
Lecture 2

Claim: If n is a positive integer, then n2 + 1 is not a perfect square.

Proof: Let n be a positive integer. Then n2 < n2 + 1 < n2 + 2n + 1 = (n + 1)2. Since
there are no integer squares between n2 and (n+ 1)2, we are done. �

Question: What if we change n2 + 1 to n2 + 13?

Note: When demonstrating this statement, we would need a proof. When showing the
statement is false, we need a counterexample.

Solution: This is false. Consider what happens when n = 6. Then n2 + 13 = 62 + 13 =
49 = (7)2.

Question: What if we change n2 + 1 to 1141n2 + 1?

Solution: This is true for all n < 1024. Despite being true for a large number of values,
this does not constitute a proof. It turns out in this case this is also false. Consider
n = 30693385322765657197397208. You can check this in Sage/Python that this does
indeed give a counter example (that is, 1141n2 + 1 is a perfect square). Interested readers
should check out Pell’s Equations.

Instructor’s Comments: This is the 12 minute mark

Definition: A statement is a sentence that is either true or false.

Definition: A proposition is a claim that requires a proof.

Definition: A theorem is a strong proposition.

Definition: A lemma is a weak proposition.

Definition: A corollary follows immediately from a proposition.

Definition: An axiom is a given truth.

Example: Axiom: The square of a real number is nonnegative.

Example: Axiom: The sum of two even numbers is even. (You could prove this however
if you wanted)

Note: In general, axioms are statements that a fellow typical math 135 student should
know before entering this class.

Instructor’s Comments: This is the 20 minute mark

Example: Show that for θ ∈ R, sin(3θ) = 3 sin(θ)− 4 sin3(θ).

Note: ∈ means ’in; or ’belongs to’ and R is the set of real numbers.

Proof: Recall these three axioms hold for all x, y ∈ R:

1) sin2(x) + cos2(x) = 1
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2) sin(x± y) = sin(x) cos(y)± sin(y) cos(x)

3) cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y)

To prove equalities, we do left hand side to right hand side proofs (or vice versa). We
can also meet in the middle and do half starting with the left hand side and half starting
with the right hand side.

LHS = sin(3θ)

= sin(2θ + θ)

= sin(2θ) cos(θ) + sin(θ) cos(2θ) Use identity 2) with x = 2θ and y = θ

= (2 sin(θ) cos(θ)) cos(θ) + sin(θ)(cos2(θ)− sin2(θ)) Use identity 2) and 3) with x = y = θ

= 3 sin(θ) cos2(θ)− sin3(θ))

= 3 sin(θ)(1− sin2(θ))− sin3(θ)) Use identity 1) with x = θ

= 3 sin(θ)− 4 sin3(θ)

= RHS

Note: Make sure to identify the uses of trigonometric identities above. Be explicit.

Instructor’s Comments: This is the 30-33 minute mark

In what follows, we will discuss good and bad proofs of Stewart’s Theorem. Try to
prove the theorem yourself.

Instructor’s Comments: This is the 38 minute mark

Then analyze the proofs for improvement.

Instructor’s Comments: This will take you to the 46 minute mark
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Handout or Document Camera or Class Exercise

Stewart’s Theorem Let ABC be a triangle with AB = c, AC = b and BC = a.
If P is a point on BC with BP = m, PC = n and AP = d,
then dad+man = bmb+ cnc.

Proof. Proof A

c2 = m2 + d2 − 2md cos θ

b2 = n2 + d2 − 2nd cos θ′

b2 = n2 + d2 + 2nd cos θ

m2 − c2 + d2

−2md
=
b2 − n2 − d2

2nd

nc2 − nm2 − nd2 = −mb2 +mn2 +md2

nc2 −mb2 = mn2 +md2 + nm2 + nd2

cnc+ bmb = nm(n+m) + d2(m+ n)

cnc+ bmb = man+ dad

�

Note: Unclear what θ and θ′ are. No explanation. Division by variables should be careful
about 0.
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Handout or Document Camera or Class Exercise

Stewart’s Theorem Let ABC be a triangle with AB = c, AC = b and BC = a.
If P is a point on BC with BP = m, PC = n and AP = d,
then dad+man = bmb+ cnc.

