > 1
_ 2k+1

Thus, the conclusion holds for all £ € N with £ > 4 by the Principle of Mathematical
Induction. |
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Handout or Document Camera or Class Exercise
Examine the following induction “proofs”. Find the mistake
Question: Foralln e N, n >n+ 1.

Proof: Let P(n) be the statement: n > n + 1. Assume that P(k) is true for some integer
k > 1. That is, k > k + 1 for some integer k > 1. We must show that P(k 4+ 1) is true, that is,
k41> k+ 2. But this follows immediately by adding one to both sides of k£ > k + 1. Since the
result is true for n = k£ 4 1, it holds for all n by the Principle of Mathematical Induction.

Instructor’s Comments: No base cases!
Question: All horses have the same colour. (Cohen 1961).
Proof:

Base Case: If there is only one horse, there is only one colour.

Inductive hypothesis and step: Assume the induction hypothesis that within any set of
n horses for any n € N, there is only one colour. Now look at any set of n + 1 horses. Number
them: 1,2,3,...,n,n+ 1. Consider the sets {1,2,3,...,n} and {2,3,4,...,n+ 1}. Each is a set of
only n horses, therefore by the induction hypothesis, there is only one colour. But the two sets
overlap, so there must be only one colour among all n 4+ 1 horses.

Instructor’s Comments: However, the logic of the inductive step is incorrect
for n = 1, because the statement that ”the two sets overlap” is false (there are only
n + 1 = 2 horses prior to either removal, and after removal the sets of one horse
each do not overlap. This is the 50 minute mark
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Lecture 14

Handout or Document Camera or Class Exercise

Instructor’s Comments: In this lecture, you might want to consider giving a
midterm survey of your teaching.

Prove P(n) : 6 | (2n3 + 3n% + n) holds ¥n € N.

Solution:
(i) Base case
2n° +3n°+n=2+3+1=6
and 6 | 6. Hence P(1) is true.

(ii) Inductive Hypothesis. Assume P(k) is true for some k € N, that is, 3¢ € Z such that
60 = 2k3 + 3k* + k.

(iii) Inductive Step: Prove that P(k + 1) is true.

2k + 1% +3(k+ 1) + (k+ 1) = 2k* + 6k*> + 6k + 2+ 3k> + 6k + 3+ k + 1
= (2k3 + 3k* + k) + 6k + 12k + 6
=60+ 6(k*+2k+1) IH
=6(0+ (k+1)%)
Hence, 6 | 2(k 4+ 1)3 +3(k + 1)2 + (k + 1). Thus P(k + 1) is true. Hence by the Principle
of Mathematical Induction, we have that P(n) is true for all n € N. [ |

Instructor’s Comments: This is the 10 minute mark
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Handout or Document Camera or Class Exercise

Instructor’s Comments: This illustrates the need for something “stronger” than
induction.

Let {z,} be a sequence defined by z1 = 4, xo = 68 and

Ty = 2Zm—1 + 15249 for all m > 3

Prove that z,, = 2(—=3)" 410 - 5" for n > 1.
Solution: We proceed by induction.

Base Case: For n = 1, we have

1 =4=2(-3)"+10-5° =2(=3)" + 10 - 5" L.

Inductive Hypothesis: Assume that
z = 2(=3)" +10- 551
is true for some k € N.
Inductive Step: Now, for k + 1,

Trr1 = 2z + 15251 Only true if k£ > 2!
= 2(2(=3)F +10- 5571 + 1525,

= 4(=3)* +20- 5" + 1525,
2

Instructor’s Comments: This is the 15 minute mark
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Principle of Strong Induction (POSI)

Axiom: If sequence of statements P(1), P(2), ... satisfy
(i) P(1)AP(2) A...A P(b) are true for some b € N
(ii) P(1) A P(2) A ... A P(k) are true implies that P(k + 1) is true for all £k € N

then P(n) is true for all n € N.

Note: This is equivalent in strength to the Principle of Mathematical Induction and to the
Well Ordering Principle!

Question: Let {z,} be a sequence defined by z1 = 4, x9 = 68 and
T = 28m—1 + 15240 for all m > 3
Prove that z,, = 2(—3)" +10-5""! for n > 1.
Solution: We proceed by strong induction.
Base Case: For n = 1, we have
1 =4=2(-3)"+10-5° =2(=3)" + 105" 1.
For n = 2, we have xo = 68 and

2(—3)2+10-5%71 =18 + 50 = 68.

Inductive Hypothesis: Assume that
z; =2(=3)" +10- 51
is true for all i € {1,2,...,k} for some k € N and k > 2.
Inductive Step: Now, for k+ 1,

Tkt1 = 27 + 15x)—1 Valid since k& > 2
=2(2(=3)F + 105571 +15(2(=3)* ! + 10 5572)
= 4(=3)% +20- 51 +30(—3)F 1 + 150 - 5*2
= —12(=3)F"1 +100 - 572 4+ 30(—3)F ! + 150 - 5F 2
= 18(—3)F 1 4250 - 52
=2.(=3)2(=3)*1 41052582
=2(=3)F*1 £ 10. 5%

Hence, 41 = 2(—3)*1 410 - 5*. Thus, by the Principle of Strong Induction, we have that
Ty =2(=3)"+10-5""! for all n > 1. [ |

Instructor’s Comments: This is the 40 minute mark
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Handout or Document Camera or Class Exercise

Instructor’s Comments: I would make them do half of this example - say the
base cases and the inductive hypothesis

Suppose 1 = 3, x9 = 5 and for all m > 3,
Ty = 3Tm—1 + 2Tm—2.

Prove that x,, < 4™ for all n € N.

Proof: Let P(n) be the given statement. We prove P(n) by strong induction.
(i) Base cases: P(1) is true since 1 = 3 < 4 and P(2) is true since 7o = 5 < 16 = 42.

(ii) Inductive Hypothesis: Assume that P(i) is true for all ¢ € {1,2, ..., k} for some k € N with
k> 2.

(iii) Inductive Step. For k > 2, we have
Tkl = 3Tk + 271 Valid since k+1 >3
< 3.4k 2. 4k1
< 413442
= 4F1(14)
< 4k1(16)

Hence P(k + 1) is true and thus P(n) is true for all n € N by the Principle of Strong
Induction.
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Fibonacci Sequence Definition: Define a sequence by fi =1, fo =1 and
fn=fn-1+ fano For all n >3
so f3 =2, fs =3, fs =5, and so on.
Note: For a cool link between this sequence and music, check out Tool - Lateralus on Youtube!

Instructor’s Comments: This is the 50 minute mark
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Lecture 15

Instructor’s Comments: If you did the surveys, you could go over them at the
beginning

Handout or Document Camera or Class Exercise
Fibonacci Sequence Definition: Define a sequence by f; =1, fo =1 and
fn = fn—1+ fn-2 For alln >3

so f3 =2, fy =3, fs =5, and so on.

(i) Prove that Y " f? = fufot1 for all n € N.

r=1

(ii) Prove that f, < (1)" for all n € N.

Solution: We prove only the first one. The second can be found on the Math 135 resources
page

http://www.cemc.uwaterloo.ca/~cbruni/Math135Resources. php

(i) Base case: n =1
LHS =Y f7
r=1

1
=D F7
r=1

= f
=12
=1

and

RHS = fufpt1 = fifo = (1)(1) =1 = LHS

(ii) Inductive Hypothesis. Assume that

k
S fE = frfen

r=1
holds for some k£ € N.
(iii) Inductive Step. We want to show that

k+1

7= ferafrro
r=1
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http://www.cemc.uwaterloo.ca/~cbruni/Math135Resources.php

We begin with the left and proceed towards the right

k+1

LHS =) f7
r=1

k
= Z ff + fl?-s—l
r=1
= frefrs1 + f,§+1 Induction Hypothesis
= frt1(fk + fr+1)
= fr+1fr12 By definition of Fibonacci Sequence

= RHS

n
Hence Z f,? = fnfns1 for all n € N by the Principle of Mathematical Induction. |

r=1

Instructor’s Comments: This easily is the 20-30 minute mark. Students might
struggle with the notation.
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Definition: Closed form: “Easy to put into a calculator” (This is not a formal definition!)

Example: Find a closed form expression for

where n > 2 and prove it is correct by induction.
Proof: We begin with some guessing and napkin (discovery) work.

P—21 ) ST R .
> =1 2) T\ T2 T i

n-f1(e-3)-(-3)
A1)

Claim: P5 = % and in general P, = "TJ;I for all n > 2. We prove this by induction.

7 N N
—
|
Q=
~
N
—_
|
| =
~_
|
—
—_
|
IS
SN—
—~
—_
|
Ol
N—
S
—
|
Sl
SN—
|
IN[oV]
©loo
)—“)—l
ol
oolet

(i) Base case: n =2
2 1 1
— — _ 1 _ 3 _ ntl
PQ_H<1_T2>_ <1_22>— 1717
r=2
(ii) Inductive Hypothesis. Assume that P(k) is true for some k£ > 2 and k € N, that is, assume
T(1-l)-ktt
r2) 2k
r=2

(iii) Inductive Step. We want to show that

’ﬁ LAYk 41 k2
s r2)  2k+1)  2k+2

We proceed starting from the left.

k+1 1
LHS = H (1 - 7’2>

= . Inductive Hypothesis

2k (k+1)2
_k+1 K2 +2k
T 2%k (k+1)2
k41 k(k+2)
T 2%k (k+1)?
k42
C2(k+1)
= RHS
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Therefore, by the Principle of Mathematical Induction, we have that

_ n+l
P” — 2n

for all n > 2.

Instructor’s Comments: This is the 50 minute mark.
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Lecture 16
Handout or Document Camera or Class Exercise

A statement P(n) is proved true for all n € N by induction.

In this proof, for some natural number &k, we might:

A) Prove P(1). Prove P(k). Prove P(k + 1).

B) Assume P(1). Prove P(k). Prove P(k + 1).

. Prove P(k + 1).
D) Prove P(1).

) ) )
) ( (K)-

C) Prove P(1). Assume P(k).
) ). Assume P(k). Assume P(k +1).
) ( (K)-

E) Assume P(1). Prove P(k). Assume P(k + 1).

Solution: Prove P(1). Assume P(k). Prove P(k + 1).

Instructor’s Comments: This is the 5 minute mark.
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Instructor’s Comments: This is the last induction example - something slightly
different.

Prove that an m x n chocolate bar consisting of unit squares can be broken into unit squares
using
mn — 1

breaks.

Instructor’s Comments: Mention below that the base case should be formally
proven using induction but that we want. It will help to draw pictures as well. This
is the first time that an induction question has two variables.

Proof: Let m € N be fixed. We proceed by induction on n.

Base Case: When n = 1, we have an m x 1 chocolate bar. This requires m — 1 breaks to
get m unit squares (can prove formally by induction).

Inductive hypothesis: Assume that an m x k chocolate bar can be broken into unit squares
using mk — 1 breaks for some k € N.

Inductive step: For an m x (k+ 1) sized chocolate bar, we see that by breaking off the top
row, gives a m X 1 sized chocolate bar and a m X k sized chocolate bar. The first we know can
be broken into unit squares using m — 1 breaks (this was the base case) and the latter can be
broken into unit squares using mk — 1 breaks via the induction hypothesis. Hence, the total is

l+m—-14mk—1=m(k+1)—-1
as required. Hence, the claim is true for all n € N by the Principle of Mathematical Induction.

Instructor’s Comments: Again it helps to draw a picture above. We finish
induction with the Fundamental Theorem of Arithmetic. Technically we can’t prove
it now but I will prove it up to Euclid’s Lemma. This basically marks the midterm
exam line in Fall2015 and Winter 2016.

Instructor’s Comments: What you might want to do is do the following proof
more informally and then return to it at the end of the term after more mathemat-
ical maturity has been developed and then redo this proof.

Theorem: (Euclid’s Lemma [PAD - Primes and Divisibility]) Suppose a,b € Z and p is a
prime number. Show that if p | ab then p | a or p | b.

Corollary: (Generalized Euclid’s Lemma) Suppose a1, as, ..., a, € Z and p is a prime number.
Show that if p | ajas...a, then p | a; for some integer 1 < i < n.

Note: The proof of this lemma will be delayed until after we do some techniques through
greatest common divisors. For now we will take this for granted and prove our first major
theorem of the course. The generalization follows immediately.

Theorem: (Fundamental Theorem of Arithmetic) (UFT)

Every integer n > 1 can be factored uniquely as a product of prime numbers, up to reordering.
Note: Prime numbers are just the product of a single number.
Proof: Existence.

Assume towards a contradiction that not every number can be factored into prime numbers.
Let n be the smallest such number (which exists by WOP). Then either n is prime, a contradic-
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tion, or n = ab with 1 < a,b < n. However, since a,b < n, the numbers a and b can be written
as a product of primes (since n was minimal). Thus n = ab is a product of primes, contradicting
the definition of n.

Uniqueness

Assume towards a contradiction that there exists a natural number n > 1 such that

n=pip2..-Pk = 4q142-.-9m

where each p; and ¢; are primes (not necessarily distinct) and further assume that this n is
minimal (WOP). By definition, p; | n = q1¢2...¢m. Hence, by the generalized Euclid’s Lemma,
we see that py | ¢; for some 1 < j < m. Hence, since p; and ¢; are prime numbers, we have that
p1 = gj. Without loss of generality, we may reorder the primes g; so that g; is the first prime,
that is, p1 = q1. Canceling out these primes gives

No :=p2..pk = @2---4m

Now Ny < n and so, the above representations must be equal up to reordering by the minimality
of n. Hence, k = m and we may reorder so that

De = qe forall2<¢<k

Multiplying Ny by p1 shows that the two representations of the factorizations of n are the same
up to reordering. This contradicts the existence of n hence all numbers can be written uniquely
as a product of primes up to reordering of primes.

Instructor’s Comments: This is a difficult proof. I would advise taking some
time and really going through it. If you’re lucky this will take you to just the 50
minute mark.
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Lecture 17

Theorem: (Euclid’s Theorem) (INF P) There exists infinitely many primes.

Proof: Assume towards a contradiction that there exists finitely many primes, say pi, p2, ..., Pn.
Consider the number

n
N:1+sz‘
=1

By the Fundamental Theorem of Arithmetic (UFT), N can be written as a product of primes.

In particular, there exists a prime p | N by the Generalized Euclid’s Lemma. Since we have
n

H p;, we conclude
i=1

only finitely many primes, p = p; for some 1 < i < n. Since p | N and p

by Divisibility of Integer Combinations that

SRON

This is a contradiction since no prime divides 1 (you could use Bounds by Divisibility since
primes are bigger than 1). Hence, there must be infinitely many primes. |

p

To complete the gaps in the previous proofs, we need to talk about the two forms of Euclid’s
Lemma. To do this, we will need to talk about greatest common divisors and more importantly,
Bézouts Lemma.

Instructor’s Comments: This is the 7-10 minute mark
Greatest Common Divisors

Instructor’s Comments: Arguably, this is the toughest portion of the course.
These arguments for gcds are often tricky and counter intuitive and take a bit of
practice before mastering.

As an exercise, let’s list the divisors of 84:
+1,+2, 43,44, +6,+7,+12, +14, +21, +28, +42, +81
Divisors of 120:
11,42, 43, 44, +£5, 46, £8, £10, £12, +15, £20, £24, +30, =40, £60, +120

Hence the greatest common divisors of 84 and 120 is 12.

Definition: The greatest common divisors of integers a and b with a # 0 or b # 0 is an integer
d > 0 such that

(i) d|aand d|b
(ii) If ¢ | a and ¢ | b, then ¢ < d
We write d = ged(a, b).
Note:
(i) ged(a,a) = |a| = ged(a, 0)
(ii) Define ged(0,0) = 0. Note that ged(a,b) =0 a=0b=0

(iii) Exercise: gcd(a,b) = ged(b,a)

Instructor’s Comments: This is the 20 minute mark
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Handout or Document Camera or Class Exercise

Example: Prove that ged(3a + b, a) = ged(a, b) using the definition directly.

Proof: . Let d = gcd(3a+b,a) and e = ged(a,b). Then by definition, d | (3a+0b) and d | a. By
Divisibility of Integer Combinations,

d|(3a+0b)—3a=0>
Since e is the maximal divisor of ¢ and b, we have that d < e.

Now, since e | a and e | b, Divisibility of Integer Combinations gives us that e | (3a + b).
Since d is maximal, e < d. Hence d = e. |

Instructor’s Comments: This is the 30 minute mark
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Claim: gcd(a,b) exists.
Proof: Suppose that a # 0 or b # 0. Clearly 1| a and 1 | b so a divisor exists.

To show there is a greatest common divisor, it suffices to show that there is an upper bound
on common divisors of a and b. If d is a positive integer such that d | a and d | b, then Bounds
by Divisibility states that d < |a| and d < |b|. Hence,

1 < d < min{lal, 5]}

Since the range on divisors is bounded, there must be a maximum. |
Claim: gcd(a, b) is unique.

Proof: Suppose d and e are both the greatest common divisors of a and b. Then d | a and d | b.
Thus, since e is maximal, d < e. Similarly, e < d. Hence d = e.

Instructor’s Comments: This is the 40 minute mark

Suppose we wanted to find a divisors of two numbers a and b. Can we do so? How far do
we have to look? Here is a theorem explaining this.

Proposition: (Finding a Prime Factor) (FPF) Let a,b € N. If n = ab, then a < /n or

b</n.
Proof: Suppose n = ab and a > y/n. Then

ab > by/n
n > byvn
Vn>b

Hence b < /n. [ ]

Instructor’s Comments: This is the 45 minute mark. From this point on in the
course, the theorem cheat sheets on the Math 135 Resources page will be quite
useful for students. There will be many named theorems that students will be
expected to know.. Don’t rush the next example. Maybe do it in this lecture and
review it a bit in the next lecture. GCDWR works very well if the two parameters
in the greatest common divisor depend on each other in some way.

Proposition: GCD With Remainder (GCDWR) If a, b, ¢, € Z and a = bg+r, then ged(a,b) =
ged(b, ).

Example: gcd(72,40) = 8. Now, 72 = 40(2) — 8 and so GCD With Remainder says that
ged(72,40) = ged (40, —8) = 8

Note that this looks similar to the division algorithm, but the ‘remainder’ here can be negative.
You can apply this multiple times to help reduce the ged computation a lot (this we will see
later).

