Lecture 44
Handout or Document Camera or Class Exercise
How many of the following statements are true?

e Every complex cubic polynomial has a complex root.

e When z* + 6x — 7 is divided by a quadratic polynomial ax? + bx + ¢ in R[z],
then the remainder has degree 1.

o It f(2),g(x) € Qle], then f(x)g(x) € Qla].

e Every non-constant polynomial in Zs[z] has a root in Zs.

Solution: The first statement is true by the Fundamental Theorem of Algebra. The
second is false since x — 1 is a factor of the cubic polynomial and so there must be a
quadratic factor as well. The third is true since Q[z] forms a ring. The last is false since

say f(z) =x(z — 1)(z — 2)(z — 3)(x — 4) + 1 has no roots over Zs[x]. Hence the answer
Is 2.



Recall:

Theorem: (Conjugate Roots Theorem (CJRT)) If ¢ € C is a root of a polynomial
p(z) € R[z] (over C) then ¢ is a root of p(z).

Note: This is not true if the coefficients are not real, for example (z +14)? = 22 + 2iz — 1.

Example: Factor
f(2)=2" =2 =22+ 22— 2242

over C as a product of irreducible elements of C[z] given that i is a root.

Proof: Note by CJRT that +i are roots. By the Factor Theorem, we see that (z —i)(z +
i) = 2% + 1 is a factor. Note that z — 1 is also a factor since the sum of the coefficients is
0.Hence, (22 +1)(2 — 1) = 23 — 22 + 2 — 1 is a factor. By long division,
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we see that f(2) = (2 =22 +2-1)(22=2)=(z —)(z+i)(z - D)(z —V2)(z +V2) is a
full factorization. [



Factor f(z) = 22 —523+1622—92z—13 over C into a product of irreducible polynomials
given that 2 — 3¢ is a root.

Factors are (using the Factor Theorem and CJRT)
(z—(2-30)(z— (2+3i)) = 2> — 42 + 13

After long division,
f(2)=(—42+13)(2* —2—1)

By the quadratic formula on the last quadratic,
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Hence, f(2) = (2 — (2= 3i))(z — (2+ 30))(z — (1 + v/5)/2)(z — (1 = V/5)/2). ]



Theorem: (Real Quadratic Factors (RQF)) Let f(z) € R[z]. If c€ C—R and f(c¢) =0,
then there exists a g(x) € R[z] such that g(x) is a real quadratic factor of f(x).

Proof: Take

g(x) = (x = c)(z =)
= 2% — (c+ 0z +ct

= 2> — 2R(c)x + |c|* € R[]

It suffices to show that g(z) is a factor of f(x). By the Division Algorithm for Polynomials,
there exists a unique ¢(z) and r(x) in R[z] such that

f(x) = g(x)q(x) + r(z)

with r(xz) = 0 or deg(r(x)) < deg(g(x)) = 2, that is, r(z) is either constant or linear.
Substituting x = ¢ into the above gives

0= f(c) = glc)glc) +r(c) = r(c)

and hence r(c¢) = 0. Assume towards a contradiction that r(z) is linear. By definition,
r(z) = ax + b € R[z] with a # 0. Then

r(c)=ac+b=0 = c==2ecR

and this is a contradiction. Therefore, r(z) is a constant polynomial and since r(c) = 0,
we have that r(z) = 0 and thus g(z) | f(z). |

Theorem: (Real Factors of Real Polynomials (RFRP)) Let f(z) = a,2"+...+a1x+ag €
R[z]. Then f(z) can be written as a product of real linear and real quadratic factors,

Proof: By CPN, f(x) has n roots over C. Let ry,rs, ..., be the real roots and let
C1,Ca, ..., c¢ be the strictly complex roots. By CJRT, complex roots come in pairs, say
Cy = €1, €4 = C3, ..., g = ¢g—1 (hence also ¢ is even). For each pair, by RQF, we have an
associated quadratic factor, say qi(z), ¢2(), ..., q¢/2(x). By the Factor Theorem, each real
root corresponds to a linear factor, say ¢;(z), ..., gx(z). Hence

flz) = 091($)---gk($)Q1($)'--QZ/2(35)

where c is the coefficient of the leading term completing the proof. [ |



Handout or Document Camera or Class Exercise

Prove that a real polynomial of odd degree has a real root.

Solution: Assume towards a contradiction that p(z) is a real polynomial of odd degree
without a root. By the Factor Theorem, we know that if p(x) cannot have a real linear
factor. By Real Factors of Real Polynomials, we see that

p(x) = qu(z)...qu(x)
for some quadratic factors ¢;(x). Now, taking degrees shows that
deg(p(z)) = 2k

contradicting the fact that the degree was of p(x) is odd. Hence, the polynomial must
have a real root. |