Proof. Proof B

The Cosine Law on 4APB tells us that

c2 = m2 + d2 − 2md cos (∠APB).

Subtracting c2 from both sides gives

0 = −c2 +m2 + d2 − 2md cos (∠APB).

Adding 2md cos∠APB to both sides gives

2md cos (∠APB) = −c2 +m2 + d2.

Dividing both sides by 2md gives

cos (∠APB) =
−c2 +m2 + d2

2md
.

Now, the Cosine Law on 4APC tells us that

b2 = n2 + d2 − 2nd cos∠APC.

Since ∠APC and ∠APB are supplementary angles, then

cos∠APC = cos (π − ∠APB) = − cos (∠APB).

Substituting into our previous equation, we see that

b2 = n2 + d2 + 2nd cos∠APB.

Subtracting n2 from both sides gives

b2 − n2 = d2 + 2nd cos (∠APB).

Then subtracting d2 from both sides gives

b2 − n2 − d2 = 2nd cos (∠APB).
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Dividing both sides by 2nd gives

b2 − n2 − d2
2nd

= cos (∠APB).

Now we have two expressions for cos (∠APB) and equate them to yield

−c2 +m2 + d2

2md
=
b2 − n2 − d2

2nd
.

Multiplying both sides by 2mnd shows us that

n(−c2 +m2 + d2) = m(b2 − n2 − d2).

Next we distribute to get

−nc2 + nm2 + nd2 = mb2 −mn2 −md2.

Adding nc2 +mn2 +md2 to both sides gives

nm2 +mn2 + nd2 +md2 = mb2 + nc2.

Factoring twice gives:

nm(m+ n) + d2(m+ n) = mb2 + nc2.

Since P lies on BC, then a = m+ n so we substitute to yield

nma+ d2a = mb2 + nc2.

Finally, we can rewrite this as bmb+ cnc = dad+man.. �

Note: Too verbose. Can shorten the explanation by not writing out every algebraic
manipulation.
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Handout or Document Camera or Class Exercise

Stewart’s Theorem Let ABC be a triangle with AB = c, AC = b and BC = a.
If P is a point on BC with BP = m, PC = n and AP = d,
then dad+man = bmb+ cnc.

Proof. Proof C

Using the Cosine Law for supplementary angles ∠APB and ∠APC, and then clearing
denominators and simplifying gives dad+man = bmb+ cnc as required. �

Note: No details given. Need to provide some evidence of algebraic manipulation.
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Handout or Document Camera or Class Exercise

Stewart’s Theorem Let ABC be a triangle with AB = c, AC = b and BC = a.
If P is a point on BC with BP = m, PC = n and AP = d,
then dad+man = bmb+ cnc.

Proof. Proof D

The Cosine Law on 4APB tells us that

c2 = m2 + d2 − 2md cos∠APB.

Similarly, the Cosine Law on 4APC tells us that

b2 = n2 + d2 − 2nd cos∠APC.

Since ∠APC and ∠APB are supplementary angles, we have

b2 = n2 + d2 + 2nd cos∠APB.

Equating expressions for cos∠APB yields

−c2 +m2 + d2

2md
=
b2 − n2 − d2

2nd
.

Clearing the denominator and rearranging gives

nm2 +mn2 + nd2 +md2 = mb2 + nc2.

Factoring yields
mn(m+ n) + d2(m+ n) = mb2 + nc2.

Substituting a = (m+ n) gives dad+man = bmb+ cnc as required. �

Note: Overall a good proof. Perhaps some more information on why the supplementary
angle step holds would be good. Justifying why division by a variable is allowed (that is,
nonzero variables) would be a plus and perhaps labeling previous equations to reference in
the future would help this proof slightly. This would be an acceptable answer regardless
of these minor quibbles.

Instructor’s Comments: This concludes up to the 46-48 minute mark
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Handout or Document Camera or Class Exercise

Find the flaw in the following arguments:

(i) For a, b ∈ R,

a = b

a2 = ab

a2 − b2 = ab− b2
(a− b)(a+ b) = b(a− b)

a+ b = b ERROR: division by 0 since a = b

b+ b = b

2b = b

2 = 1

Instructor’s Comments: This is the end of lecture 2. Begin Lecture 3
with the next two examples.