Instructor’s Comments: Delay the proof until next class. Talk about the pre-
vious example more - maybe even It’s included here only if my timings above are
incorrect.

Proof: (of GCDWR) If a = b = 0, then r = a — bg = 0. Hence gcd(a,b) = 0 = ged(b, 7). Now
assume that @ # 0 or b # 0. Let d = ged(a,b) and e = ged(b,r). Since a = bg+r and d | a
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and d | b, by Divisibility of Integer Combinations, d | (a — bg) = r. Thus, since e is the maximal
common divisor of b and 7, we see that d < e.

Now, e | b and e | r so by Divisibility of Integer Combinations, e | (bg + r) = a. Since d is
the largest divisor of a and b, we see that e < d.

Hence d = e. [ |
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Lecture 18

Proposition: GCD With Remainder (GCDWR) If a, b, ¢, € Z and a = bg+r, then ged(a, b) =
ged(b,7)

Proof: (of GCDWR) If a = b = 0, then r = a — bg = 0. Hence gcd(a,b) = 0 = ged(b, 7). Now
assume that @ # 0 or b # 0. Let d = ged(a,b) and e = ged(b,r). Since a = bg+r and d | a

and d | b, by Divisibility of Integer Combinations, d | (a — bq) = r. Thus, since e is the maximal
common divisor of b and 7, we see that d < e.

Now, e | b and e | r so by Divisibility of Integer Combinations, e | (bq + r) = a. Since d is
the largest divisor of a and b, we see that e < d.

Hence d = e. [ ]

Instructor’s Comments: This is the 7-10 minute mark
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Handout or Document Camera or Class Exercise

Prove that ged(3s + t, s) = ged(s, t) using GCDWR.

Solution: 3s+t = (3)s+¢. Thus, GCD With Remainders states that gcd(3s +t,s) = ged(s, t)
by setting a =3s+t, b=s,g=3 and r = ¢. |

Instructor’s Comments: This is the 15 minute mark
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Euclidean Algorithm How can we compute the greatest common divisor of two numbers
quickly? This is where we can combine GCD With Remainders and the Division Algorithm in
a clever way to come up with an efficient algorithm discovered over 2000 years ago that is still
used today.

Example: Compute ged(1239,735).

Solution:
1239 = 735(1) + 504 Eqn 1
725 = 504(1) + 231 Eqn 2
504 = 231(2) + 42 Eqn 3
231 = 42(5) + 21 Eqn 4
42 = 21(1) +

Thus, by GCDWR, we have

ged(1239, 735) = ged (735, 504)
= ged(504, 231)
= ged(231,42)
= ged(42,21)
= ged(21,0)

=21

Note: This process stops since remainders form a sequence of non-negative decreasing integers.
In this process, the greatest common divisor is the last nonzero remainder.

Instructor’s Comments: This is the 25 minute mark
Question: Food for thought: What is the runtime of the Euclidean Algorithm?

Back Substitution Remember our goal for GCDs is to prove Euclid’s Lemma. It turns
out that this question is deeply connected to the following question:

Question: Do there exist integers x and y such that ax + by = ged(a, b)?

It turns out that the answer to this question is yes! This result is known as Bézout’s
Lemma (or EEA in this course). We first show this is true in an example by using the
method of Back Substitution and then later using the Extended Euclidean Algorithm. Us-
ing the ged(1239,735) = 21 example from before, we start with the last line and work our way
backwards to see:

21 = 231(1) + 42(—5) By Eqn 4
= 231(1) + (504(1) + 231(=2))(=5) By Eqn 3
— 231(11) + 504(—5)
= (735(1) + 504(—1))(11) + 504(—5) By Eqn 2
— 735(11) + 504(—16)
— 735(11) + (1239 + 735(—1))(—16) By Eqn 1
= 735(27) + 1239(—16)

Instructor’s Comments: This is the 35 minute mark
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Handout or Document Camera or Class Exercise

Use the Euclidean Algorithm to compute ged(120,84) and then use back substitution to find
integers x and y such that ged(120,84) = 120z + 84y.

Instructor’s Comments: If a student finishes quickly, challenge them to find two
such linear combinations.

Solution:

120 = 84(1) + 36
84 = 36(2) + 12
36 =12(3) + 0

Thus, by the Euclidean Algorithm (or by GCDWR), we have that ged(120,84) = 12. Next,

12 = 84 + 36(—2)
— 84 + (120 + 84(—1))(-2)
— 84(3) 4 120(-2)

Note: Food for thought: Note also that 84(3 + 120) + 120(—2 — 84) will also work and so on.

Instructor’s Comments: This is the 45 minute mark
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Theorem: (Bézout’s Lemma (Extended Euclidean Algorithm - EEA)) Let a,b € Z. Then
there exist integers x,y such that ax + by = ged(a, b)

Proof: We’ve seen the outline of the proof via an example. Just make the argument abstract.
The proof is left as a reading exercise. |

Theorem: GCD Characterization Theorem (GCDCT) If d > 0, d | a, d | b and there exist
integers x and y such that ax + by = d, then d = ged(a, b).

Proof: Let e = gcd(a,b). Since d | a and d | b, by definition and the maximality of e we have
that d < e. Again by definition, e | a and e | b so by Divisibility of Integer Combinations,
e | (ax + by) implying that e | d. Thus, by Bounds by Divisibility, |e| < |d| and since d,e > 0,
we have that e < d. Hence d = e. [ ]

Instructor’s Comments: This is the 50 minute mark
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Lecture 19

Instructor’s Comments: Do these proofs if you missed them. Otherwise review
the theorems with examples.

Theorem: (Bézout’s Lemma (Extended Euclidean Algorithm - EEA)) Let a,b € Z. Then
there exist integers z,y such that ax + by = d

Proof: We've seen the outline of the proof via an example. Just make the argument abstract.
The proof is left as a reading exercise. |

Theorem: GCD Characterization Theorem (GCDCT) If d > 0, d | a, d | b and there exist
integers x and y such that az + by = d, then d = ged(a, b).

Proof: Let e = ged(a,b). Since d | a and d | b, by maximality we have that d < e. Now e | a
and e | b so by Divisibility of Integer Combinations, e | (ax 4+ by) = d. Thus, by Bounds by
Divisibility, |e| < |d| and since d,e > 0, we have that e < d. Hence d = e. [ |

Example: 6> 0,6 |30,6 |42 and 30(3)+42(—2) = 6 and hence by the GCD Characterization
Theorem, we have that ged(30,42) = 6.

Example: Prove if a,b,z,y € Z, are such that ged(a,b) # 0 and az + by = ged(a,b), then
ged(z,y) = 1.

Proof: Since ged(a,b) | a and ged(a, b) | b, we divide by ged(a, b) # 0 to see that

a

ged(a, b

=1

) ged(a,n)”

Since 1 | z and 1 | y and 1 > 0, GCD Characterization Theorem implies that ged(z,y) =1. B
Instructor’s Comments: This is the 10 minute mark.

Now, we’ve reached the point where we can prove Euclid’s Lemma.

Theorem: (Euclid’s Lemma - [Primes and Divisibility PAD]). If p is a prime and p | ab, then
plaorp|b.

Proof: Suppose p is prime, p | ab and p 1 a (possible by elimination). Since pt a, ged(p,a) = 1.
By Bézout’s Lemma, there exist z,y € Z such that

pr+ay=1
pbx +aby =b

Now, since p | p and p | ab, by Divisibility of Integer Combinations, p | p(bx) + ab(y) and hence
p|o.

Instructor’s Comments: This is the 20 minute mark
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Handout or Document Camera or Class Exercise

Prove or disprove the following:
(i) If n € N then ged(n,n+1) = 1.
(i) Let a,b,c € Z. If 3 2,y € Z such that az? + by? = ¢ then gcd(a,b) | c.

(iii) Let a,b,c € Z. If ged(a,b) | ¢ then 3 x,y € Z such that ax? + by? = c.

Solution:

(i) n+1=n(1)+1 and so by the GCD Characterization Theorem, gcd(n+1,n) = ged(n, 1) =
1. Hence this is true.

(ii) ged(a,b) | a and ged(a,b) | b. Thus, by Divisibility of Integer Combinations, ged(a,b) |
(ax? + by?) which implies that ged(a, b) | c. Hence this is true.

(iii) This is false. Suppose that a = 3, b =0 and ¢ = 6. Then gecd(a,b) = 3 | 6 = ¢ however,
322 + 0y? = 6 implies that 2 = 2, a contradiction.

Instructor’s Comments: This is the 30-35 minute mark. At the end of this
lecture, I think it would be wise to talk about the midterm a bit. It is coming up
so I’ve left a bit of extra time to review for the midterm.
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Lecture 20

Handout or Document Camera or Class Exercise

Instructor’s Comments: This is where things might start to differ. The idea
at this point is to make the Monday lecture the Extended Euclidean Algorithm
because this is a computational topic and it would help ease the lecture before the
midterm. Thus, this lecture and lecture 21 can be swapped without harm. I'm
going to give the gcd theorem lecture here and delay the EEA lecture until Lecture
21.

Instructor’s Comments: This may or may not be a Friday lecture. Friday lectures
I reserve time to do a clicker question. Modify accordingly.

Which of the following statements is false?

A) Ya € Z,¥b € Z,(ged(a,b) <b A ged(a,b) < a)
B) Va € Z,Vb € Z,(ged(a,b) #0 = (a #0) VvV (b#0))

)

) (
C) Va € Z,Yb € Z, (ged(a,b) | a A ged(a,b) | b)
D) YaeZ,WeZ (((c|a) A (c|b) A ged(a,b) #0 = c < ged(a, b))
)

E) Ya € Z,¥b € Z,gcd(a,b) > 0

Solution: The first is false. Consider a = b = —1. The second is true (use the contrapositive).
The third is true by definition (mention the a = b = 0 case). The fourth is also true by definition.
The fifth is true again by definition.
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In this lecture, we’ll go over some key gcd theorems that you will need to prove some problems
on your assignment.

Instructor’s Comments: IMPORTANT TIP: If the gcd condition appears in the
hypothesis, then Bézout’s Lemma (EEA) might be useful. If the gcd condition
appears in the conclusion, then GCDCT might be useful. It might be good to
rewrite GCDCT on the board: if d is a positive integer and a common divisor of a
and b and gcd(a,b) is an integer linear combination of a,b. Then gcd(a,b) = d.

Handout or Document Camera or Class Exercise
Example: Let a,b,c € Z. Prove if ged(ab, ¢) = 1 then ged(a, ¢) = ged(b, ¢) = 1.

Example: State the converse of the previous statement and prove or disprove.

Proof: By Bézout’s Lemma, there exists x,y € Z such that ab(z) + ¢(y) = 1. Since 1 | a and
1| c and a(bz) + ¢(y) = 1, by the GCD Characterization Theorem, gcd(a,c) = 1. Similarly,
ged(b, c) = 1. [ |

Proof: If ged(a,c) = ged(b, ¢) = 1, then ged(ab, ¢) = 1. Since ged(a, c) = 1, Bézout’s Lemma,
there exists integers x and y such that ax +cy = 1. Similarly, there exists integers k& and m such
that bk 4+ cm = 1. Multiplying gives

1 = (ax + cy)(bx + cm)
= abz® + acxm + beyx 4+ Cym

= abz?® 4 claxm + byx + zym)
Since 1| ab, 1 | ¢ and 1 > 0, by GCD Characterization theorem, ged(ab, c) = 1. [ |

Instructor’s Comments: This is the 10-15 minute mark
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Note: IMPORTANT TIP: If the ged condition appears in the hypothesis, then EEA or Bézout’s
theorem is useful. If the ged condition appears in the conclusion, then GCDCT is useful.

Proposition: (GCD of One) (GCDOO). Let a,b € Z. Then ged(a,b) = 1 if and only if there
exists integers x and y such that az + by = 1.

Proof: Suppose ged(a,b) = 1. Then by Bézout’s Lemma, there exists integers = and y such
that ax + by = 1.

Now, suppose that there exist integers x and y such that ax + by = 1. Then since 1 | a and
1| b, then by the GCD Characterization Theorem, ged(a,b) = 1. [ |

Instructor’s Comments: This is the 25 minute mark

Proposition: Division by the GCD (DBGCD). Let a,b € Z. If ged(a,b) = d and d # 0, then
gcd(%, g) =1.

Proof: Suppose that ged(a,b) = d # 0. Then by Bézout’s Lemma, there exist integers x and y
such that ax + by = d. Dividing by the nonzero d gives §x + %y = 1. Thus, by GCDOO, we see
that ged(9, 3) =1. [ |
Example: Let a =91 and b = 70. Then ged(a,b) = 7 and by DBGCD, we have that

1= ged(4,5) = ged(%, B) = ged(13,10).

Instructor’s Comments: This is the 35-37 minute mark
Definition: We say that two integers a and b are coprime if ged(a,b) = 1.

Proposition: Coprimeness and Divisibility (CAD). If a,b,c € Z and ¢ | ab and ged(a,c) = 1,
then c | b.

Proof: Suppose that ged(a,c) = 1 and ¢ | ab. Since ged(a,c) = 1, by Bézout’s Lemma, there
exists integers x and y such that ax 4+ cy = 1. Multiplying by b gives abx + cby = b. Since ¢ | ab
and ¢ | ¢, by Divisibility of Integer Combinations, we have that ¢ | (ab(x) + ¢(by)) and hence
c|b. [ |

Example: Let a = 14, b = 30 and ¢ = 15. Then ¢ | ab since 15 | (14)(30) = 420 and
ged(a, ¢) = ged(14,15) = 1. Thus, by CAD, ¢ | b or 15 | 30.

Instructor’s Comments: This is the 50 minute mark. Remind students of the
theorem cheat sheets on the website.
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Lecture 21

Instructor’s Comments: This should be the lecture you give on the day of the
midterm. It is a very light computational lecture.

Definition: For z € R, define the floor function [z]| to be the greatest integers less than or
equal to x.
Example:
(i) [25] =2= 2]
(i) 7| =
(it)) |0] =
(iv) [-2.5] =-3
Example: Find ged(56,35)
56(1) 4+ 35(0) = 56 Eqn [1]
56(0) +35(1) =35 Eqn [2]
56(1) +35(-1) = 21 ¢ = |38) =1 Eqn [3] = [1] - q1[2]
56(—1) +35(2) = 14 g2 = |32| =1Eqn [4] = [2] — ¢2[3]
56(2) +35(—3) =7 g3 = |%3}] =1 Ean [5] = [3] — g3[4]
56(—5) +35(8) =0 g1 = [2] =2 Eqn [6] = [4] — qa[5]

Therefore ged(56,35) = 7 = 56(2) + 35(—3). This process gives rise to the Extended Euclidean
Algorithm.

Example: Find z,y € Z such that 506z + 391y = ged (506, 391).
x|y | r q
1 10 |506 0
0 | 11391 0
1 |[-1]115 L%J =1
7T 1-9] 23 %J =2
4
1712210 0 53] =2

Therefore, 506(7) + 391(—9) = 23 = ged (506, 391).

Note: This process is known as the Extended Euclidean Algorithm.

93



Handout or Document Camera or Class Exercise

Use the Extended Euclidean Algorithm to find integers x and y such that 408z + 170y =
ged(408,170).

Solution:
x Y T q
1] 0 |408 0
0| 1 |170 0
1] -2 68 L%—%J =2
25 | 34| [ =2
50-12] 0 | |§]=2
Therefore, 408(—2) + 170(5) = 34 = gcd (408, 170). ]
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Note:
(i) Bézout’s Lemma is the Extended Euclidean Algorithm in the textbook.
(ii) With ged(a,b), what if

1. b > a? Then swap a and b. This works since ged(a, b) = ged(b, a).

2. a <0 or b < 07?7 Solution is to make all the terms positive. This works since
ged(a, b) = ged(—a, b) = ged(a, —b) = ged(—a, —b).

(iii) In practice, one can accomplish these goals by changing the headings then accounting for
this in the final steps.
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Handout or Document Camera or Class Exercise

Use the Extended Euclidean Algorithm to find integers xz and y such that 399x — 2145y =

ged(399, —2145).

Solution:

z -y r q
0 1 2145 0
1 0 399 0
-5 1 150 | [22] =5
11 -2 99 N =2
-16 3 51 {%J =1
27 -5 8 | (3] =1
-43 8 3 2] =1

27-(16)(-43) | -5-16(8) | 0 2] =1

Therefore, z = —43, —y = 8 and so y = —8, ged(399, —2145) = 3. Hence

399(—43) — 2145(—8) = 3 = gcd(399, —2145)
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Lecture 22

Instructor’s Comments: One thing I noticed that I want to spend a bit of time
going over at the beginning was how to write a factorization of a number n

Recall: Fundamental Theorem of Arithmetic. Suppose that n > 1 is an integer. Then n can
be factored uniquely as a product of prime numbers up to reordering of prime numbers.

Note: For a natural number n we can write down this factorization in a number of ways:

k
(i) n= Hpi where each p; is prime. (n > 1 required)
i=1
k
(i) n= pr” where each «; > 1 is an integer and each p; is distinct. (n > 1 required)
i=1

k
(iii) n = H p;t where each a; > 0 is an integer and each p; is distinct. This is useful if you
=1

have two numbers and want to write them using the same primes p;. They might not have
the same prime factors, but allowing for the exponent to be 0 allows you to write them
using the same prime factors. For example, 30 = 2! -3 .5 . 7% and 14 = 2. 39.50. 71,

Instructor’s Comments: This is the 5 minute mark.

k
Theorem: Divisors From Prime Factorization (DFPF). Let n = H p;* where each a; > 1 is
i=1
an integer. Then d is a positive divisor of n if and only if a prime factorization of d can be given
by

d:pri where §; € Z,0< §; < a; for 1 <i<k

Proof: Extra reading. |
Example: Positive divisors of 63 = 3% - 7 are given by
30.79,30. 7t 3t .70 3t . 71 3270 32 . 7

or

1,7,3,21,9,63

Instructor’s Comments: This is the 15 minute mark
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Handout or Document Camera or Class Exercise

How many multiples of 12 are positive divisors of 29407 What are they?

Solution: Notice that 2940 = 12(245) (say by long division). Then, to find the number of
divisors of 2940 that are multiples of 12, you just need to take the divisors of 245 (and then
multiply them all by 12). Since 245 = 5 - 72, the total number of divisors is (1 +1)(2+ 1) = 6.