(ii)

x =
π + 3

2
2x = π + 3

2x(π − 3) = (π + 3)(π − 3)

2πx− 6x = π2 − 9

9− 6x = π2 − 2πx

9− 6x+ x2 = π2 − 2πx+ x2

(3− x)2 = (π − x)2

3− x = π − x
3 = π

(iii) For x ∈ R,

(x− 1)2 ≥ 0

x2 − 2x+ 1 ≥ 0

x2 + 1 ≥ 2x

x+ 1
x
≥ 2
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Example: Let x, y ∈ R. Prove that

5x2y − 3y2 ≤ x4 + x2y + y2

Proof: Since 0 ≤ (x2 − 2y)2, we have

0 ≤ (x2 − 2y)2

0 ≤ x4 − 4x2y + 4y2

5x2y − 3y2 ≤ x4 − 4x2y + 4y2 + 5x2y − 3y2

5x2y − 3y2 ≤ x4 + x2y + y2

Alternate proof:

RHS = x4 + x2y + y2

= x4 + x2y + y2 + 5x2y − 5x2y + 3y2 − 3y2

= x4 − 4x2y + 4y2 + 5x2y − 3y2

= (x2 − 2y)2 + 5x2y − 3y2

≥ 5x2y − 3y2

= LHS

Note: To discover this proof. Play around with the given inequality on a napkin (rough
work). Manipulate it until you reach a true statement. Then write your proof starting
with the given true statement to reach the desired inequality. Notice that starting with
the given inequality is NOT valid since you do not know whether or not it is true to
begin with. New truth can only be derived from old truth. (Analogy: You need a solid
foundation to build a house). Here is a sample of my napkin work:

5x2y − 3y2 ≤ x4 + x2y + y2

0 ≤ x4 + x2y + y2 − 5x2y + 3y2

0 ≤ x4 − 4x2y + 4y2

0 ≤ (x2 − 2y)2.

The last statement is clearly true thus so long as I can reverse my steps, I have a valid
proof. Note that you must write the proof starting with the true statement and deriving
the new truth statements.

Instructor’s Comments: This is the 20 minute mark

Throughout the remainder of this lecture, let A, B, C be statements.

Definition: ¬A is NOT A.

A ¬A
T F
F T

Note: : Truth tables can be used both as definitions of operators (as was done here) or
in proofs (as will be done later). Make sure you understand the difference.

Definition: A ∧B is A and B. Further, A ∨B is A or B.
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A B A ∧B A ∨B
T T T T
T F F T
F T F T
F F F F

Instructor’s Comments: This is the 26 minute mark
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Handout or Document Camera or Class Exercise

Which of the following are true?

• π is irrational and 3 > 2

• 10 is even and 1 = 2

• 7 is larger than 6 or 15 is a multiple of 3

• 5 ≤ 6

• 24 is a perfect square or the vertex of parabola x2 + 2x+ 3 is (1, 1)

• 2.3 is not an integer

• 20% of 50 is not 10

• 7 is odd or 1 is positive and 2 6= 2

Solution: In order: True, False, True, True, False, True, False, True.
Note: For the last one above, the order of operations for logical operators (mathemat-
ically) is ¬, ∧, ∨. If you change this order, the last bullet becomes false. This is not
required knowledge in MATH 135 but you should make a note. Further, this is not
consistent across programming languages.

Instructor’s Comments: This is the 32 minute mark. It is possible to move
this to the end of the lecture near the other similar handout if you want to
avoid swapping back and forth from projector to notes.
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Definition: The symbol ≡ in logic means “logically equivalent”, that is, in a truth
table, the LHS and RHS are equivalent (share the same truth values for all possibilities;
share the same truth values in columns, etc.). Example: Show that ¬(¬A) ≡ A.
Proof:

A ¬A ¬(¬A)
T F T
F T F

Since the first and last columns are equal, A =≡ ¬(¬A).

Note: It is important to have a concluding statement like above. Make sure the reader
knows why you know you have proven your statement.
Theorem: De Morgan’s Law (DML)

¬(A ∨B) ≡ ¬A ∧ ¬B
¬(A ∧B) ≡ ¬A ∨ ¬B

We prove only the first. The second is left as an exercise.

A B A ∨B ¬(A ∨B) ¬A ¬B ¬A ∧ ¬B
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

Since the fourth and the last columns are equal, we have that ¬(A ∨ B) ≡ ¬A ∧ ¬B
as required. �

Instructor’s Comments: It is worth noting that this is the first time an
acronym is used. I am not certain if this acronym is in the textbook. This
would be a good time to emphasize when using a theorem or a result, you
should use the acronym or name.

Example: For Homework, prove that A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C).

Instructor’s Comments: This is the 40 minute mark

Definition: Implication (A⇒ B)

A B A⇒ B
T T T
T F F
F T T
F F T

In A⇒ B, we call A the hypothesis and B the conclusion.

Note: Notice that if the hypothesis is false, the implication is always evaluated as true.
Similarly, if the conclusion is true, the implication is always evaluated as true.

Note: To prove A⇒ B, we assume A is true and then show that B is true.
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Note: To use A⇒ B, we prove A is true and then use B as true.

Proposition: Let A and B be statements. Then A⇒ B ≡ ¬A ∨B.

Proof:

A B A⇒ B ¬A ¬A ∨B
T T T F T
T F F F F
F T T T T
F F T T T

Since the third and fifth columns are equal, we see that A⇒ B ≡ ¬A ∨B. �
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Handout or Document Camera or Class Exercise

In the following, identify the hypothesis, the conclusion and state whether the state-
ment is true or false.

• If
√

2 is rational then 2 < 3

• If (1+1=2) then 5 · 2 = 11

• If C is a circle, then the area of C is πr2

• If 5 is even then 5 is odd

• If 4− 3 = 2 then 1 + 1 = 3

Solution: True, False, True, True, True.

Instructor’s Comments: This is the 50 minute mark
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Lecture 4

Handout or Document Camera or Class Exercise

Instructor’s Comments: Clicker Questions to start every 4th lecture.

Suppose A, B and C are all true statements.

The compound statement (¬A) ∨ (B ∧ ¬C) is

A) True

B) False

Solution: The answer is False.

Instructor’s Comments: This should take about 5 minutes. For all clicker
questions, if the results are poor - get them to talk to each other and repoll.
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Recall:

Proposition: Let A and B be statements. Then A⇒ B ≡ ¬A ∨B.

Proposition: Let A and B be statements. Then ¬(A⇒ B) ≡ A ∧ ¬B. Reworded, the
negation of an implication is the hypothesis and the negation of the conclusion.

Proof:

¬(A⇒ B) ≡ ¬(¬A ∨B) By the above proposition

≡ ¬(¬A) ∧ ¬B De Morgan’s Law

≡ A ∧ ¬B By proposition from class

This completes the proof. �

Instructor’s Comments: This is the 10 minute mark. Note it is important
to do the negation of implication with them.

Definition: Denote the set of integers by Z.

Note: We use Z since this is the first letter of the word integer... in German! (Zählen)

Definition: Let m,n ∈ Z. We say that m divides n and write m | n if (and only if)
there exists a k ∈ Z such that mk = n. Otherwise, we write m - n, that is, when there is
no integer k satisfying mk = n.

Note: The “(and only if)” part will be explained in a few lectures.

Instructor’s Comments: I tell my students that definitions in mathematics
should be if and only if however mathematicians are sloppy and do not do this
in practice.

Example:

(i) 3 | 6

(ii) 2 | 2

(iii) 7 | 49

(iv) 3 | −27

(v) 6 - 8

(vi) 55 | 0

(vii) 0 | 0

(viii) 0 - 3

Instructor’s Comments: This is the 17 minute mark

Example: Does π | 3π? This question doesn’t make sense since in the definition of |,
we required both m and n to be integers (there are ways to extend the definition but here
we’re restricting ourselves to talk only about integers when we use |).
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Example: (Direct Proof Example) Prove n ∈ Z ∧ 14 | n⇒ 7 | n.