Instructor’s Comments: Explain to students this is like taking 0 or 1 five and
then 0, 1, or 2 sevens.

Hence the multiples are:

12,12-5,12-7,12-5-7,12-7%,12.5- 72

Instructor’s Comments: This is the 25 minute mark
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Example: Prove that a? | b? if and only if a | b.

Proof: Assume that a | b. Then there exists a k € Z such that ak = b. Now a?k? = b? and
hence a? | b% by definition.

Now, assume that a? | b%. For convenience, assume that a,b > 0. Now, write
k k
a:pr” b:Hpii.
i=1 i=1
where 0 < o; and 0 < f3; are integers and the p; are distinct primes. Since a? | b?, we have that

k
20
sz‘
i=1

Now, Divisors From Prime Factorization implies that 2a; < 28; and so o; < 3; true for 1 <17 < k.
Divisors From Prime Factorization again implies that

k k
o= I | 1wt =
=1 =1

as required. |

k

H p?ﬂi

i=1

Instructor’s Comments: One more theorem. This is the 35 minute mark

Example:

=251
= 10000

Instructor’s Comments: Mention that factoring is very complicated.

Theorem: (GCD From Prime Factors (GCDPF)) If

k k
a=[]p o=]]w"
=1 =1

where 0 < «; and 0 < §; are integers and the p; are distinct primes, then

k
ged(a,b) = Hp:r”
i=1

where m; = min{«;, ;} for 1 <i <k.
Proof: More extra reading. ]

Instructor’s Comments: The next topic is completely optional on least common
multiples. Do it if you have time

Let lem(a, b) represent the least common multiple of a and b.

Example:
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(i) Write out a formal definition of lem(a, b).
(ii) Show that lem(a,b) = [T, p* where ¢; = max{ay, §:}.

(iii) Prove that ged(a,b) - lem(a, b) = ab.

Instructor’s Comments: Lastly, I give tips for solving GCD problems. The
analogy is going to Toronto: Taking the 401 (might be hard but is ideal). Walking
(Slow but will get you there). Flying (Theoretically fastest but takes longer to set
up) These are continued on the lecture if you run out of time.

When solving GCD problems, the following gives a rough order of how and when you should
try a technique

(i) Bézout’s Theorem (EEA) [Good when ged is in hypothesis]

(i) GCDWR [Good when terms in ged depend on each other; good for computations]

(iv) Definition [Good when nothing else seems to work]

)
)
(iii) GCDCT [Good when ged is in conclusion]
)
)

(v) GCDPF [Good when you're desperate]
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Lecture 23

Instructor’s Comments: If you ran out of time last lecture, you should give students
the following tips.

When solving GCD problems, the following gives a rough order of how and when you should

try a technique
(i) Bézout’s Theorem (EEA) [Good when ged is in hypothesis]
(i) GCDWR [Good when terms in ged depend on each other; good for computations]
(iii) GCDCT [Good when ged is in conclusion]
)
)

(iv) Definition [Good when nothing else seems to work]

(v) GCDPF [Good when you’re desperate]
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Handout or Document Camera or Class Exercise

Find z,y € Z such that 143z + 253y = ged (143, 253).
Determine which of the following equations are solvable for integers x and y:

(i) 143z + 253y = 11
(i) 143z + 253y = 155
(ifi) 143z + 253y = 154

Instructor’s Comments: The answers to these questions will be part of the lecture
today.
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Linear Diophantine Equations (LDE)
We want to solve ax + by = ¢ where a, b, ¢ € Z under the condition that =,y € Z

Instructor’s Comments: Relate this to solving for the equation of a line over the
real case and invite students to think critically about the difference in the integer
case.

Example: Solve the LDE 143z 4 253y = 11.

Solution: We can solve this using the Extended Euclidean Algorithm!

X1y r 19
0] 1 |253

11 0 |143

-1 1 [110 1
2 -1 331
-7 4 |11 |3
231-13( 0 |3

Therefore, 143(—7) + 254(4) = 11. Are there other solutions?

Instructor’s Comments: This is the 10-15 minute mark depending on the intro-
duction. Students should do the EEA on their own and you should do it simulta-
neously.

Questions to ask about LDE’s
(i) Is there a solution?
(ii) What is it?
(iii) Are there more than one?

Example: Solve the LDE
143z + 253y = 155

Solution: Assume towards a contradiction that there exist x¢ and yg integers such that
143z0 + 253y = 155

By before, 11 | 143 and 11 | 253. Hence by Divisibility of Integer Combinations, 143x¢ + 253y
is divisible by 11. HOWEVER,

114155 = 143x0 + 253y
which is a contradiction. Hence the original LDE has no integer solutions. |

Instructor’s Comments: This is the 25 minute mark.

What about
143z + 253y = 154

as an LDE? Now, notice that 154 = 11 - 14. Hence, since

143(—7) + 253(4) = 11
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multiplying by 14 gives
143(—=7-14) +253(4-14) =11- 14
143(—98) + 253(56) = 154
Instructor’s Comments: This is the 35 minute mark.
These insights lead to the following theorem
Theorem: (LDET1) Let d = ged(a,b). The LDE
ax+by=c
has a solution if and only if d | ¢

Proof: (=) Assume that az + by = ¢ has an integer solution, say xg,yp € Z. Since d | a and
d | b, by Divisibility of Integer Combinations, we have that d | (axg + byy) = c.

(<) Assume that d | ¢. Then, there exists an integer k such that dk = c¢. By Bézout’s
Lemma, there exist integers u and v such that au + bv = ged(a, b) = d. Multiplying by k gives

a(uk) 4+ b(vk) = dk = ¢
Therefore, a solution is given by x = uk and y = vk. |
Instructor’s Comments: This is the 45 minute mark.
Example: Solve 20x + 35y = 5 as an LDE.
Solution: Notice here that we can simplify the LDE by dividing by 5 first to give
e+ Ty =1
An easy solution is given by x = 2 and y = —1.

Now, look at z9 =2 + 7 and y3 = —1 — 4. Notice that

4w2+7y2—4(2+7)+7( —4)
— 4(2) +A(7) + T(—1) + T(—4)
=4(2) +7(=1)
=4z + Ty
=1

In fact, if I take 9 = 2+ 7(11) and y2 = —1 — 4(11). Notice that

4o + Ty —4(2+7( 1))+ 7(—1—4(11))
=4(2) + 4N (1) + 7(=1) + 7(=4)(11)
=4(2) +7(-1)

=4dx+ Ty
=1

and 11 above is very arbitrary. In fact, this gives us an insight into the complete characterization
of solutions for an LDE.
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Lecture 24

Handout or Document Camera or Class Exercise

Let a,b,xz,y € Z.

Which one of the following statements is true?

If ax + by = 6, then ged(a, b) = 6.

If ged(a, b) = 6, then ax + by = 6.

)
)

C) If a = 12b + 18, then ged(a,b) = 6.
) If ax + by = 1, then ged(6a, 6b) = 6.
)

If ged(a, b) = 3 and ged(x, y) = 2, then ged(ax, by) = 6.

Solution: Answer: If az + by = 1, then ged(6a, 6b) = 6.
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Theorem: (LDET2) Let d = ged(a,b) where a # 0 and b # 0. If (z,y) = (20, yo) is a solution
to the LDE
ar +by =c

then all solutions are given by
m:mo+§n Y=Yy — gn
for all n € Z. Alternatively, the solution set is given by
{(zo + gn, Yo — gn):n € L}

Proof: Note that the above are actually solutions to the LDE. It suffices to show that these
are all the solutions. Let (z,y) be a different solution to the LDE (other than (x,yo)). Then,

ax +by=c
axry+ by = ¢

Subtracting gives

Now, since ged(§, g) =1 (by DBGCD) and since

b1 =b(y —yo) = Lz — 20)

we use Coprimeness and Divisibility (CAD) to see that g | (x—x0). Thus, there exists an integer
n such that z — zg = gn and thus, x = x¢ + %n. Plug this into the following:

%(95 —x0) = %b(y —¥o0)

%'%n: #(y—yo)
_7&” =Y—Yo
Hence, y = yo — §n completing the proof. ]

Instructor’s Comments: Something to note about the proof. An argument using
‘similarly’ won’t work above since you want to ensure that the n you get from doing
the above (and the one you would get by arguing ‘similarly’) is the same.

Instructor’s Comments: This is the 20 minute mark.

Example: Alice has a lot of mail to send. She wishes to spend exactly 100 dollars buying 49
cent and 53 cent stamps. In how many ways can she do this?

Solution: Let x be the number of 49 cent stamps. Let y be the number of 53 cent stamps.
Note that x,y € Z and that x,y > 0. We want to solve
0.492 + 0.53y = 100
49x + 53y = 10000
We solve this using the Extended Fuclidean Algorithm:
Therefore, 49(13) + 53(—12) = 1. Hence, 49(130000) + 53(—120000) = 10000. Thus, by
LDET?2, all solutions are given by
x = 130000 — 53n
y = —120000 + 49n
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Xyl riqa
0 1 [53]0
1] 0 |49 0
114
13 -12| 1 | 12
o4

for all n € Z. Now, to answer the question, we need to determine all the answers that make
sense. Since z and y are physical quantities, we know that > 0 and y > 0. The first condition
gives

x>0
130000 — 53n >0
44 1
oa52 4+ A _ 30000 S

= n
93 23

whereas the second condition gives

y=>0
—120000 + 49n >0
120000 48
> = 244 —
T 5t 19
Since n € Z, we see that 2449 < n < 2452. Thus there are 4 possible solutions. [ ]

Instructor’s Comments: Watch for the off by one error! This is the 30-35 minute
mark
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Handout or Document Camera or Class Exercise

Find all non-negative integer solutions to 15z — 24y = 9 where x < 20 and y < 20.

Solution: Dividing by 3 gives
o — 8y =3

By inspection, g = —1 and yp = —1 is a solution. Since ged(5, —8) = 1, by LDET2 we have
that the complete solution set is given by

r=—-1—(-8)n=-1+8n
y=—1+5n

for all n € Z. By the statement,

0< =« <20
0<-1+8n<20
1< 8 <21

Giving n = 1,2 and

0< y <20
0<-1+5n<20
1< b5n <21

giving n = 1,2,3,4. Hence the overlap of n = 1 or n = 2 gives all solutions. These are given by
(7,4) and (15,9). |

Instructor’s Comments: This is the 40-45 minute mark.
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Instructor’s Comments: This last page is to motivate the switch to congruences.
This is where the number theory really kicks off. If you get the opportunity to,
mention the definition of congruences. Seeing this definition once or twice is really
useful. Students should be told to commit this to memory quickly otherwise these
next two weeks will seem unnecessarily difficult.

Congruences
Idea: Simplify problems in divisibility.
(i) Is 156723 divisible by 117

(i) What angle do you get after a 1240 degree rotation?

(iii) What time is it 400 hours from now?
Note: We only care about the above values up to multiples of 11, 360 and 24.

Definition: Let m € N. We say that two integers a and b are congruent modulo m if and only
if m| (a —b) and we write a = b (mod m). If m 1t (a — b), we write a # b (mod m).

Instructor’s Comments: It’s important enough to mention again - commit the
previous definition to memory!!!

Example:
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Lecture 25

Instructor’s Comments: First part is to recall the definition of congruence. This
is extremely important. Get students to do this on their own

Definition: Let a,b € Z and n € N. Then a is congruent to b modulo n if and only if n | (a—0b)
and we write a = b (mod n). This is equivalent to saying there exists an integer k such that
a—b=knora=>0+kn.

Instructor’s Comments: This is the 5 minute mark
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Handout or Document Camera or Class Exercise

Instructor’s Comments: Write on the board and get students to prove. These
are follow your nose proofs

Congruence is an Equivalence Relation (CER)
Let n € N. Let a,b,c € Z. Then

(i) (Reflexivity) a = a (mod n).
(ii) (Symmetry) a =b (mod n) = b=a (mod n).

(iii) (Transitivity) a =b (mod n) and b = ¢ (mod n) = a = ¢ (mod n).

Proof:
(i) Since n |0 = (a — a), we have that a = a (mod n).

(ii) Since n | (a — b), there exists an integer k such that nk = (a — b). This implies that
n(—k) = b— a and hence n | (b — a) giving b = a (mod n).

(iii) Sincen | (a—b) and n | (b—c), by Divisibility of Integer Combinations, n | ((a—b)+(b—c)).

Thus n | (a — ¢) and hence a = ¢ (mod n)

Instructor’s Comments: This is the 20 minute mark
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Example: Without a calculator, determine if 167 = 2015 (mod 4) is true.

Solution: Since 2015 = 3 (mod 4) (valid as 4 | 2012 = 2015 — 3) and 167 = 3 (mod 4) (valid as
4 | 164 = 167 — 3), we see by symmetry that 3 = 2015 (mod 4) and hence by transitivity that
167 = 2015 (mod 4).

Alternate Solution: Does 4 | (2015 — 167) = 18487

Instructor’s Comments: This is the 25 minute mark

112



Handout or Document Camera or Class Exercise

Instructor’s Comments: Write on board and get students to prove on their own

Properties of Congruence (PC) Let a,d’,b,/ € Z. If a = a’ (mod m) and b = ¥/
(mod m), then

(i) a+b=d +V (mod m)
(i) a—b=d — b (mod m)

(iii) ab=d'b’" (mod m)

Proof:

(i) Since m | (a —d’) and n | (b — V'), we have by Divisibility of Integer Combinations
m|(a—a + (b-"0)). Hence m| ((a+0b) — ('’ +¥')) and so a +b=a’ +V (mod m).

(ii) Since m | (a —d’) and n | (b — b'), we have by Divisibility of Integer Combinations
m|(a—a —(b—="V")). Hence m | ((a —b) — (¢’ = V') and soa —b=da — V' (mod m).

(iii) Since m | (@ — ') and n | (b — b'), we have by Divisibility of Integer Combinations

m | ((a—a" )b+ (b—1)a’"). Hence m | ab — a't/ and so ab = a't/ (mod m).

Instructor’s Comments: This is the 40 minute mark
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Corollary If a = b (mod m) then a* = b* (mod m) for k € N.
Example: Since 2 =6 (mod 4), we have that
22 = 62 (mod 4), that is, 4 = 36 (mod 4).

Example: Is 5% + 622990 — 14 divisible by 77

Solution: Reduce modulo 7. By Properties of Congruence, we have

59 + 622000 — 14 = (=2)% 4 (—=1)?°° — 0 (mod 7)
—29 41 (mod 7)
—(23)® 4+ 1 (mod 7)

—(8) +1 (mod 7)
=—(1)3+1 (mod 7)
0 (

mod 7)
Therefore, the number is divisible by 7.

Instructor’s Comments: This is the 50 minute mark. Some things to note above:
In computations, we often don’t cite every single time a basic proposition is used
like PC or CER or the major corollary above. Be sure though while explaining to
mention the use of the corollary above.
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Lecture 26
Leading Question: Is 98654320480 divisible by 1207
Instructor’s Comments: Note that 120 = 5!
Divisibility Rules

A positive integer n is divisible by

A) 2F if and only if the last k digits are divisible by 2¥ where k € N.

B) 3 (or 9) if and only if the sum of the digits is divisible by 3 (or 9).

C) 5% if and only if the last k digits are divisible by 5* where k € N.

D) 7 (or 11 or 13) if and only if the alternating sum of triples of digits is divisible by 7 (or 11

or 13).

Example: n = 123456333. Look at 333 — 456 4+ 123 = 0 Since 7 | 0 (and 11 and 13), we
see that 7 | n (and 11 and 13).

We prove that 9 divides a number n if and only if the sum of the digits is divisible by 9.
Proof: Let n € N. Write

n = dy + 10d; + 10%dy + ... + 10¥d;,
where d; € {0,1,2,...,9}. (For example, 213 = 3 + 10(1) + 100(2)). Thus,

9|n<n=0(mod?9)
& 0=dy+10d; + ... + 10%d;, (mod 9)
< 0=dy+di+ ... +di (mod 9) By (PC)
<9 (do+dy+ ... + dg)

Hence 9 | n if and only if 9 divides the sum of the digits of n. |

Instructor’s Comments: Note this is the first time I used an iff bidirectional
proof. If this is your first time too you should make a note. This is the 10-15
minute mark. Note that if you’re running low on time you needn’t write out all the
divisibility rules (or even mention them!)

Let’s look at some examples of division of congruences. Can I divide integers with congru-
?
ences?’

The above examples suggests that if you're dividing by a number that is coprime to the modulus,
then you can divide. This is true in general.

Proposition:  (Congruences and Division (CD)). Let a,b,c € Z and let n € N. If ac =
bc (mod n) and ged(e,n) =1, then a = b (mod n).

115



Proof: By assumption, n | (ac — bc) so n | ¢(a — b). Since ged(c,n) = 1, by Coprimeness and
Divisibility, n | (a — b). Hence a = b (mod n).

Instructor’s Comments: This is the 20-25 minute mark. introduce the next
proposition as something they know but helps organize thoughts.

Proposition: (Congruent iff Same Remainder - CISR) Let a,b € Z. Then a = b (mod n) if
and only if a and b have the same remainder after division by n.

Instructor’s Comments: Delay the proof until after they get a chance to use it.
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What is the remainder when 7719°(999) — 633 is divided by 47

Solution: Notice that
6=4(1)+2 7TT=19(4) +1 999 = 249(4) + 3

Hence, by Congruent if and only if Same Remainder, we have 77 = 1 (mod 4) and 999 =
3 (mod 4). Thus, by Properties of Congruences,

77190(999) — 653 = (1)199(3) — 283 (mod 4)
=3-22.2% (mod 4)
=3—4-2% (mod 4)
=3-0(2%) (mod 4)
= 3 (mod 4)

Once again by Congruent If and only If Same Remainder, 3 is the remainder when 771%°(999)—683
is divided by 4. [ ]
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Restating,

Proposition: (Congruent iff Same Remainder - CISR) Let a,b € Z. Then a = b (mod n) if
and only if a and b have the same remainder after division by n.