Proof: Let n ∈ Z and suppose that 14 | n. Then ∃k ∈ Z s.t. 114k = n. Then (7·2)k = n.
By associativity, 7(2k) = n. Since 2k ∈ Z, we have that 7 | n.

Note: The symbol ∃ means “there exists”. the letters s.t. mean “ such that”.

Instructor’s Comments: This is the 30 minute mark. It is not necessary
to mention associativity above but I’ll introduce rings at some point and so
this seems like a good opportunity to remind students of what things they
can take as axioms.

Recall: An integer n is

(i) Even if 2 | n

(ii) Odd if 2 | (n− 1).

Proposition: Let n ∈ Z. Suppose that 22n is an odd integer. Show that 2−2n is an odd
integer.

Proof: Note that the hypothesis is only true when n = 0. If n < 0, then 22n is not an
integer. If n > 0 then 22n = 2 · 22n−1 and since 2n− 1 > 0, we see that 22n is even. Hence
n = 0 and thus 22n = 1 = 2−2n. Thus 2−2n is an odd integer. �

Note: Ask yourself when is the hypothesis true. Then consider that/those case(s).
Breaking up into cases is a great way to prove statements. Sometimes breaking a statement
into even and odd, or positive and negative are great strategies.

Instructor’s Comments: This is the 40 minute mark. Ask the students to
attempt to give you a good definition of prime. This is a good exercise for
students to make precise definitions.

Definition: An integer p is said to be prime if (and only if) p > 1 and its only positive
divisors are 1 and p.

Example: Show that p and p+ 1 are prime only when p = 2.

Instructor’s Comments: Can do this example if you have time. Otherwise
it’s fine to leave it as an exercise

Proposition: Bounds by Divisibility (BBD).

a | b ∧ b 6= 0⇒ |a| ≤ |b|

Proof: Let a, b ∈ Z such that a | b and b 6= 0. Then ∃k ∈ Z such that ak = b. Since
b 6= 0, we know that k 6= 0. Thus, |a| ≤ |a||k| = |ak| = |b| as required. �

Instructor’s Comments: This is probably the 50 minute mark. If you have
time, state TD and DIC below.

Proposition: Transitivity of Divisibility (TD)

a | b ∧ b | c⇒ a | c
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Proof: There exists a k ∈ Z such that ak = b. There exists an ` ∈ Z such that b` = c.
This implies that (ak)` = c and hence a(k`) = c. Since k` ∈ Z, we have that a | c. �

Proposition: Divisibility of Integer Combinations (DIC). Let a, b, c ∈ Z. If a | b and
a | c. Then for any x, y ∈ Z, we have a | (bx+ cy).
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A B A⇔ B
T T T
T F F
F T F
F F T

Note: Definitions in mathematics should (almost) always be if and only if definitions.
Mathematicians generally are sloppy and don’t do this. We will try to be careful in this
course but you have been warned for other courses.

Exercise: Show that A⇔ B ≡ (A⇒ B) ∧ (B ⇒ A)

Example: In ∆ABC, show that b = c cosA if and only if ∠C = π
2
.

Proof: Suppose that b = c cosA. By the Cosine Law,

a2 = b2 + c2 − 2bc cosA

a2 = b2 + c2 − 2bb

a2 = c2 − b2
a2 + b2 = c2

Is the converse of the Pythagorean Theorem true? Let’s find out! Using the cosine law
again,

c2 = a2 + b2 − 2ab cosC

c2 = c2 − 2ab cosC

0 = −2ab cosC

Therefore, cosC = 0 since 0 < ∠C < π, we see that ∠C = π/2.

Now we prove the converse. Suppose that ∠C = π/2. Then ∆ABC is a right angled
triangle! Hence, cosA = b

c
and thus c cosA = b as required. �

Instructor’s Comments: This should be the 35 minute mark. Emphasize
proving the converse in iff proofs.
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Handout or Document Camera or Class Exercise

Prove the following. Suppose that x, y ≥ 0. Show that x = y if and only if x+y
2

=
√
xy.