Proof: By the Division Algorithm, write a = nq, + r, and b = ngy + 1 where 0 < 14,15 < n.
Subtracting gives
a—b=n(qa—q)+7a— 17

To prove =, first assume that a = b (mod n), that is n | a — b. Since n | n(q, — q), we have by
Divisibility of Integer Combinations that n | (a — b) + n(gs — g»)(—1) and thus, n | rq — rp. By
our restriction on the remainders, we see that the difference is bounded by

—n+1<r,—rp<n—1

However, only 0 is divisible by n in this range! Since n | (r, — 1), we must have that r, —r, = 0.
Hence r, = rp.

< Assume that r, = r,. Since
a—b=n(ga— @) +ra—1="(da — @)
we see that n | (a — b) and hence a = b (mod n). [ ]

Instructor’s Comments: This is likely the 50 minute mark. If it isn’t get students
to work or think about the following problem which you’ll take up in the next class.

Question: What is the last digit of 532310 4 9227
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Lecture 27

Instructor’s Comments: An important announcement. Students should proba-
bly read the textbook but I anticipate most don’t just due to timing restrictions.
However, I would strongly advise students read Chapter 26 to get practice with the
plethora of notation.

Handout or Document Camera or Class Exercise

What is the last digit of 532310 9227

Solution: Want the remainder when we divide by 10. Hence reduce modulo 10 and use
Congruent If and Only If Same Remainder.

532.310 4 922 = (5%)16. 9° 4 (—1)* (mod 10)
=5'%(~1)° + 1 (mod 10)
= (5%)8(=1) 4+ 1 (mod 10)
= 5%+ 1 (mod 10)
= —(5%)* +1 (mod 10)
—5* +1 (mod 10)
—625 4 1 (mod 10)
—4 (mod 10)
=6 (mod 10)

Hence the last digit is 6. |

Instructor’s Comments: This is the 10 minute mark.
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Linear Congruences
Question: Solve az = ¢ (mod m) where a,c € Z and m € N for x € Z.

Note: when we are solving ax = c¢ over the integers, we know that this has a solution if and
only if a | c.

Example: Solve 4z =5 (mod 8).

Solution: We associate a linear Diophantine equation to this linear congruence. By definition,
there exists a z € Z such that 4o — 5 = 8z, that is, 4o — 8z = 5. Now, letting y = —z. gives the
linear Diophantine equation

dr+8y =5

Instructor’s Comments: From now on I will jump straight to this version of the
LDE without mentioning it so make sure they understand this change of variables
trick to translate to an LDE quickly. This is why I go through this here.

Since ged(4,8) = 415, by LDET1, we see that this LDE has no solution. Hence the original
congruence has no solutions. [ |

Solution 2: Let x € Z. By the Division Algorithm, x = 8¢ 4 r for some 0 < r < 7 and ¢, r
integers. By Congruent If and Only If Same Remainder, 4z = 5 (mod 8) holds if and only if
4r =5 (mod 8). Thus, if we can prove that no number from 0 < x < 7 works, then no integer
x can satisfy the congruence.

Instructor’s Comments: Again make a note that this explanation is not needed
anymore to do these problems and is included here only for clarity.

Trying the possibilities

4(0) =0 (mod 8)
4(1) =4 (mod 8)
4(2) =0 (mod 8)
4(3) = 4 (mod B)
4(4) =0 (mod 8)
4(5) = 4 (mod 8)
4(6) = 0 (mod 8)
4(7) = 4 (mod 8)
shows that 4z = 5 (mod 8) has no solution. [ |

Solution 3: Assume towards a contradiction that there exists an integer x such that 4z =
5 (mod 8). Multiply both sides by 2 to get (by Properties of Congruence) that

0 =0z =8z =10 (mod 8)

Hence, 8 | 10 however 8 1 10. This is a contradiction. Thus, there are no integer solutions to
4x =5 (mod 8). [ |

Instructor’s Comments: This is the 25 minute mark. Take your time with the
previous argument. Encourage students to be creative with how they argue! If
they find a solution encourage them to find another!

Example: 5z =3 (mod 7).
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Solution: Look Modulo 7. Then there are only 7 possibilities to consider for . Trying them
gives

5(0) =0 (mod 7)
5(1) =5 (mod 7)
5(2) =3 (mod 7)
5(3) =1 (mod 7)
5(4) =6 (mod 7)
5(5) =4 (mod 7)
5(6) =2 (mod 7)
Therefore, z = 2 (mod 7) gives the complete set of solutions. [ |

Solution 2: This is equivalent to solving the LDE
S5r+ Ty =3

A solution is given by (z,y) = (2,—1). By LDET2, x =2+ 7Tn and y = —1 + 5n for all n gives
the complete set of solutions. Hence z = 2 (mod 7) gives the complete solutions. |

Solution 3: 52 =3 (mod 7) < x =2 (mod 7). We see this by multiplying by 5 to go in reverse
and multiplying by 3 to go from the left to the right. Something like:

5z =3 (mod 7)
(3)5z = (3)3 (mod 7)
152 =9 (mod 7)

x =2 (mod 7)

and multiply by 3 to go in reverse.

Instructor’s Comments: Mention that this is related to something called finding
an inverse for 5.

Example: 2z =4 (mod 6).

Solution: Trying all 6 possibilities yields,

2(0) =0 (mod 6)
2(1) = 2 (mod 6)
2(2) =4 (mod 6)
2(3) =0 (mod 6)
2(4) =2 (mod 6)
2(5) =4 (mod 6)

Hence, z = 2,5 (mod 6) give solutions. These solutions are captured by x = 2 (mod 3). (It is
not a coincidence that 3 = 6/ ged(2,4)). [ |

Instructor’s Comments: Try to make this the 35 minute mark.
Summarizing the above give the following theorem:

Theorem: LCT1 (Linear Congruence Theorem 1). Let a,c¢ € Z and m € N and ged(a, m) = d.
Then az = ¢ (mod m) has a solution if and only if d | ¢. Further, we have d solutions modulo
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m and 1 solution modulo m/d. Moreover, if z = ¢ is a solution, then z = z¢ (mod m/d) forms
the complete solution set or alternatively, x = zo + “7n for all n € Z or for another alternative

way to write the solution:
r =wmo,x0 + 7,20+ 2%, ..., 20 + (d — 1) (mod m)
Proof: Read p. 180. |

Instructor’s Comments: This is the 40-45 minute mark.
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Handout or Document Camera or Class Exercise

Solve 9z = 6 (mod 15).

Solution: Notice that 9(4) = 36 = 6 (mod 15). Hence, by LCT1, all solutions are given by
x =4 (mod 15/ ged(9,15)), or x = 4 (mod 5). This is equivalent to z = 4,9, 14 (mod 15).

Alternate Solution: Equivalent to solving the LDE

9z + 15y =6
= 3z +5y =2

By LDET?2, since (z,y) = (—1,1) is a solution, all solutions are given by

r=-—14+5n
y=1-3n

for all n € Z. Therefore, a solution is given by x = —1 (mod 5) or z = 4 (mod 5). Equivalently,
r=4,9,14 (mod 15).

Instructor’s Comments: This is the 50 minute mark.
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Lecture 28

Handout or Document Camera or Class Exercise

Which of the following satisfies x = 40 (mod 17) ?

(Do not use a calculator.)

A
B) x =15 4193 — 4

D

)
)

C) x =5-18100
) r=2-3-5-7-11-13
)

E) e =174+ 17" + 172 + 173 + 174+ 17° + 176

Solution:
A) =173 =3 (mod 17)
B) =15 +19% —4=(-2)°+2>-4=-32+8—-4=2+4=6 (mod 17)

D

)
)
C) x=5-18100 = 5(1)!1% =5 (mod 17)
) £=2-3-5-7-11-13=6-35-(—6)(—4) =6-1-24=6-7 =42 =8 (mod 17)
)

E) 2 =174+ 17" 4+ 172 4+ 173 4+ 17* + 175 + 175 = 1 (mod 17)

Answer is the second option since x = 40 = 6 (mod 17).

Instructor’s Comments: This is the 5-10 minute mark
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Instructor’s Comments: Try to make the next exercise only take you to the 10
minute mark.

Example: Show that there are no integer solutions to x2? + 4y = 2.

Proof: Assume towards a contradiction that there exist integers = and y such that x2 +4y = 2.
Reducing modulo 4 yields 22 = 2 (mod 4). Trying all the possibilities yields

(0)2 =0 (mod 4)
(1)2=1 (mod 4)
(2)? =0 (mod 4)
(3)2 =1 (mod 4)
Hence there are no integer solutions. |

Note: Notice that sometimes, you end up with many solutions. For example, 22 = 1 (mod 8)
has 4 solutions (all the odd numbers work! This is an exercise to check)

Instructor’s Comments: Now comes what I think is the hardest to grasp concept
in this course; the abstraction of Z/mZ. I personally am going to discuss rings here
and take a bit more time here to save a bit of time later on in the course. 1
will introduce the notion of a ring and field here so that when we get to complex
numbers, it will go a bit quicker. This will cause me to spend more time here on
topics but I think that’s okay.

Ly, or Z/mZ The integers modulo m
Definition: The congruence or equivalence class modulo m of an integer a is the set of integers
[a] ={x €Z:2=a (mod m)}
Note: := means “defined as”.

Further, define
Ly = Z/mZ = {[0], [1], ..., [m — 1]}

Definition: A commutative ring is a set R along with two closed operations + and - such that
for a,b,c € R and

(i) Associative (a +b) +c=a+ (b+ c) and (ab)c = a(be).
(ii) Commutative a +b = b+ a and ab = ba.

(iii) Identities: there are [distinct] elements 0,1 € R such that a +0=a and a -1 = a.
(iv) Additive inverses: There exists an element —a such that a + (—a) = 0.

(v) Distributive Property a(b+ ¢) = ab + ac.

Example: Z, Q, R. Not N

Definition: If in addition, every nonzero element has a multiplicative inverse, that is an
element a~! such that a-a~! = 1, we say that R is a field.

Example: Q, R. Not N or Z.

Instructor’s Comments: This should take you tot he 25-30 minute mark
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Definition: We make Z,, a ring by defining addition and subtraction and multiplication by
[a] £[b] := [a+Db] and [a]-[b] := [ab]. This makes [0] the additive identity and [1] the multiplicative
identity.

Instructor’s Comments: Note that the [a + b] means add then reduce modulo m.
There is something subtle going on here that might be lost on students.

There is one issue we need to resolve here; the issue of being well defined. How do we know
that the above definition does not depend on the representatives chosen for [a] and [b]?

Example: For example, in Zg, is it true that [2][5] = [14][—13]?

Instructor’s Comments: Note that [2] = [14] and [5] = [-13]. To properly prove
well-definedness, you would have to do this for all possible representations of [a].
Since this will create a notational disaster, I think it’s best to try to illustrate the
point with a concrete example.

Proof: Note that in Zg, we have

LHS = [2][3] = [2- 5] = [10] = [4]

and also

RHS = [14][-13] = [14(—13)] = [-182] = [-2] = [4]
completing the proof. |
Definition: The members [0], [1], ..., [m — 1] are sometimes called representative members.

Instructor’s Comments: Minimum this is the 35 minute mark.

Instructor’s Comments: In practice, this was the 50 minute mark but either way
that’s okay - hopefully you can squeeze in the addition table.

Addition table for Z4

+ 0] 1] [2] B3]
o | o) [1] 2] [3]
A2 B3 [o]
2121 8] o] [1]
BBl [0 [A] [2
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Lecture 29

Handout or Document Camera or Class Exercise
Solve the following equations in Zj4. Express answers as [x] where 0 < z < 14.
i) [75] = [z] = [50]
i) [10][z] = [1]
iii) [10][z] = [2]

Hint: Rewrite these using congruences.

Instructor’s Comments: Note to “properly” prove these, you would have to
prove these as an equality of sets.

Solution:

(i) [75] — [x] = [50] is equivalent to solving 75 — z = 50 (mod 14). Solving here gives = =
25 =11 (mod 14).

(ii) [10][z] = [1] is equivalent to solving 10z = 1 (mod 14). Since ged(10,14) = 2t 1, we see
by LCT1 that this has no solution.

(iii) [10][z] = [2] is equivalent to solving 10z = 2 (mod 14). Notice that x = 3 is a solution
and so by LCT1, we see that x = 3 (mod 14/ ged(2,14)) gives a complete solution. This
is the same as z = 3 (mod 7) or x = 3,10 (mod 14) or z = [3], [10].

Instructor’s Comments: This is the 10 minute mark. The last point that = =
3 (mod 7) and x = 3,10 (mod 14) are equivalent is lost on some students. Remind
them that the first meant x = 3+ 7k and that k£ has two options - being even (which
is equivalent to 3 modulo 14) or being odd (which is equivalent to 10 modulo 14).
A similar argument can be applied if it were say 7 to 21 etc.

Instructor’s Comments: If you want an extra problem with congruences, try
Solve [15][z] + [7] = [12] in Zjp. Otherwise mention this later.
Inverses
(i) [—a] is the additive inverse of [a], that is, [a] + [—a] = [0].
(ii) If there exists an element [b] € Z,, such that [a][b] = [1] = [b][a], we call [b] the multiplica-
tive inverse of [a] and write [b] = [a] ! or b=a~! (mod m).
Example: [5][11] = [1] in Z1s. Therefore, [5]7! = [11] and [11]~! = [5].
Note: WARNING Multiplicative inverses do not always exist!

Example: [9][z] = [1] in Z;g has no solution. The left hand side is always [0] or [9] for every
value of [z]. Hence [9]7! does not exist in Z;s.

Instructor’s Comments: This is the 15 minute mark
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Handout or Document Camera or Class Exercise

Find the additive and multiplicative inverses of [7] in Z;;. Give your answers in the form [x]
where 0 < z < 10.

Solution: Additive inverse: [—7] = [4]. For the multiplicative inverse, we want to solve
[7][z] = [1] & 7z =1 (mod 11)

You can solve this by turning this into the LDE 7x+11y = 1 and solving that. However, because
the numbers are small, guessing and checking is a far more efficient strategy. Notice that

7-3=21=10=—1 (mod 11)
Thus, 7(—3) =1 (mod 11) and so [z] = [-3] = [8] is the inverse of [7] in Z1;.

Instructor’s Comments: This is the 25 minute mark
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Proposition: Let a € Z and m € N.
(i) [a]! exists in Z,, if and only if ged(a,m) = 1.

(ii) [a]~! is unique if it exists.

Proof:
(i)
[a] ! exists & [a][z] = [1] is solvable in Z,,
& ax +my = 1 is a solvable LDE
& ged(a,m) =1 GCDOO
completing the proof. [ ]

(i) Assume [a]! exists. Suppose there exists a [b] € Z,, such that [a][b] = [1] = [b][a]. Then

Instructor’s Comments: This is the 35 minute mark
Exercise: Solve [15][z] + [7] = [12] in Zjo.
Instructor’s Comments: Solution: This is equivalent to solving
152 + 7 =12 (mod 10).

Isolating for = gives
15z =5 (mod 10).

Since 15 =5 (mod 10), Properties of Congruences states that
5 =5 (mod 10).

This clearly has the solution x = 1. Hence, by Linear Congruence Theorem 1, we
have that
_ 10
x =1 (mod m)

gives the complete set of solutions. Thus, z = 1 (mod 2) or z = 1,3,5,7,9 (mod 10).
Since the original question is framed in terms of congruence classes, our answer
should be as well and hence

(=] € {{1], 3], [5]; [7], [91}-

For extra practice, see if you can phrase this argument using Linear Congruence
Theorem 2.
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Handout or Document Camera or Class Exercise

Instructor’s Comments: This is a good time to introduce the notation TFAE
The following are equivalent [TFAE]

e o =b (mod m)

e« m|(a—b)

e Jke€Z,a—b=km

e JkeZ,a=km+b

e ¢ and b have the same remainder when divided by m

o [a] = [b] in Zyp,.

Theorem: [LCT 2] Let a,c € Z and let m € N. Let gcd(a, m) = d. The equation [a][z] = []
in Z, has a solution if and only if d | c. Moreover, if [x] = [z¢] is one particular solution, then
the complete solution is

{[xOL [xO + %]7 [xO + 2%]7 R [1'0 + (d_ 1)%]}

Instructor’s Comments: This is the 40 minute mark
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Instructor’s Comments: This is the FLT part of the course. I think this proof is
fantastic and really creative so I like doing it. One could of course prove FLT using
induction and the binomial theorem, which I would say if you have in the course
you should do. You can choose to not to the proof or maybe show why it’s true for
a specific prime but I like actually showing the proof. It’s elegant clever and really
just awesome. I recommend being brave and showing it. This proof will spill over
to the next lecture. Keep shifting content until you reach the square and multiply
algorithm which is optional material that you can afford to skip and catch up there.

Theorem: Fermat’s Little Theorem (F/T). If p is a prime number and p { a then a?~! =
1 (mod p). Equivalently, [aP~!] = [1] in Z,.

Example:
(i) 5° =1 (mod 7)
(ii) 45 =1 (mod 7)
(iii) 39% =1 (mod 7)
Note: p — 1 is in the exponent and not the base. For example, (5 —1)3 =4 (mod 5).

Note: p — 1 is not necessarily the smallest exponent such that a* = 1 (mod p). For example
62 =1 (mod 7).

Lemma: Let ged(a,p) = 1. Let
S:={a,2a,...,(p—1)a} T:={1,2,...p—1}.

Then the elements of S are unique modulo p and for all s € S, there exists a unique element
t € T such that s =t (mod p).

Proof: We first show that S contains p — 1 distinct nonzero elements modulo p.

Let ka,ma € S with 1 < k,m < p—1 integers. Now, if ka = ma (mod p), then p | a(k —m).
Since ged(a, p) = 1, we see that p | (k —m) by Coprimeness and Divisibility. Since

—p<2-p<k-m<p-—-2<p

and p | (k —m), we see that k —m = 0, that is, k = m. Lastly, if ka = 0 (mod p), then p | ka.
By Euclid’s Lemma, p | k, a contradiction since 1 < k < p — 1 and p is prime, or p | a also a
contradiction since ged(a,p) = 1. Thus, S has p — 1 distinct nonzero elements modulo p.