Instructor’s Comments: Give 5 minutes to try it and 5 minutes to take it
up.

Proof: Suppose first that x+y
2

=
√
xy. Then

x+ y

2
=
√
xy

x+ y = 2
√
xy

(x+ y)2 = (2
√
xy)2

x2 + 2xy + y2 = 4xy

x2 − 2xy + y2 = 0

(x− y)2 = 0.

Therefore, x− y = 0 and thus x = y. Now, suppose first that x = y. Then

LHS =
x+ y

2
=
y + y

2
=

2y

2
= y

and

RHS =
√
xy =

√
y2 = y

with the last equality holding since y ≥ 0. Therefore, x+y
2

=
√
xy.

Instructor’s Comments: This is the 45 minute mark.

3



Definition: A set is a collection of elements.

Example:

(i) Z = {...− 2,−1, 0, 1, 2, ...}

(ii) N = {1, 2, ...}

(iii) R

(iv) Q = {a/b ∈ R : a ∈ Z ∧ b ∈ Z ∧ b 6= 0} (We call R the universe of discourse.

(v) {5, A}

(vi) S = {�, 2, {1, 2}}

Note: For Math 135, the natural numbers begin with the element 1. (Some textbooks
or courses start with 0).

Note: x ∈ S means x in S (or x belongs to S) and x /∈ S means x not in S.

Instructor’s Comments: If you have time here do these, otherwise start the
next lecture with these two points.

Note: {} and ∅ are the empty set, a set with no elements.

Note: {∅} is NOT the empty set. It is a set with one element, the element that is the
empty set.
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Handout or Document Camera or Class Exercise

Describe the following sets using set-builder notation:

(i) Set of even numbers between 5 and 14 (inclusive).

(ii) All odd perfect squares.

(iii) Sets of three integers which are the side lengths of a (non-trivial) triangle.

(iv) All points on a circle of radius 8 centred at the origin.

Instructor’s Comments: 5 minutes to try on their own and 5 to take up

Solution:

(i) {6, 8, 10, 12, 14} or {n ∈ N : 5 ≤ n ≤ 14 ∧ 2 | n}

(ii) {(2k + 1)2 : k ∈ Z} (or N overlap doesn’t matter!)

(iii) {(a, b, c) : a, b, c ∈ N ∧ a < b + c ∧ b < a + c ∧ c < a + b}

(iv) {(x, y) : x, y ∈ R ∧ x2 + y2 = 82}

Instructor’s Comments: This is the 17 minute mark
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Set Operations. Let S and T be sets. Define

(i) #S or |S|. Size of the set S.

(ii) S ∪ T = {x : x ∈ S ∨ x ∈ T} (Union)

(iii) S ∩ T = {x : x ∈ S ∧ x ∈ T} (Intersection)

(iv) S − T = {x ∈ S : x /∈ T} (Set difference)

(v) S̄ or Sc (with respect to universe U) the complement of S, that is

Sc = {x ∈ U : x /∈ S} = U − S

(vi) S × T = {(x, y) : x ∈ S ∧ y ∈ T} (Cartesian Product)

Example: (1, 2) ∈ Z× Z, (2, 1) ∈ Z× Z, BUT (1, 2) 6= (2, 1).

Note: Z× Z and {(n, n) : n ∈ Z} are different sets!!!

Example:

Z = {m ∈ Z : 2 | m} ∪ {2k + 1 : k ∈ Z}
∅ = {m ∈ Z : 2 | m} ∩ {2k + 1 : k ∈ Z}

Instructor’s Comments: This is the 30-33 minute mark

Definition: Let S and T be sets. Then

(i) S ⊆ T : S is a subset of T . Every element of S is an element of T .

(ii) S ( T : S is a proper/strict subset of T . Every element of S is an element of T and
some element of T is not in S.

(iii) S ⊇ T : S contains T . Every element of T is an element of S.

(iv) S ) T : S properly/strictly contains T . Every element of T is an element of S and
some element of S is not in T .

Definition: S = T means S ⊆ T and T ⊆ S.