So if ka € S, then ka = n (mod p) for some 1 < n < p—1 and this n is unique since if in
addition ka = ¢ (mod p) with 1 < /¢ < p — 1, subtracting the two congruences gives p | (n — ),
a contradiction unless ¢ = n since

—p<2—-p<L—n<p-—2<p.
This completes the proof. |

Proof: (of Fermat’s Little Theorem). Using the lemma, valid since p { a holds if and only if
ged(a,p) =1 (by say GCDPF), we have that by the lemma S and T contain the same elements
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modulo p and hence their products must be congruent modulo p. Thus,

HxEHy(modp)

zeS yeT
p—1 p—1
HkaEHj (mod p)
k=1 j=1

p—1 p—1
ab! H k= Hj (mod p)
k=1 =1

p—1
Let @ = [[4 = (1)(2)...(p — 1). Then

j=1

Qa"" = Q (mod p)

Since ged(Q, p) = 1 (as @ is a product of numbers less than a prime p), we have that Q! exists
and hence

Q'Qa’™' = Q7'Q (mod p)
and thus a?~! = 1 (mod p) completing the proof . |

Instructor’s Comments: This is the 50 minute mark. It’s a bit of an intense
proof but really cool.
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Lecture 30

Handout or Document Camera or Class Exercise

Find the remainder when 7%2 is divided by 11.

Solution: Recall (F/T): If p{ a, then a?~! =1 (mod p) where p is a prime.

By F/T,

7% =1 (mod 11)
7% =1 (mod 11)
72 =72 =49 =5 (mod 11)
Alternatively,
792 = 79000+2 (mod 11)
= (719972 (mod 11)
=19.72 (mod 11)
=49 (mod 11)
=5 (mod 11)

completing the question.

Raise both sides to the power of 9

By F¢T since 1117

Instructor’s Comments: This is the 10 minute mark
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Corollary: If pis a prime and a € Z, then a? = a (mod p).
Proof: If p | a, then a = 0 (mod p). This implies that a? = 0 = a (mod p).
If p{a, then by F/T, a?~! = 1 (mod p) and hence a” = a (mod p) completing the proof. W

Corollary: If p is a prime number and [a] # [0] in Z,, then there exists a [b] € Z, such that

[a][0] = [1].

Proof: Since [a] # [0], we see that p { a. Hence by FAT, a?~! = 1 (mod p) and thus a - a?~2 =
1 (mod p). This is sensible since p — 2 > 0. Thus, take [b] = [a?~2]. [ |

Instructor’s Comments: Students should be able to do the next one - give them
a shot at it on their own first! There’s a handout one that depends on this so it
might be good to get them thinking.

Corollary: Ifr = s+kp, then a” = a**t* (mod p) where p is a prime and a € Z and r, s,k € N.

Instructor’s Comments: It should be noted that here we want r, s,k to be at
least nonnegative. We haven’t really talked about what it means to take a* when
k < 0 except for £k = —1. It’s not hard but in this corollary, the important fact is
that a might not be invertible so things like a2 don’t make sense necessarily.

Proof: We have

a” = a*™ (mod p)

@*(@)* (mod p)

a®(a)* (mod p) By corollary to F¢T
as+k (

mod p)

Instructor’s Comments: This is the 20 minute mark.
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Handout or Document Camera or Class Exercise

Let p be a prime. Prove that if p{a and r = s (mod (p — 1)), then a" = a® (mod p) for any
r,s € Z.

Solution: Since r = s (mod (p — 1)), we have that (p — 1) | (r — s). Thus, there exists a k € Z
such that (p — 1)k =r — s. Hence r = s + (p — 1)k. Thus,
a" = a*TP=VF (mod p)
a®(a”~")* (mod p)
(1)* (mod p) By F¢T since pta
(mod p).

=qa°
=a°

This completes the proof. [ |

Instructor’s Comments: This is the 30 minute mark

135



Chinese Remainder Theorem (CRT)
Solve

z =2 (mod 7)
z =7 (mod 11)

Instructor’s Comments: Note to students this is the first time they are seeing
two congruences with different moduli.

Using the first condition, write x = 2+ 7k for some k € Z. Plugging into the second condition
gives

247k =7 (mod 11)
7k =5 (mod 11)

Now there are a few ways to proceed. One could guess and check the inverse of 7. With this
approach, we see that multiplying both sides by 3 gives

3-7k =15 (mod 11)
21k =4 (mod 11)

—k =4 (mod 11)
k= —4 (mod 11)
k=7 (mod 11)

Therefore, kK = 7 + 11¢ for some ¢ € 7Z. Alternatively, one can use the LDE approach on
7k + 11y = 5 and use the Extended Euclidean Algorithm:

kly|r|q
o[1]11]0
110] 710
10141
21-1]3 1|1
312101

013

Hence 7(—3) + 11(2) = 1 and thus 7(—15) + 11(10) = 5. So by LDET2, we have that
k= —15+11n for all n € Z. Thus k = —15 = 7 (mod 11) and as above k = 7 4+ 11¢ for some
e Z.

Instructor’s Comments: Note here that to find all solution we need to use for all
n € Z. Because out specific k is fixed however, we us for some at the end. What’s
happened here is that we’ve overloaded the use of k£ - once in the question but
once in the LDE question process. This isn’t a big deal and probably isn’t worth
mentioning unless a student asks.

Thus, since © =2+ 7k and k = 7+ 114, we have

r=2+7k
=24+ 7(7T+110)
=51477¢
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Therefore, = 51 (mod 77) is the solution. [ ]

Instructor’s Comments: This might take you to the 50 minute mark. Otherwise
state the slide on the next lecture.
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Lecture 31

Handout or Document Camera or Class Exercise

Theorem: [Chinese Remainder Theorem (CRT) If
ged(my, mg) = 1, then for any choice of integers a; and ag, there exists a solution to the
simultaneous congruences

= a1 (mod my)

n
n = az (mod my)
Moreover, if n = ng is one integer solution, then the complete solution is n = ny (mod mimsy).

Theorem: (Generalized CRT (GCRT)) If my,ma, ..., my are integers and ged(m;, m;) = 1
whenever i # j, then for any choice of integers ai,as,...,ax, there exists a solution to the
simultaneous congruences

n=a; (modm)

=ay (mod my)

n=a; (mod my)
Moreover, if n = ng is one integer solution, then the complete solution is

n=ng (modmims...my)

Instructor’s Comments: This is the 5 minute mark. Remark that the statement
of CRT is not nearly as useful as understanding the proof.
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Example: Solve

x =5 (mod 6)
x =2 (mod 7)
z =3 (mod 11)

From the first equation, x = 5 + 6k for some k € Z. Plug this into the second equation gives

5+ 6k =2 (mod 7)
6k = —3 (mod 7)
—k = -3 (mod 7)
k=3 (mod 7)

and hence k = 3 + 7¢ for some ¢ € Z. Therefore, x = 5+ 6(3 + 7¢) = 23 + 42¢. Therefore
x = 23 (mod 42). Now, we need to satisfy

x =23 (mod 42)
x =3 (mod 11)

Instructor’s Comments: This is done so that students can see the reduction
pattern that emerges.

Since x = 23 + 42/, plugging this into the final equation gives

23 +42¢ = 3 (mod 11)
—2¢ = —20 (mod 11)
¢ =10 (mod 11) By Congruences and Divisibility [CD] valid since ged(—2,11) =1

Hence, ¢ = 10 + 11m for some m € Z. Combining gives
x =234 420 =23+ 42(10 + 11m) = 443 + 462m
Therefore, z = 442 (mod 462).
Instructor’s Comments: This is the 20 minute mark.
Some twists to Chinese Remainder Problems: Example: Solve

3z =2 (mod 5)
2z =6 (mod 7)

Instructor’s Comments: The twist here is that the left hand sides are not just =
but they have a coefficient.

Solution: Treat each congruence separately and solve using Linear Congruence Theorem 1
(LCT1). By inspection x = 4 solves the first congruence (could also use Linear Diophantine
Equation techniques). Hence by LCT1, z = 4 (mod 5/gcd(3,5)) or z = 4 (mod 5). Sim-
ilarly, notice that x = 3 is a solution to the second congruence. Hence by LCT1 again,
z = 3 (mod 7/ged(2,7)). This is equivalent to x = 3 (mod 7). Thus, the above system is
equivalent to solving

x =4 (mod 5)
x =3 (mod 7)
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which can be solved like a typical Chinese Remainder Theorem problem.

Instructor’s Comments: Don’t do this in class - included only because I used to
solve this this way.

Alternate Solution: Multiplying the first equation by 2 and the second equation by 4
gives

62 =4 (mod 5)
8z =24 (mod 7).

Simplifying gives

x =4 (mod 5)
x =3 (mod 7)

Then proceed like a typical Chinese Remainder Theorem problem.

Example: Solve

x =4 (mod 6)
x =2 (mod 8)

Instructor’s Comments: The twist here is that the moduli are not coprime.
Turns out that the engine that proves the Chinese Remainder Theorem is exactly
what one needs to do here. Sometimes however there are no solutions and usually
there are solutions but at a moduli smaller than the product.

Solution: Using the first equation gives = 4 + 6k for some k € Z. Plug this into the second
equation gives

44 6k =2 (mod 8)
6k = —2 (mod 8)
6k = 6 (mod 8)

Now, note that k = 1 is definitely a solution. By LCT1, we have that
k=1 (mod 8/(gcd(6,8)))
gives all solution. Hence k =1 (mod 4) and thus k = 1 + 4¢ for some ¢ € Z. Therefore,
r=4+6(1+40) =10+ 24¢

Therefore, z = 10 (mod 24) gives the complete set of solutions.

Instructor’s Comments: This is the 40 minute mark. Could even take your time

and make this a full lecture if you wanted. We’re reaching a catch up lecture if you
have fallen behind.

Example: Solve 22 = 34 (mod 99).

This implies that 99 | (z? — 34). Note that 9 | 99. Therefore 9 | (2 — 34) by transitivity,
22 = 34 (mod 9). Note further that 11 | 99. Therefore, 11 | (22 —34) by transitivity. this implies
that

2% = 34 (mod 11)
z? =1 (mod 11)
22 = £1 (mod 11) By trying all 11 possibilities
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Similarly, 22 = 34 = 7 (mod 9) and so z = +4 (mod 9) (try all 9 possibilities).

This gives four systems of equations:

x =1 (mod 11) z =1 (mod 11)
x =4 (mod 9) x = —4 (mod 9)
z = —1 (mod 11) z=—1 (mod 11)
z =4 (mod 9) x = —4 (mod 9)

To finish solving this, we can use the Chinese Remainder Theorem 4 times to give the solutions
x = 23,32,67,76 (mod 99)
This leads to the following theorem.

Theorem: Splitting the Modulus (SM) Let m and n be coprime positive integers. Then, for
any integers  and a, we have

x = a (mod m)

x = a (mod n)
simultaneously if and only if z = a (mod mn).

Instructor’s Comments: This is the 50 minute mark. If not, start the proof.
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Lecture 32

Instructor’s Comments: This is a make up lecture. You can choose to cover many
extra problems if you wish or head towards cryptography. I will probably include
the square and multiply algorithm at some point as an extra topic.

Handout or Document Camera or Class Exercise

Which of the following is equal to [53]24? + [5]~! in Z;?

(Do not use a calculator.)

A) [5]
B) [4]
C) 3]
D) [2]
E) [

Solution: Note that
53212 + 571 = 4212 1 3 (mod 7)
=42.4210 ¢ 3 (mod 7)
=2-(4%% + 3 (mod 7)
=2-1% 4 3 (mod 7)
=5

Instructor’s Comments: This is the 5-7 minute mark.
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Theorem: Splitting the Modulus (SM) Let m and n be coprime positive integers. Then, for
any integers = and a, we have

x = a (mod m)

x = a (mod n)
simultaneously if and only if z = a (mod mn).

Proof: (<) Assume that z = a (mod mn). Then mn | (x — a). Since m | mn, by transitivity,
we have that m | (z — a) and hence = a (mod m). Similarly, z = a (mod n).

(=) Assume that £ = a (mod m) and z = a (mod n). Note that x = a is a solution. Since
ged(m,n) = 1, by the Chinese Remainder Theorem, x = a (mod mn) gives all solutions.

Instructor’s Comments: This is the 15 minute mark.
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Handout or Document Camera or Class Exercise

For what integers is ° + 2% + 222 + 1 divisible by 6?

Solution: We want to solve z° + 2% + 222 + 1 = 0 (mod 6). By Splitting the Modulus, we see
that

2° 4+ 2% +22° +1 =0 (mod 2)
25+ 23 4+ 222 +1 =0 (mod 3)

Using equation 1 and plugging in x = 0 (mod 2) and x = 1 (mod 2) gives in both cases that
2° 4+ 2% +22° +1=1 (mod 2)
Therefore, ° + 23 4+ 222 + 1 is never divisible by 6. |

Instructor’s Comments: This is the 25 minute mark. From here you can choose
to do more practice and have a full lecture on Cryptography or just do a half lecture
on cryptography.

Cryptography
Note: The practice/study of secure communication.

Alice wants to communicate with Bob and receive messages from Bob but Eve is listening
to all the messages they send to each other.

Instructor’s Comments: Include a picture
Alice needs to encrypt messages to Bob so that even if Eve can see them, she cannot read
them. However Bob needs to be able to read them and so needs a way to decrypt them.

Note: A cryptosystem should not depend on the secrecy of the methods of encryption and
decryption used (except for possibly secret keys). The method must be assumed to be known
by all.

Private Key Cryptography
Agree before hand on a secret encryption and decryption key.

Instructor’s Comments: Mention ASCII encryption. Break up messages into
many chunks and send those chunks.

Example: Caesar Cipher. Map a plain text message M to a ciphertext (encrypted message)
given by
C =M + 3 (mod 26)

where 0 < C < 26. In this way, one can encrypt letters to new letters. This worked well for
Caesar mainly because most soldiers could not read (so even an unencrypted message might not
have been understood).

Example: APPLE gets translated as a sequence of numbers 0, 15,15, 11,4 then encrypted by
adding 3 to get 3,18,18,14,7 and then converted back to letters DSSOH.

Cons of Private Key Cryptography
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(i) Tough to share private key before hand.
(ii) Too many private keys to store.

(iii) Difficult to communicate with strangers.

Public Key Cryptography

Analogy: Pad lock. A pad lock is easy to lock but difficult to unlock without the key. The
main paradigm here is as follows:

(i) Alice produces a private key d and a public key e.
(ii) Bob uses the public key e to take a message M and encrypt it to some ciphertext C
(iii) Bob then sends C over an insecure channel to Alice.
(iv) Alice decrypts C' to M using d.
Note:
(i) Encryption and decryption are inverses to each other.

(ii) d and e are different,

(iii) Only d is secret.

Instructor’s Comments: This is the 40 minute mark - maybe the 50 minute mark
Question: What makes a problem hard?

Instructor’s Comments: Something along the lines of the first thing you try
doesn’t work, a problem that has resisted proof for many years etc.

Example: Given the number 1271, find it’s prime factorization.

Instructor’s Comments: The answer is 31 times 41. The point here is that even
for small numbers humans struggle with this. For not-very-large numbers, even
computers struggle.

Factoring a number is a difficult problem and helps form the basis for RSA. If we could
factor numbers easily, the RSA encryption we will talk about in the next lecture would be hard.

Instructor’s Comments: This next question is completely optional as well. It
doesn’t add much to RSA. Question: Given 2" =9 (mod 11), find n.

Solution: The answer is n = 6. However this isn’t the real point of this question.
The point is that to find 6, you likely tried all the possibilities from 1 to 6 reducing
reach time. This problem in general, that is, given «,b and a" € N for some n € N
to determine n is called the Discrete Logarithm Problem. There is currently no
known efficient algorithm to solve it. Solving this would also help break the RSA
encryption scheme.

Instructor’s Comments: This is probably the 50 minute mark but if not, have
fun with the square and multiply algorithm below. This topic is completely optional
(as of W2016)
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Square and Multiply Algorithm
The idea of this algorithm is to enable computers to compute large powers of integers modulo
a natural number n quickly.

Example: Compute 5% (mod 101)

Solution: First, we compute successive square powers of 5:

51 =5 (mod 101)
2 =25 (mod 101)
* = (25)? =625 =19 (mod 101)
8 = (19)? = 361 = 58 (mod 101)
516 = (58)% = 31 (mod 101)
532 (31)% = 52 (mod 101)
1 = (52)? = 78 (mod 101)

Now, write 99 in binary, that is, as a simple sum of powers of 2 with no power of 2 repeated.

64 <99 < 128 Replace 99 with 99 — 64 = 35
32 <35 < 64 Replace 35 with 35 —32=3
2<3<4 Replace 3 with 3 —2=1
1<1<2 Replace 1 with 1 —1=0

Thus, 99 =64 + 32+ 2+ 1 =26 + 25 + 21 1 20, Hence,

5% = 564.5%2.52. 51 (mod 11)
=78-52-25-5 (mod 11)
= 81 (mod 11)

Instructor’s Comments: Note the minimal number of computations needed. In
general, it would be 98 computations. Here it’s 6 + 3 =9 computations. A huge
savings.
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Handout or Document Camera or Class Exercise

(i) Show that z = 212 solves 22 =1 (mod 131).
(ii) Use the square and multiply algorithm to find the remainder when 2'?? is divided by 131.

(iii) Solve 2z =3 (mod 131) for 0 < z < 130.

Solution:
(i) By Fermat’s Little Theorem (valid since ged(2,131) =1,

2(212%) = 2130 = 1 (mod 131)

(ii) First, we create a chart of the powers of 2:

2! =2 (mod 131)
22 =4 (mod 131)
2% =16 (mod 131)
28 = 256 = —6 (mod 131)
216 = (—6)% = 36 (mod 131)
232 = (36)? = 1296 = —14 (mod 131)
264 = (~14)? = 196 = 65 (mod 131)
2128 = (65)2 = 52132 = 25169 = 25 - 38
=5-190=5-59 = 295 = 33 (mod 131)

Hence, 2129 = 2128. 21 = 33.2 = 66 (mod 131).

(iii) Since 2 -66 = 132 = 1 (mod 131), we see that 2 - (66 - 3) = 3 (mod 131) and since
66 -3 =198 = 67 (mod 131), we have completed the question. |
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Lecture 33

Instructor’s Comments: 1 like to introduce Exponentiation Ciphers first and
then tackle RSA - this way students can see the build up and see why one prime is
an insecure procedure whereas two primes gives a secure procedure.

Exponentiation Cipher
We begin describing RSA by first explaining exponentiation ciphers. Suppose Alice and Bob
want to share a message but there is an eavesdropper (Eve) watching their communications.

Instructor’s Comments: Include picture while lecturing.
In an exponentiation cipher, Alice chooses a (large) prime p and an e satisfying
l<e<(p-—-1) and ged(e,p—1) = 1.
Alice then makes the pair (e, p) public and computes her private key d satisfying
l<d<(p—-1) and ed=1 (mod p—1)

which can be done quickly using the Euclidean Algorithm (the inverse condition above is why
we required that ged(e,p — 1)).

To send a message M to Alice, an integer between 0 and p — 1 inclusive, Bob computes a
ciphertext (encrypted message) C satisfying

0<C<p and C = M° (mod p).
Bob then sends C to Alice.

Alice then computes R = C? (mod p) with 0 < R < p.

Instructor’s Comments: Include picture - this is the 10 minute mark
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Proposition: R = M (mod p).

Proof: If p | M, then all of M, C and R are 0 and the claim follows. So we assume that
pt M. Recall that ed =1 (mod p — 1) and so we have that there exists an integer k such that
ed =1+ k(p — 1). Using this, we have

R =4 (mod p)
= (M®)? (mod p) by definition of C
= M (mod p)
= M (mod p) Corollary to F/T since ed = 1 (mod p — 1).
as required |

Corollary: R=M

Proof: By the previous proposition, R = M (mod p). Recall that 0 < M, R < p and so the
values must be equal. [ |

Instructor’s Comments: This is the 20 minute mark.

The good news is that this scheme works. However, Eve can compute d just as easily as
Alice! Eve knows p, hence knows p — 1 and can use the Euclidean algorithm to compute d just
like Alice. This means our scheme is not secure. To rectify this problem, we include information
about two primes.

RSA Alice chooses two (large) distinct primes p and ¢, computes n = pq and selects any e
satisfying
l<e<(p—1)(¢—1)  and  ged(e,(p—1)(¢—1)) =1

Alice then makes the pair (e,n) public and compute her private key d satisfying
I<d<(p-1)(g—1) and ed=1 (mod (p—1)(g—1))

again which can be done quickly using the Euclidean Algorithm (Alice knows p and ¢ and hence
knows (p — 1)(¢ — 1)).

Instructor’s Comments: Note that in the textbook (d,n) is the private key pair.

To send a message M to Alice, an integer between 0 and n — 1 inclusive, Bob computes a
ciphertext C satisfying

0<C<pqg and C = M° (mod pq).

Bob then sends C to Alice. Alice then computes R = C? (mod pq) with 0 < R < pq.

N

Instructor’s Comments: Include a diagram of what’s happening. This is the 30
minute mark.
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Proposition: R = M.
Proof: Since ed =1 (mod (p — 1)(¢ — 1)), transitivity of divisibility tells us that
ed=1 (mod p—1) and ed=1 (mod g —1).

Since ged(e, (p — 1)(¢ — 1)) = 1, GCD Prime Factorization (or by definition) tells us that
ged(e,p — 1) = 1 and that ged(e,q — 1) = 1. Next, as C' = M€ (mod pq), Splitting the Modulus
states that

C' = M*° (mod p) and C' = M*° (mod q)

Similarly, by Splitting the Modulus, we have

R =C? (mod p) and R=C? (mod gq).
By the previous proposition applied twice, we have that

R =M (mod p) and R = M (mod q).

Now, an application of the Chinese Remainder Theorem (or Splitting the Modulus), valid since
p and ¢ are distinct, gives us that R = M (mod pq). Recalling that 0 < R, M < pq, we see that
R=M. |

Is this scheme more secure? Can Eve compute d? If Eve can compute (p — 1)(¢ — 1) then
Eve could break RSA. To compute this value given only n (which recall is pq), Eve would need
to factor n (or compute p + ¢). Factoring n is a notoriously hard problem and we know of no
quick way of doing so. Eve could also break RSA if she could solve the problem of computing
M given M€ (mod n).

Note: Let ¢ be the Euler Phi Function. This function has the valuation ¢(n) = (p — 1)(¢ — 1)
when n = pq a product of distinct primes.

Instructor’s Comments: This is the 40 minute mark
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Handout or Document Camera or Class Exercise
Let p=2,g=11and e=3
(i) Compute n, ¢(n) and d.
(ii) Compute C' = M€ (mod n) when M = 8 (reduce to least nonnegative C').

(iii) Compute R = C? (mod n) when C = 6 (reduce to least nonnegative R).

Solution:

(i) Note n =22, ¢(n) = (2—1)(11 —1) = 10 and lastly, 3d = 1 (mod 10) and multiplying by
7 gives d = 7 (mod 10). Hence d = 7.

(ii) Note that

C' = M° (mod 22)
= 8% (mod 22)
=864 (mod 22)
=8-(—2) (mod 22)
= —16 (mod 22)
=6 (mod 22)

(iii) The quick way to solve this is to recall the RSA theorem and hence M = 8. The long way
is to do the following:

R = C? (mod 22)
=6 (mod 22)
=6-(6%)? (mod 22)
=6-(216)* (mod 22)
=6-(—4)? (mod 22)
=6-16 (mod 22)
=6-(—6) (mod 22)
= —36 (mod 22)
= 8 (mod 22)

151



Food for thought:

(i)

How does Alice choose primes p and ¢? (Answer: Randomly choose odd numbers! If p
and ¢ are 100 digit primes, then choosing 100 gives you more than a 50% chance that you
have a prime - can check using primality tests).

What if Eve wasn’t just a passive eavesdropper? What if Eve could change the public key
information before it reaches Bob? (This involves using certificates).

What are some advantages of RSA? (Believed to be secure, uses the same hardware for
encryption and decryption, computations can be done quickly using a square and multiply
algorithm).
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Lecture 34

Instructor’s Comments: There’s a large probability that you might have extra
time in this lecture - there are ways to fill that time in later lectures with some
extra complex numbers proofs.

Complex Numbers
Our current view of important sets:

NCZCQCR

These sets can be thought of as helping us to solve polynomial equations. However, 22 + 1 = 0
has no solution in any of these sets.

Instructor’s Comments: This is the 3 minute mark

Definition: A complex numbers (in standard form) is an expression of the form x + yi where
x,y € R and ¢ is the imaginary unit. Denote the set of complex numbers by

C:={x+yi:z,ycR}
Example: 14 2i, 3i, V13 + i, 2 (or 2 + 04).
Note:
(i) RCC

(ii) If z = x+yi, then x = Re(z) = R(z) is called the real part and y = Im(z) = 3(z) is called
the imaginary part.

Definition: Two complex numbers z = x + yi and w = u + vi are equal if and only if z = u
and y = v.

Definition: A complex number z = x + yi is...
(i) Purely real (or simply real) if $(z) = 0, that is, z = =
(ii) Purely Imaginary if R(z) = 0, that is, x = yi.
We turn C into a commutative ring by defining operations as follows:
(i) (z4yi) £ (u+vi):=(xtu)+ (yL£ov)i
(i) (x4 yi)(u+vi) = (zu —vy) + (zv + uy)i
By this definition, we have
i2=i-i=(0+i)(0+i)=—1+0i=—1.

Therefore, 4 is a solution of 22 + 1. With this in mind, you can remember multiplication just by
multiplying terms as you would with polynomials before.

(z 4 yi) (u + vi) = zu + 2vi + yiu + yivi = zu + (2v + yu)i + yoit = zu — yv + (v + uy)i
Example:
(i) (14+20)+ (3+4i) =4+6i

(i) (14 2i) — (3 +4i) = —2 — 2i

153



(iii) (14 2i)(344i) =3 —8+ (4 +6)i = —5 + 10i

We note that C is a field by observing that the multiplicative inverse of a nonzero complex

numbers is

N1 T Yo
x+yi) = — i
( vi) 2+ 92 2?2+ 2

Exercise: If z€ Cand 2 #0, then z- 271 =1

Instructor’s Comments: This is the 20-25 minute mark.

For complex numbers u, v, w, z with v and z nonzero, the above is consistent with the usual

fraction rules:
U w uz + vw U w uw
J— + - = — and —_ — = -
v z vz vz

For k € N and z € C, define

<
N

for m,n € Z.

Example: Write éfiz in standard form.

Solution:

1+ 2i
T2 (14203 40

3—4i
. 3 (—4) .
= (1+2i) (32+42 B 32+421>

3 4
— 1422+ =
(1+ z)<25+251>

~925 25 " \25 " 25)"

Instructor’s Comments: This is the 30 minute mark
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Handout or Document Camera or Class Exercise

Express the following in standard form

(i) 2= (1—2)— (3+44)

5—61
(i) w =205
Solution:
(i)

&= ((1-20) — (3+40))(5— 6i) "
' 5 —6) .
— (*2*61) (52+62 - 5§+222)
~(5 6.
= (—2 - 61) (61 + 6].Z>

7—10+36+ —12_@2.
61 61 61 61

2% 42
~ 61 61

(ii) Recall that i> = —1 and i* = 1. Thus,

w — 2015
(Z'4>503 . Z’3
— 1503 ;2

Instructor’s Comments: This is the 40 minute mark - you can easily go on to
the next lecture or use this time to catch up.
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Lecture 35

Instructor’s Comments: The following is a technical note. In the textbook, they
use the quadratic formula without any real justification as to why it makes sense
with the rest of complex numbers. Here I justify it over real polynomials (and then
later we’ll make a note that it holds over complex polynomials)

Instructor’s Comments: This is a great spot to catch up if you’re behind. I
would advise grouping the four work on their own’ problems together at the end
of class and spend the last say 15-20 minutes battling through them. Then get
students to ask to take one of them up. If doing this I suggest starting with the
last problem then mentions the first two in this lecture. The last problem is very
easy and they shouldn’t have problems. The first two are challenging and you want
them to battle through it a bit more. Whatever you get done in class great. Tell
them to do the others for homework and refer them to the online notes if they can’t
solve them.

Example: For z € C, solve 22 — 24+ 1 = 0.

Instructor’s Comments: Note to students that z will almost exclusively stand
for a complex number in this course.

Solution: Ideally, we’d like to write something like

=D EVEDP A1) 12V 13
- 2(1) == =35

However there is one big gap. The expression v/—3 has no meaning. Not to mention, we have
not discussed what the solutions are to v/—3 as a complex number. Are there 2 solutions? One
solution? Ten solutions? Zero solutions? This needs to be addressed.

Question: What are the solutions to 22 = —r for r € R with r > 0?
Solution: Let z = x + yi with 2,y € R. Then
2

—r =z :(gj+y1)2:$2—y2+2$yl

Therefore, 2xy = 0 and z? — 2> = —r. Thus, either z =0 or y = 0. If y = 0, then 2> = —r, a
contradiction since 22 > 0. Hence, z = 0 and —y? = —r or y = ++/r. Therefore, z = +/ri. B

Note: Therefore, we have just validated the use of v/—r = +4/ri. The quadratic formula still
works for real polynomials (and later we will see it still works for complex polynomials).

Definition: The complex conjugate of a complex number z = x + yi is Z := x — yi.

Instructor’s Comments: This is the 13 minute mark
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Handout or Document Camera or Class Exercise
Instructor’s Comments: Give the next two exercises simultaneously for students
to battle through

Solve 22 =iz for z € C

Solution: Let z = x + yi where x,y € R. Then

(x +yi)* = i(z — yi)
z? —y? + 2xyi = y+ xi

2 —yt=y and 2y = x

The latter implies that 2xy — 2 = 0 and hence z(2y — 1) = 0. Therefore, either x = 0 or y = %
Substituting into the first equation above gives

=0 = —y’=y = y’+y=0 = y=0or —1
y=1 =22 (})2=1 = 2?=3 — =12

Hence, z € {0, —1, @ + 31, _T\/g + 3i}. [ |
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Handout or Document Camera or Class Exercise
Find a real solution to

62° 4+ (14 3v2i)2% — (11 — 2v/2i)z2 —6 =0

Solution: Take z = r € R. Then, if this r is a solution, it must satisfy
63 + (1 +3v2i)r? — (11 — 2V2i)r —6 =0
Expanding and collecting terms gives
(6r° + 7% — 117 — 6) + (3v2r* + 2v2r)i = 0

Therefore, 3v/2r2 4 2v/2r = 0. Factoring gives v/2r(3r+2) = 0 and thus, r = 0 or r = %2 Since
the real part above must also be zero, we see that the r must satisfy

6r° +r* —11r —6 =0

Note that » = 0 is not a solution to this and that r = %2 is a solution since

6()° +(F) -1 F —6=6-F +§+F-6=0

Thus, r = %2 is the lone solution. |
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Instructor’s Comments: This is the 35 minute mark

Proposition: (Properties of Conjugates (PCJ)) Let z,w € C. Then

Instructor’s Comments: For your sanity’s sake, you should only do a few of these,
say 2 and 3.

Solution: Let z =z + y¢ and w = u + vi. Then

(1)

z+w=zx+yi+u-+ v
=(x+u)+(y+v)i
=(x+4+u)—(y+v)

=z —yi+u—vi

=zZ4+w

(i)

zw = (x 4 yi)(u + vi)

= (zu — yv) + (xv + wy)i
= (zu —yv) — (xv + uwy)i
= (z — yi)(u — vi)

= ZWw

(i) z=zx+yi=x—yi=x+yi==z2
(iv) z+Z=a+yi+o—yi =2z =2R(2)

(V) z—Z=x+yi— (x —yi) = 2yi = 2i](2)

Instructor’s Comments: This is the 40 minute mark.
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Handout or Document Camera or Class Exercise

Prove the following for z € C
(i) z € Rif and only if z = Z.

(ii) z is purely imaginary if and only if z = —Z.

Instructor’s Comments: Note that 0 is both real and purely imaginary.

Solution:

(i) (=)Let z=2+0i€R. Thenz=2—-0i =z = z.

(<) Let z = x + yi for x,y € R. Assume that z = Z. Then,

z2=z
r+yit=x—yi
y=-y
2y =10
y=20

Therefore, z = x + 0i € R.
(ii)

z is purely imaginary < iz € R

iz =iz By the above
iz =—iz By PCJ
S z=—Z

completing the proof.

Instructor’s Comments: This is the 50 minute mark.
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Lecture 36

Handout or Document Camera or Class Exercise

Instructor’s Comments: There are two clicker questions here. Choose the one
you prefer. I like the first one because students often forget they can use LDEs to
find inverses.

Let [z] be the inverse of [241] in Zjo1, if it exists, where 0 < 2 < 1001. Determine the sum
of the digits of x.

>

7

3]
©

Q
—

1

O

)
)
)
) 12
)

E) [z] does not exist

Solution: We use the Extended Euclidean Algorithm (EEA) on 241z + 1001y = 1 to see that

r |y | r q
1 | 1001 0
1|0 | 241 0
A1 | 3T | [ =4
25 | -6 | 19 %1 | =6
29 7 | 18 | [%£]=1
54 | -13 | 1 1] =1

Hence 241(54) + 1001(—13) = 1 and so [54] is the inverse of [241] in Zjgo;. Since 544 =9,
the correct answer is B.
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Handout or Document Camera or Class Exercise

How many integers x satisfy all of the following three conditions?

r=6 (mod 13)
4r =3 (mod 7)
—1000 < z < 1000

A) 1
B) 7
C) 13
D) 22
E) 91

Solution: Note that multiplying 4 = 3 (mod 7) by 2 gives £ = 6 (mod 7). By the Chinese
Remainder Theorem or by Splitting the Modulus, we see that x = 6 (mod 91). Thus, x = 6+91k.
Using this with the range restriction gives

—1000 < 6 4+ 91k < 1000
—1006 < 91k < 994

Note that 91 - 10 = 910 and 91 - 11 = 1001. Therefore, the above condition with the fact that
k € Z reduces to —11 < k < 10 and thus, there are 22 solutions.

Instructor’s Comments: This is the 10 minute mark; this is a longer problem
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Definition: The modulus of z = x + yi is the nonnegative real number

2| = o+ yil := Va? +y°
Proposition: (Properties of Modulus (PM))

(i) [z = =]

(ii) 2z = |2|?
(iii) [2]=0<2=0
(iv) [zw] = [2]|w]

)

(v) |z +w| <|z| + |w| (This is called the triangle inequality)

Instructor’s Comments: Mention that properties 3,4,5 define a norm. I recommend
not doing the proof of all of these. I would do 2,4 and 5. In fact, I would make 5
an in-class reading proof to get some reading practice in.

Proof: Throughout, let z = = + yi.

(i) Note that

2l = |z — yil = Va2 + (~9)? = Va2 +y? = ||

(ii) 2z = (z +yi)(z —yi) = 2% + y? = |z|?

(iii) |2| = 0 if and only if \/22 + y2 = 0 if and only if 22 + y? = 0 if and only if z = y = 0 if
and only if z = 0.

(iv) Using the second property above and Properties of Conjugates, we have
|zw|? = (20)70 = 22w = |2*|w|?
Hence, since all the numbers above are real, we have that [zw| = |z||w].

(v) (See the handout on next page)
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Handout or Document Camera or Class Exercise
To prove |z + w| < |z| + |w], it suffices to prove that
24+ wl® < (J2] + |w])* = |2* + 2[zw] + [w]?

since the modulus is a positive real number. Using the Properties of Modulus and the Properties
of Conjugates, we have

lz+w? = (2 +w)(z +w) PM
=(z4+w)(z+w) PCJ
=2Z+zw + wz + ww
= 22+ 20 + zw + |w|? PCJ and PM

Now, from Properties of Conjugates, we have that
20 + zw = 2R(zw) < 2|zw0| = 2|zw|
and hence
|2+ w|* = |2 + 20 + 2@ + [w]? < |2* + 2|2w] + |w]?

completing the proof.
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Instructor’s Comments: This is the 25-30 minute mark

Revisit Inverses

Recall, we defined the inverse of z by

-1__ Z Y
2 + y2 2 + y2
Note that _ _ _
4 1z Z z
A = —_r - = — = ——
2 z z-z |z
Argand Diagram
C u ]

Instructor’s Comments: This is the 35 minute mark.

Polar Coordinates

A point in the plane corresponds to a length and an angle:

oSO

3, %) corresponds to

Example: (r,0) = (

3.
+ —

3 cos(m/4) + i(3sin(r/4)) = % -

via the picture
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Given z = = + yi, we see that

r=|z| = Va2 + y?

0 = arccos(x/r) = arcsin(y/r) = arctan(y/x)

/Y
o .