Example: {1, 2} = {2, 1}

Example: Prove {n ∈ N : 4 | (n + 1)} ⊆ {2k + 1 : k ∈ Z}

Proof: Let m ∈ {n ∈ N : 4 | (n + 1)}. Then 4 | (m + 1). Thus, ∃` ∈ Z such that
4` = m + 1. Now

m = 2(2`)− 1 = 2(2`)− 2 + 2− 1 = 2(2`− 1) + 1.

Hence m ∈ {2k + 1 : k ∈ Z}. �

Instructor’s Comments: This is the 40-43 minute mark. You might run
out of time in the next example. Carry forward to Lecture 7 as need be.

Example: Show S = T if and only if S ∩ T = S ∪ T .
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Proof: Suppose S = T . To show S ∩ T = S ∪ T we need to show that S ∩ T ⊆ S ∪ T
and that S ∩ T ⊇ S ∪ T

First suppose that x ∈ S ∩ T . Then x ∈ S and x ∈ T . Hence x ∈ S ∪ T .

Next, suppose that x ∈ S ∪ T . Then x ∈ S or x ∈ T . Since S = T we have in either
case that x ∈ S and x ∈ T . Thus x ∈ S∩T . This shows that S∩T = S∪T and completes
the forward direction.

Now assume that S ∩ T = S ∪ T . We want to show that S = T which we do by
showing that S ⊆ T and T ⊆ S.

First, suppose that x ∈ S. Then x ∈ S ∪ T = S ∩ T . Hence x ∈ T .

Next, suppose that x ∈ T . Then x ∈ S ∪ T = S ∩ T . Hence x ∈ S. Therefore, S = T .
�

Instructor’s Comments: The last two points give a good learning moment
to explain when the word ‘similarly’ can be used. This is the 50 minute mark.
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Lecture 7

Quantified Statements

(i) For every natural number n, 2n2 + 11n + 15 is composite.

(ii) There is an integer k such that 6 = 3k.

Symbolically, we write

(i) ∀n ∈ N, 2n2 + 11n + 15 is composite.

(ii) ∃k ∈ Z such that 6 = 3k.

We call ∀ and ∃ quantifiers, n and k variables, N and Z domains and the rest are called
an open sentence (usually involving the variable(s)).

Note: ∀x ∈ S P (x) means for all x in S, statment P (x) holds. This is equivalent to
x ∈ S ⇒ P (x).

Proof: (of number 1 above) Let n be an arbitrary natural number. Then factoring gives
2n2 + 11n+ 15 = (2n+ 5)(n+ 3). Since 2n+ 5 > 1 and n+ 3 > 1, we have 2n2 + 11n+ 15
is composite.

Proof: (of number 2 above) Since 3·2 = 6, we see that k = 2 satisfies the given statement.

Example: S ⊆ T ≡ ∀x ∈ S x ∈ T

Instructor’s Comments: This is the 7 minute mark

1



Handout or Document Camera or Class Exercise

Example: Prove that there is an x ∈ R such that x2+3x−3
2x+3

= 1.

Proof: When x = 2, note that 22+3(2)−3
2(2)+3

= 7
7

= 1. �

Note: : The discovery of this proof is perhaps what is more interesting:

x2 + 3x− 3

2x + 3
= 1 ⇔ x2 + 3x− 3 = 2x + 3 ⇔ x2 + x− 6 = 0

and the last equation factors as (x− 2)(x + 3) = 0 and hence x = 2.

Instructor’s Comments: This is the 17 minute mark

2



Note: : Vacuously true statements ∀x ∈ ∅, P (x). Since there is no element in the empty
set, we define this statement to always be true as a matter of convention.

Example: Let a, b, c ∈ Z. If ∀x ∈ Z, a | (bx + c) then a | (b + c).

Proof: Assume ∀x ∈ Z, a | (bx + c). Then, for example, when x = 1, we see that
a | (b(1) + c). Thus a | (b + c).

Instructor’s Comments: Note: If you’re running short on time, this next
example can be omitted

Example: ∃m ∈ Z such that m−7
2m+4

= 5.