%

Note: WARNING. The angle 6 might be arctan(y/z) OR 7+ arctan(y/z) depending on which
quadrant we are in. More on this next class.

Example: Write z = v/6 + /2i using polar coordinates.

Solution: Note that r = \/62 + \/52 =8 =2V2. Further,

arctan(v/2/V6) = arctan 1/v/3 = 7/6

Note: There is no need to add 7w to the above answer since the answer lies in the first quadrant.
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Therefore, z corresponds to (r,0) = (2v/2,7/6). [ |

Definition: The polar form of a complex number z is z = r(cos(f) + isin(0)) where r is
the modulus of z and 6 is called an argument of z. This is sometimes denoted by arg(z) = 6.
Further, denote cis(6) := cos(0) + isin(0).

Example: If z = v/6 + v/2i, then z = 2v/2(cos(7/6) + isin(7/6)) = 2v/2cis(7/6).

Instructor’s Comments: This is the 50 minute mark.
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Lecture 37

Handout or Document Camera or Class Exercise
Express the following in terms of polar coordinates:
(i) -3
(ii) 1—1

Solution:

(i) Note that »r = | — 3| = 3 and 6 = arctan(0/ — 3) = 0. Then, since —3 lives between the
second and third quadrant, you need to add 7 to the previous answer. Thus § = 7 and
hence —3 = 3cis().

Instructor’s Comments: Make sure to note the addition of pi above.
(ii) Note that 7 = |1 —i| = v/12 4+ 12 = /2. Hence

, 1
1—i=+2 (ﬂ - \@>
= V/2(cos(7m/4) + isin(7m/4))

= V/2cis(7m /4)

Instructor’s Comments: This is the 10 minute mark.
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Handout or Document Camera or Class Exercise

(i) Write cis(157/6) in standard form.

(ii) Write —3v/2 + 3v/6i in polar form.

Solution:
(i) cis(15m/6) = cos(5m/2) + isin(5m/2) = i.
(ii) Note that
r=|—3v2+ 3V6i|

— /(=3v2)2 + (3V6)?
=18 + 54

=72

=6V2

Therefore, —3v/2+3v6i = 6v/2 (_71 + \/T§Z> = 6+/2cis(27/3) where the last equality holds
since

Instructor’s Comments: This is the 20 minute mark
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Theorem: (Polar Multiplication of Complex Numbers (PMCN)) If z; = rcis(6;) and
z9 = rocis(fa), then
2122 = 1"17“2CiS(91 + 92)

Proof: We have
2129 = 11(cos(61) + isin(61))ra(cos(f2) + isin(fz))
= rira(cos(61) cos(02) — sin(6) sin(f2) + i(cos(61) sin(f2) + sin(61) cos(62)))
= r1ra(cos(6y + 62) + isin(6; + 62))
= TlT’QCiS(el + 92)

where in line 3 above, we used trig identities. This completes the proof. |

Corollary: Multiplication by ¢ = cos(7/2) + isin(7/2) gives a rotation by /2.

Example: Using Polar Multiplication of Complex Numbers on (v/6 4+ v/2i)(—3v/2 + 3/6i)

gives

(V6 + v/2i)(—3V2 + 3v/6i) = 2v/2cis(7/6) - 6v/2cis(27/3)
= 24cis(m/6 + 27/3) By PMCN
= 24cis(b7/6)
=24(—V3/2 +i/2)
= —12V3 +12i

Instructor’s Comments: This is the 30-35 minute mark.
Theorem: (De Moivre’s Theorem (DMT)) If 6 € R and n € Z, then
(cos(0) +isin(0))"™ = cos(nb) + isin(nd)

or more compactly,
cis(0)" = cis(nb).

170



Instructor’s Comments: Emphasize here that we want to use induction but need
to reduce to the natural numbers first

Proof: First note that when n = 0, we see that (cos(f) + isin())® = 1 and that cos(00) +
isin(00) = 1 so the statement holds. For n > 0, we proceed by induction on n. For the base
case, consider n = 1. Then

(cos(f) +isin(f))™ = cos(#) + isin(f) = cos(nh) + isin(nbh).
Now, assume that
(cos(6) + isin())* = cos(kB) + i sin(k)
holds for some k£ € N. For the inductive step, note that

(cos(0) +isin(9)) T = (cos(0) + isin(h))"(cos(6) + isin(6))
= (cos(kf) + isin(k0))(cos(d) +isin(d))  Inductive hypothesis
= cos((k +1)8) +isin((k + 1)0) By PMCN

For n < 0, we write n = —m for some m € N. Then

cis(6)" = cis(9)™™
— (cis(o)™) !
= cis(mf) !
cos(m#) — isin(mb . 1
- cos2((m9)) + sin2((m0)) Since 27 = 7/|2"

= cos(m@) — isin(m0)

and cos(—m#@) + i sin(—mb) = cos(mb) — isin(md) since cosine is even and sine is odd. This
completes the proof. [ |

Corollary: If z = rcis() then 2" = r"cis(nf).

Instructor’s Comments: This is the 50 minute mark.
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Lecture 38

Handout or Document Camera or Class Exercise

Write (\/§ —4)'0 in standard form.

Solution: Convert v/3 — i to polar coordinates.

\/5—2':2(\/—5—2)

2 2

= 2cis(—7/6)
= 2cis(117/6)

seen via the diagram

J3
2.1

Lastly,
(2cis(117/6))10 = 2'%is(1107/6) DMT
= 21%:is(557/3)
= 21%:is(9(27) 4 7/3)
= 21%:is(7r/3)

1 V3
_olof L, VO
=2 <2+ 22)

=27 +2°V/3i
=512+ 512V/3i

seen via the diagram

Instructor’s Comments: This is the 10-15 minute mark
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Complex Exponential Function
Definition: For a real 0, define
e := cos(f) + isin(h) = cis(h)
Note: Can write z € C as z = re?? where r = |z| and 6 is an argument of z.

Question: Why is this definition reasonable? While we can’t prove the answer to this question,
we can give convincing arguments.

Reason 1: Exponential Laws Work! For 6, € R and n € N,

ei@ . e’ia — ei(9+a) PMCN
(eiﬁ)n — eifnﬂ DMT

Reason 2: Derivative with respect to 8 makes sense.

d
%(005(9) + isin(f)) = —sin(f) + i cos(d)
= i(cos(f) + isin(h))
= ie'?
Reason 3: Power series.
- 22 3
e’ = +x+§+§+...
3 2
sin(z) =z 37 + =
z? 2t
cos(ac)zl—a-l-ﬂ—

Using these and combining gives
¢ = cos(x) + isin()
Setting § = m gives FKuler’s Formula:

€™ = cos(m) + isin(m) = —1

Instructor’s Comments: This is the 25 minute mark.
Example: Write (2¢!'7/6)6 in standard form.
Solution: By exponent rules (DMT), we have
(261171'/6)6 — 9611mi
= 26(cos(117) + isin(117))
= 20(—1 4 00)
= —64
Instructor’s Comments: This is the 30 minute mark.

Example: Solve 26 +223 -3 =0
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Solution: Factoring gives

0=24222-3=(22-1)(2*+3)
Hence 23 =1 or 2% = —3.
Question: Can we solve 2" = w for a fixed w € C?

Note: We saw a case of this already with n = 2 and w = —r. We'll delay the previous question
until later.

Example: Solve 25 = —64.

Solution: We already saw that 2¢!'™/¢ was a solution. Note that +2i are two others found

by inspection. How do we find all the solutions in general? The answer involves using polar
coordinates. Write z = re??. Then

25 =60 — _64

Taking the modulus yields |r|%|e®?| = 64. Since for any real o, we have

™| = | cos(a) + isin(a)| = \/COSZ(OZ) + sin?(a) = 1
we see that |r|% = 64 and hence r = 2 since r is a positive real number.
Instructor’s Comments: This is the 40 minute mark.

Hence, we see that —64 = r6¢%9 = 64¢%9 and so €% = —1. Thus,
cos(660) + isin(60) = —1 = cos(m) + i sin(m)
Hence, this is true when 60 = 7w + 27k for all k € Z. Solving for 8 gives

T+2rk w w
0= —— = —+ =k
6 6+3

Now, when do two values of § coincide with the same complex point? Answer: When they differ
by multiples of 2.

Claim: 6, = 5+35k1 and 0 = §+5k2 are equal up to 27 rotations if and only if k1 = k (mod 6).
Proof: We have that
01 =05 +2mm for some m € Z

™

6

™

T
ke =
T3 =5

+ ng + 2m™m

g/ﬁ = ng + 2m™m
ki1 =ko+6m

k1 = ko (mod 6)
and each of the above steps are if and only if steps. This completes the proof of the claim.

Hence 0 = & + Sk for k1 € {0,1,2,3,4,5}. Thus,

96{7'( 3r b 7w 97 1llxw

676”6266 6

or rewritten as
0 €{Z+ 2k ki €{0,1,23,4,5}}

Therefore, z = re'? e {2e/7/6+7k/3) . | € {0,1,2,3,4,5}}.
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Instructor’s Comments: In all likelihood, the 50 minute mark is somewhere above.

Carry through to lecture 39 as needed.
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Lecture 39

Theorem: Complex nth Roots Theorem (CNRT) Any nonzero complex number has exactly
n € N distinct nth roots. The roots lie on a circle of radius |z| centred at the origin and spaced
out evenly by angles of 27/n. Concretely, if a = re’? . then solutions to 2z = a are given by
z = {re0t27 0/ for k€ {0,1,...,n — 1}.

Proof: The proof is like the example yesterday and is left as additional reading. |

Definition: An nth root of unity is a complex number z such that z™ = 1. These are sometimes
denoted by (.

Example: —1 is a second root of unity (and a fourth root of unity and a sixth root of unity
etc.)

Instructor’s Comments: This is the 10 minute mark; though likely the previous
lecture spilled over to this lecture.
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Handout or Document Camera or Class Exercise

Find all eighth roots of unity in standard form.

Solution: We want to solve 28 = 1. We know that {£1, &7} are solutions. We can draw to find
the rest:

'ﬁ_hﬁ_ /'4' N £ lRo“a“'E bté

’)(L 2
& TF z‘ﬁ\ %

_‘( 42’
\ xﬁ J2
—Ji—@.’f‘x P ZL
= 2 'VF

For another example, look at 2% = 1:

I'd /
” 4 4
AP )
22, Y
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Example: Solve 2° = —16%.

Instructor’s Comments: Get students to guess the total number of solutions.
Also get them to find a solution by inspection. The answer is surprising!

Solution: This is a tricky problem. One could convert to polar coordinates but I prefer to
reason as follows. If I can’t solve the equation as written, maybe I can simplify by taking
lengths on both sides.

12°| = |2|° = | — 16| = 16[z| = 16]|2|

This gives |2|° = 16|z|. Hence |z|? — 16|z| = 0 giving |2|(]z|* — 16) = 0. This gives either |z| =0
which translates to z = 0 or |z|* = 16 which gives |z| = 2. So assuming that z # 0, we multiply
the original equation by z to yield

20 = 1622 = —16|2|* = —64
but this question we solved before! Therefore,
z € {0,+2i, +V3 £}
Thus, there are seven solutions!

Instructor’s Comments: This is the 40 minute mark; if you spilled over from
the previous lecture, this is the 50 minute mark. Otherwise do the next problem
(which is one we did before)

Example: Solve 26 4223 —3 =0.

Proof: From before, we factored this to (23 —1)(23+3) = 0 and thus 22 = 1 or 23 = —3. From
CNRT, we see that the solutions to 2% = 1 = cos(0) + isin(0) are given by

-0 i2m/3 i-dm/3
€3, ATy

ze{ee

and solutions to 2% = —3 = 3(cos(7) + isin(7)) are given by

s e {\3/361‘~7r/37 36t \3/§ei~57r/3}

J : g, N
| { 1) A\
-«-;.._.- .
5 | % :l;

: 7

\ )}J“'

L N '
~i
This completes the question. |
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Lecture 40
Handout or Document Camera or Class Exercise
— 5
(—v3+i)

What is the value of ?

A) 16
B) 27
C) 32
D) —45
E) 64
Solution:

Instructor’s Comments: Emphasize there are lots of ways to get the solution.

5

\(mﬂ _ 1(_@@-)
|-
= (VB2 + (12
— V7

5
‘ PM

5

=32

Instructor’s Comments: This is the 7-10 minute mark depending on how many
ways you find the above answer
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Polynomials For us, a field will mean to include Q, R, C, Z, where p is a prime number. A
ring will include the aforementioned fields as well as Z and Z,, for any m € N.

Definition: A polynomial in x over a ring R is an expression of the form
ant™ + an_12" ' 4 ... + a1z + ao
where ag, a1, ...a, € Rand n > 0 is an integer. Denote the set (actually a ring) of all polynomials

over R by R[z].

Instructor’s Comments: We will predominately use fields in the above definition.
Some of the theorems we do will only work in the case of fields. For simplicity I
will state all the theorems with fields to match the textbook though in many cases,
a ring is all you need.

Example:
(i) (2m +14)2® — VT2 + 22i € C[2].
(ii) [5]z? + [3]z + [1] € Z7[z]. We usually write this as 522 + 3z + 1 € Z7[z].
(iii) 22 + L is not a polynomial.
(iv) =+ v/z is not a polynomial.
(v) 142+ 22 + ... is not a polynomial.
Definition:

(i) The coefficient of a,z™ is a,
(ii) A term of a polynomial is any a;z’

(iii) The degree of a polynomial is n provided a,x™ is the term with the largest exponent on
x and nonzero coefficient.

(iv) 0 is the zero polynomial (all coefficients are 0). The degree of the zero polynomial is
undefined (some books say it is negative infinity for reasons we will see later)

(v) A root of a polynomial p(z) € R[x] is a value a € R such that p(a) = 0.
(vi) If the degree of a polynomial is

e 1, then the polynomial is linear.
e 2 then the polynomial is quadratic.

e 3, then the polynomial is cubic.

(vii) C[z] are the complex polynomials, R[x] are the real polynomials, Q[z] are the rational
polynomials, Z[z] are the integral polynomials.

(vii) Let
f(x) = apx™ + 12"+ ...+ a1z + ao and g(z) = bpa" + b1+ ...+ bz + by
be polynomials over R[x]. Then f(x) = g(z) if and only if a; = b; for all ¢ € {0,1,...,n}.

(ix) x is an indeterminate (or a variable). It has no meaning on it’s own but can be replaced
by a value whenever it makes sense to do so.

(x) Operations on polynomials: Addition, Subtraction, Multiplication (See next page)

Instructor’s Comments: This is probably the 25-30 minute mark. The lecture is a
bit dry but we need to be on the same page.
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Handout or Document Camera or Class Exercise

Simplify (z° + 22+ 1)(z + 1) + (2% + 2 + 1) in Zy[z]

Solution:

P+ + D+ D)+ @ e+ D) =2 +25+ 23+ 2% 4o +14+2° 42 +1
=284+ 2° +22° + 2% + 22 +2

=% +2° +2?
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Example: Prove that (az+b)(z?+2z+1) over R is the zero polynomial if and only if a = b = 0.
Proof: Expanding gives
(az 4+ b)(z® +x +1) = az® + (a + b)2® + (a + b)z + b.

This is the zero polynomial if and only if a =0, a + b = 0 and b = 0 which holds if and only if
a=b=0. ]

Instructor’s Comments: This is the 40 minute mark

Theorem: (Division Algorithm for Polynomials (DAP)) Let F be a field. If f(z), g(x) € Flz]
and g(z) # 0 then there exists unique polynomials ¢(z) and r(x) in F[z] such that

f(z) = q(z)g(z) + r(z)
with 7(2) = 0 or deg(r(z)) < deg(g(z)).
Proof: Exercise (or extra reading). |
Note:
(i) q(z) is the quotient.
(ii) r(z) is the remainder.
(iii) If r(z) = 0, then g(z) divides f(z) and we write g(z) | f(z). Otherwise, g(z) t f(x).

In this case, we say that g(x) is a factor of f(x). If a polynomial has no nonconstant
polynomial factor of smaller degree, we say that the polynomial is irreducible.

Instructor’s Comments: Note here that we’re generalizing the definition of |.
This reduces to the definition we had for integers.

Example: Show over R that
(z—1)f (2 +1)

Proof: By DAP, there exists g(x) and r(x) polynomials over R such that
22 +1=(z—1)q(x)+r(z)
To show that r(x) # 0, it suffices to show that r(a) # 0 for some a € F. Take z = 1. Then
(1)? +1=(1—1)q(1) +r(1)
giving 2 = r(1). Therefore, r(x) # 0 hence (x — 1) { 2% + 1. [ |

Instructor’s Comments: My guess is that you will need to push this to the next
lecture which is fine.

Long Division
Let’s divide
f(z)=i2° + (i +3)2% + (5i + 3)z + (20 — 2)

by g(z) =z 4+ (i + 1).

182



/
IZ—+(t—1)

¥

Z

P~~~
N
e
ﬁlf w
' ol o
W T
PN
ﬂ.} Z.r Z.r
Pay RN
' S’
~’ |
-+
32
o~
~ |
|

ZT () 127+ (3

(c=1)2#)

2 )

n
L

Zz =

(L=1)

!"I'z +'('('-—

-

gz Lzt

c ()= 2L

183



Lecture 41

Handout or Document Camera or Class Exercise
Compute the quotient and the remainder when
242 222+ 22+ 1

is divided by g(v) = 222 + 3z + 4 in Zs[z].

Solution:

Bx x4
AT 3544 ’ X403 A #15e4 |
—-( Xq-ﬁ-"\)} 442,,})
3;} +Ox* + 1y
(33 +22+X)
3)(2 +x 4 ‘
..Ele—ix -H)

/P Yx
regnaind e~

cbuo"‘:cn"t‘.
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Instructor’s Comments: This is the 10 minute mark

Proposition: Let f(z),g(x) € F[z] be nonzero polynomials. If f(z) | g(x) and g(z) | f(x),
then f(x) = cg(zx) for some c € F.

Proof: By definition, there exists ¢(z) and ¢(x) in F[x] such that
f(@) = g(x)q(x)
g9(x) = f(x)q()

Substituting the second equation into the first gives:

f(x) = f(@)q(z)q(x) = fl2)(1—q(z)q(z)) =0

As f(z) # 0, we see that 1 = ¢(x)q(z). In fact, §(z) and ¢(x) are nonzero. Now, note that
deg(1) = 0 and thus

0 = deg(4(z)q(x)) = deg(q(z)) + deg(q(x))

(the last equality is an exercise - it holds in generality for nonzero polynomials). Therefore,
deg(q(z)) = 0 = deg(¢(z)). Therefore, ¢(x) = ¢ € F. Thus, substituting this into f(z) =
g(z)q(x) gives f(x) = cg(x) completing the proof. [ |

Instructor’s Comments: This is the 25 minute mark

Theorem: (Remainder Theorem (RT)) Suppose that f(z) € F[z] and that ¢ € F. Then, the
remainder when f(x) is divided by  — c is f(c).

Proof: By the Division Algorithm for Polynomials, there exists unique g(x) and r(z) in Flz]
such that

f(@) = (& = c)q(x) + r(z)

with r(z) = 0 or deg(r(z)) < deg(z — ¢) = 1. Therefore, deg(r(x)) = 0. In either case, r(z) =k
for some k € F. Plug in z = ¢ into the above equation to see that f(c) = r(c) = k. Hence

r(z) = f(c). [ ]
Example: Find the remainder when f(z) = 22 + 1 is divided by
(i) z—1
(i) z+1
(iii) z+i+1
Solution:
(i) By the Remainder Theorem, the remainder is f(1) = (1)? + 1 = 2.
(ii) Note that z +1 = z — (—1). By the Remainder Theorem, the remainder is f(—1) =
(-1)?2+1=2.
Note: z2+1=(z—1)(z+1)+2

(iii) Note that z +i+ 1 = 2z — (—i — 1). By the Remainder Theorem, the remainder is
fl=i—1)=(=i—1)24+1=-14+2i+1+1=2i+1.
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Handout or Document Camera or Class Exercise

In Z7[x], what is the remainder when 4z + 2z + 5 is divided by = + 67

Solution: Since x + 6 = x — 1 in Zy7, we see by the Remainder Theorem that the remainder is

412 +2(1)+5=11 =4 (mod 7)
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Instructor’s Comments: Ideally this is the 40 minute mark.

Theorem: (Factor Theorem (FT)) Suppose that f(z) € F[z] and ¢ € F. Then the polynomial
x — cis a factor of f(z) if and only if f(c) = 0, that is, ¢ is a root of f(x).

Proof: Note that = — ¢ is a factor of f(x) if and only if 7(z) = 0 via the Division Algorithm
for Polynomials (DAP) which holds if and only if r(z) = f(¢) = 0 via the Remainder Theorem
(RT). n
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Handout or Document Camera or Class Exercise
Prove that there does not exist a real linear factor of

flz)=2®4+ 23+ 1.

Solution: By the factor theorem, it suffices to show that f(z) has no real roots. We will show
that f(z) > 0 for all z € R.

Case 1: Suppose that |z| > 1. Then 2% + 23 > 0 and hence f(z) = 2% + 2% +1 > 0.

Case 2: Suppose that |#| < 1. Then |23 < 1 and so 2 + 1 > 0 and hence f(z) =
a® + 2% +1>0.

Instructor’s Comments: Note here that —1 < 23 < 1 and z® > 0. This is the 50
minute mark.
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Lecture 42

Handout or Document Camera or Class Exercise

Prove that a polynomial over any field F of degree n > 1 has at most n roots.

Instructor’s Comments: If you try this by contradiction, you will find yourself
using some sort of “ dot dot dot” type argument which ideally we’d like to avoid.
Try to steer students to the induction solution.

Solution: Let P(n) be the statement that all polynomials over F of degree n have at most n
roots. We prove this by induction on n.

Base Case: If n = 1, let ax + b € F[z] , with @ # 0. Solving for a root gives * = —a~'b
which exists since a is a nonzero element in a field and hence has a multiplicative inverse.

Induction Hypothesis: Assume that P(k) is true for some k € N.

Instructor’s Comments: It’s always a good idea to emphasize the for some state-
ment above.

Inductive step: Let p(xz) € Flz] be a degree k + 1 polynomial. Either p(x) has no root in
which case we are done or p(x) has a root, say ¢ € F. By the Factor Theorem, = — ¢ is a factor
of p(x). Write p(x) = (x — ¢)q(x) for some g(x) € F[x] of degree k. By the inductive hypothesis,
q(x) has at most k roots. Thus, p(z) has at most k + 1 roots. Therefore, by the Principle of
Mathematical Induction, P(n) is true for all natural numbers n. [ |

Instructor’s Comments: This could be the 15 minute mark
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Definition: Let F be a field. We say a polynomial of positive degree in F|[x] is reducible in
F[x] if and only if it can be written as the product of two polynomials in F[z| of positive degree.
Otherwise, we say that the polynomial is irreducible in F[z]. For example, 2 4 1 is irreducible
in R[z] but reducible in Clz].

Example: Factor f(z) = 2* — 223 + 322 — 42 + 2 into a product of irreducible polynomials
over Zr.

Proof: Note that f(1) = 0 and thus, by the Factor Theorem, x — 1 is a factor. By long division,
we have that
f(z) = (x —1) (2 — 2? + 22— 2)

Now, the sum of the coefficients of the cubic is still 0 hence x — 1 is another factor of f(x)! By
a second application of long division, we see that

f(z) = (z = 1)°(a” +2)

Instructor’s Comments: Emphasize to students they should do the long division.

Now, the Factor Theorem says that if 22 + 2 could be factored, it must have a root since the
factors must be linear. Checking the 7 possible roots gives

(0)2+2 =2 (mod 7)
(1)> 42 =3 (mod 7)
(2)24+2=6 (mod 7)
(3)2+2=4 (mod 7)
(4)> +2=4 (mod 7)
(5)2+2=6 (mod 7)
(6)24+2 =2 (mod 7)
Therefore, £2 4 2 has no root in Z; and the above form was completely factorized. ]

Instructor’s Comments: This is the 20 minute mark. You want to emphasize
that even though the factor theorem shows that 1 is a root, it doesn’t say with what
multiplicity. Thus you need to do the long division in order to find any additional
factors (or use the gcd of the polynomial and it’s derivative but we won’t be talking
about this)

Definition: The multiplicity of a root ¢ € F of f(z) € Flz] is the largest k¥ € N such that
(z — ¢)* is a factor of f(z).

Instructor’s Comments: Note we can take N above because we require that c is
a root of the polynomial.

Example: The multiplicity of 1 in the last example was 2.
Note: 2?4 222 4+ 1 = (22 + 1)? over R[z] but does not split into linear factors over R.

Theorem: (Fundamental Theorem of Algebra (FTA)) Every non-constant complex polynomial
has a complex root.

Instructor’s Comments: The proof will not be done in Math 135

Note:

(i) Roots need not be distinct.
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(ii) 2% + 1 over R shows that this does not happen over all fields.

Example: Solve 23 — 22 + 2 — 1 =0 over C.

Solution: Note that z — 1 is a factor (sum of coefficients is 0). Thus, either do long division or
note that

Bt —1=22 -+ @-1)=@E-DE*+1)=(z—1)(z—i)(z+1).

Instructor’s Comments: This is the 30 minute mark
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Handout or Document Camera or Class Exercise

Factor 123 + (3 —i)2? + (=3 — 2i)z — 6 as a product of linear factors. Hint: There is an easy
to find integer root!

Solution: By testing roots, notice that z = —1 and z = 2 are roots!

Instructor’s Comments: Note that you could look at the real part of this poly-

nomial when you plug in a real root r and get 3r> — 3r — 6 which has the two roots
—1 and 2.

Hence (z + 1)(z — 2) = 22 — z — 2 is a factor. Performing the long division yields

L2 ¥ B/#(Z)
.
Z - 22 6231320 2,62 )¢
i&g- c2t- 2.2
32 -32-€
22" -%2 4
r O

e

and therefore, f(z) = (z 4+ 1)(z — 2)(iz + 3).
Instructor’s Comments: Alternatively, you could note that since the constant

term of the polynomial is —6, the last linear factor must have 43 as its constant
term and since the leading coefficient is iz%, the leading coefficient must be i.
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Instructor’s Comments: This is the 40 minute mark.

Theorem: (Complex Polynomials of Degree n Have n Roots (CPN)) A complex polynomial
f(z) of degree n > 1 can be written as

f(z)=clz —c1)(z — c2)...(z — ¢y)
for some ¢ € C where ¢y, ¢a, ..., ¢,, € C are the (not necessarily distinct) roots of f(z).
Example: The polynomial 227 + 2% 4 iz 4 7 can be written as
2(z —2z1)(z — 2z2)...(z — 27)
for some roots z1, 29, ..., 27 € C.
Note: The factorization depends on the field! For example, factoring 2° — 24 — 23422 — 22 +2...
(i) ... over C, (z —i)(z +i)(z — V2)(z + V2)(z — 1)

(ii) ... over R, (22 +1)(2 — vV2)(z + V2)(2 — 1)

(iii) ... over Q, (22 +1)(2%2 —2)(2 — 1)
Instructor’s Comments: If you’re getting close, it might be best to stop here and
continue this on the next lecture.
Proof: (of CPN) We prove the given statement by induction on n.

Base Case: When n = 1, take az + b € Clz] where a # 0 and rewrite this as a(z — %b)

Inductive Hypothesis: Assume all polynomials over C of degree k can be written in the given
form for some k£ € N.

Inductive Step: Take f(z) € C[z] of degree k + 1. By the Fundamental Theorem of Algebra
and the Factor Theorem there is a factor z — ¢y of f(z) for some ;1 € C. Write

f(2) = (2 = arr1)9(2)

where g(z) has degree k. By the inductive hypothesis, write

g(z) =c(z —c1)...(z — ck)
for c1, ca,...c;; € C. Combine to get

k+1

flz) = CH(Z —¢).

i=1

Therefore, by the Principle of Mathematical Induction, the given statement is true for all n € N.
|

Instructor’s Comments: This is the 50 minute mark
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Lecture 43

Theorem: Rational Roots Theorem (RRT) If f(z) = an2"+...4+a124a € Z[z] andr = € Q
is a root of f(x) over Q in lowest terms, then s | ap and ¢ | ay,.

Proof: Plug r into f(z):
0=an(3)"+ ... +a1(}) + ao.

Multiply by "
0=aps" +an_15" 4+ ...+ arst" ' + agt™

Rearranging gives
apt™ = —5(aps" "t + an_15" 2t + .. 4+ ayt™ Y

and hence s | apt™. Since ged(s,t) = 1, we see that ged(s,t™) = 1 (following from GCDPF) and
hence s | ag by Coprimeness and Divisibility. Similarly, ¢ | a,. |

Example: Find the roots of
223 + 2% — 62 — 3 € R[]

Solution: By the Rational Roots Theorem, if r is a root, then writing » = %, we have that
s | —3 and ¢ | 2. This gives the following possibilities for r:

41,43, ﬁ, 1
2772

Trying each of these possibilities one by one shows that r = —% is a root since
2(FP+(F)P-6(5)-3=7+1+3-3=0
Hence (z + %) or (2z + 1) is a factor. By long division (or grouping and factoring), we see that
203 + 2% — 62 —3=2z+1)(2? —3) = 2z + 1)(z — V3)(z + V3)
Hence all real roots are given by _71, +4/3. |

Instructor’s Comments: This is the 15 minute mark.
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Handout or Document Camera or Class Exercise
Factor 23 — %132 + %:v + % as a product of irreducible polynomials over R.
Solution: The above polynomial is equal to
L (1523 — 3227 + 32+ 2) = f(2)
15
By the Rational Roots Theorem, possible roots are
+1, 43, £1 45 £2, 42 +2 £ 2

Note that x = 2 is a root. Hence by the Factor Theorem, x — 2 is a factor. By long division:

154 = Qx|
X2 [15¢3-32,243
[5x°=36,™
2,33,
"‘24(2 +4
N -

we have that f(z) = %(w —2)(1522 — 22 — 1) = 1—15(33 — 2)(5z + 1)(3xz — 1) completing the
question. |

Instructor’s Comments: This is the 30 minute mark
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Example: Prove that /7 is irrational.
Proof: Assume towards a contradiction that v/7 = 2 € Q. Square both sides gives
7=x? == 0=2a%-7

Therefore, as a polynomial, 2 — 7 has a rational root. By the Rational Root Theorem, the only
possible rational roots are given by +1,+7. By inspection, none of these are roots:

(£1)> —=7=—-6#0 (£7)> —7=42#0
Hence, x cannot be rational. |

Instructor’s Comments: This is the 35 minute mark
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Handout or Document Camera or Class Exercise

Prove that v/5 + /3 is irrational.

Solution: Assume towards a contradiction that v/5 4+ /3 = x € Q. Squaring gives
5+42V15 + 3 = 2? = 2V15 =2 -8
Squaring again gives
60 = x* — 1622 + 64 = 0=a"— 162 +4
By the Rational Roots Theorem, the only possible roots are
+1,42,+4
A quick check shows that none of these work.

Instructor’s Comments: This is the 45 minute mark
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Theorem: (Conjugate Roots Theorem (CJRT)) If ¢ € C is a root of a polynomial p(x) € R[x]
(over C) then € is a root of p(x).

Proof: Write p(z) = apz™ + ... + a1x + ap € R[z]| with p(c) = 0. Then:

p(€) = an(6)" + ... +aic+ag
=ap(c)"+ ...+ ac+ag Since coefficients are real and PCJ.
=anp(c)"+ ...+ ajc+agp By PCJ
=p(c)
=0

Instructor’s Comments: This is the 50 minute mark.
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Lecture 44
Handout or Document Camera or Class Exercise
How many of the following statements are true?

e Every complex cubic polynomial has a complex root.

e When 23 + 62 — 7 is divided by a quadratic polynomial axz? + bx + ¢ in R[z],
then the remainder has degree 1.

o I f(z), g(x) € Qla], then f(2)g(x) € Qe].

e Every non-constant polynomial in Zs[z]| has a root in Zs.

A) 0
B) 1
C) 2
D) 3
E) 4

Solution: The first statement is true by the Fundamental Theorem of Algebra. The second is
false since x — 1 is a factor of the cubic polynomial and so there must be a quadratic factor as
well. The third is true since Q[z] forms a ring. The last is false since say f(z) = z(z — 1)(x —
2)(x — 3)(z —4) + 1 has no roots over Zs[z]. Hence the answer is 2.
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Recall:

Theorem: (Conjugate Roots Theorem (CJRT)) If ¢ € C is a root of a polynomial p(x) € R[x]
(over C) then € is a root of p(x).

Note: This is not true if the coefficients are not real, for example (x + 4)? = 22 + 2ix — 1.

Example: Factor
flz)=20 =2t =23 422 — 2242

over C as a product of irreducible elements of C[z] given that i is a root.

Proof: Note by CJRT that +i are roots. By the Factor Theorem, we see that (z —i)(z + i) =
22 4+ 1 is a factor. Note that z — 1 is also a factor since the sum of the coefficients is 0.Hence,
(224 1)(z —1) = 23 — 22 + 2 — 1 is a factor. By long division,

2
S ,
el |27 ek 2mr
—(F = F 7" -7
i Ty

e

&

we see that f(2) = (23 =22+ 2-1)(22 = 2) = (z — i) (2 +9)(z — 1)(z — V2)(2 + V?2) is a full
factorization. [

200



Factor f(z) = z* — 523 + 1622 — 92 — 13 over C into a product of irreducible polynomials
given that 2 — 3¢ is a root.

Factors are (using the Factor Theorem and CJRT)
(z—(2-3i)(z— (2+3i)) = 2% — 42+ 13

After long division,
f(2) = (22 =42 +13)(2* — 2 — 1)

By the quadratic formula on the last quadratic,

_ (=D E V(D)2 -4 (-1)

T 2(1)
1+45
2
Hence, f(2) = (2 — (2= 3i))(z — (2 + 30))(z — (1 + v5)/2)(z — (1 — V/5)/2). ]
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Theorem: (Real Quadratic Factors (RQF)) Let f(z) € R[z]. If c€ C—R and f(c) = 0, then
there exists a g(x) € R[z] such that g(x) is a real quadratic factor of f(x).

Proof: Take

g9(z) = (z = ¢)(x — )
= 2% — (c+ )z + T
= 22 — 2R(c)z + |¢|* € R[z]

It suffices to show that g(x) is a factor of f(z). By the Division Algorithm for Polynomials,
there exists a unique ¢(z) and r(z) in R[z] such that

f(z) = g(x)q(z) + r(2)

with r(z) = 0 or deg(r(x)) < deg(g(z)) = 2, that is, r(z) is either constant or linear. Substitut-
ing x = c into the above gives

0= f(c) = g(c)g(c) +r(c) =r(c)

and hence r(c) = 0. Assume towards a contradiction that r(z) is linear. By definition, r(x) =
ax + b € R[x] with a # 0. Then

r(c)=ac+b=0 = c==€R

and this is a contradiction. Therefore, () is a constant polynomial and since r(c) = 0, we have
that r(z) = 0 and thus g(x) | f(x). [ |

Theorem: (Real Factors of Real Polynomials (RFRP)) Let f(z) = apz™+...+a1x+ag € R[z].
Then f(x) can be written as a product of real linear and real quadratic factors,

Proof: By CPN, f(z) has n roots over C. Let 71,72, ..., be the real roots and let ¢y, co, ..., ¢
be the strictly complex roots. By CJRT, complex roots come in pairs, say ce = ¢1, ¢4 = C3, ...,
¢y = ¢g—1 (hence also ¢ is even). For each pair, by RQF, we have an associated quadratic factor,
say q1(7), g2(x), ..., qo/2(w). By the Factor Theorem, each real root corresponds to a linear factor,
say g1(x), ..., gx(z). Hence

f(x) = cg1(x)...gx(7)q1(T)...q/2(T)

where c is the coefficient of the leading term completing the proof. |
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Handout or Document Camera or Class Exercise

Prove that a real polynomial of odd degree has a real root.

Solution: Assume towards a contradiction that p(z) is a real polynomial of odd degree without
a root. By the Factor Theorem, we know that if p(x) cannot have a real linear factor. By Real
Factors of Real Polynomials, we see that

p(z) = q1(2)...qx(2)
for some quadratic factors ¢;(x). Now, taking degrees shows that
deg(p(z)) = 2k

contradicting the fact that the degree was of p(x) is odd. Hence, the polynomial must have a
real root. |
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