Proof: When m = 3, note that m−7
2m+4

= −3−7
2(−3)+4

= −10
−2

= 5

Instructor’s Comments: This should be the 26-30 minute mark

3



Handout or Document Camera or Class Exercise

Example: Show that for each x ∈ R, we have that x2 + 4x + 7 > 0.

Instructor’s Comments: For the next two pages, you should give students
say 5 minutes each (maybe more for the second handout) and then take them
up as a class for 5 minutes each

Proof: Let x ∈ R be arbitrary. Then

x2 + 4x + 7 = x2 + 4x + 4− 4 + 7

= (x + 2)2 + 3

> 0

4



Handout or Document Camera or Class Exercise

Sometimes ∀ and ∃ are hidden! If you encounter a statement with quantifiers, take a
moment to make sure you understand what the question is saying/asking.

Examples:

(i) 2n2 + 11n + 15 is never prime when n is a natural number.

(ii) If n is a natural number, then 2n2 + 11n + 15 is composite.

(iii) m−7
2m+4

= 5 for some integer m.

(iv) m−7
2m+4

= 5 has an integer solution.

Solution:

(i) ∀n ∈ N, 2n2 + 11n + 15 is not prime.

(ii) ∀n ∈ N, 2n2 + 11n + 15 is composite.

(iii) ∃m ∈ Z, m−7
2m+4

= 5.

(iv) ∃m ∈ Z, m−7
2m+4

= 5.

Instructor’s Comments: This should be about the 46 minute mark

5



Note: : Domain is important!

Let P (x) be the statement x2 = 2 and let S = {
√

2,−
√

2}. Which of the following
are true?

(i) ∃x ∈ Z, P (x)

(ii) ∀x ∈ Z, P (x)

(iii) ∃x ∈ R, P (x)

(iv) ∀x ∈ R, P (x)

(v) ∃x ∈ S, P (x)

(vi) ∀x ∈ S, P (x)

Solution:

(i) False

(ii) False

(iii) True

(iv) False

(v) True

(vi) True

Instructor’s Comments: This is the end of the lecture.
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Lecture 8

Handout or Document Camera or Class Exercise

Consider the following statement.

{2k : k ∈ N} ⊇ {n ∈ Z : 8 | (n+ 4)}

A well written and correct direct proof of this statement could begin with

A) We will show that the statement is true in both directions.

B) Assume that 8 | 2n where n is an integer.

C) Let m ∈ {n ∈ Z : 8 | (n+ 4)}.

D) Let m ∈ {2k : k ∈ N}.

E) Assume that 8 | (2k + 4).

Solution: Let m ∈ {n ∈ Z : 8 | (n+ 4)}.

Instructor’s Comments: This is the 5 minute mark

1



Handout or Document Camera or Class Exercise

Notes:

(i) A single counter example proves that (∀x ∈ S, P (x)) is false.

Claim: Every positive even integer is composite.

This claim is false since 2 is even but 2 is prime.

(ii) A single example does not prove that (∀x ∈ S, P (x)) is true.

Claim: Every even integer at least 4 is composite.

This is true but we cannot prove it by saying ”6 is an even integer and is composite.”
We must show this is true for an arbitrary even integer x. (Idea: 2 | x so there
exists a k ∈ N such that 2k = x and k 6= 1.)

(iii) A single example does show that (∃x ∈ S, P (x)) is true.

Claim: Some even integer is prime.

This claim is true since 2 is even and 2 is prime.

(iv) What about showing that (∃x ∈ S, P (x)) is false?

Idea: (∃x ∈ S, P (x)) is false ≡ ∀x ∈ S,¬P (x) is true. This idea is central for proof
by contradiction which we will see later.

Instructor’s Comments: This is the 10-13 minute mark

2



Negating Quantifiers Example: Negate the following:

(i) Everybody in this room was born before 2010.

Solution: Somebody in this room was not born before 2010.

(ii) Someone in this room was born before 1990

Solution: Everyone in this room was born after 1990.

(iii) ∀x ∈ R, |x| < 5

Solution: ¬(∀x ∈ R, |x| < 5) ≡ ∃x ∈ R, |x| ≥ 5

(iv) ∃x ∈ R, |x| ≤ 5

Solution: ¬(∃x ∈ R, |x| ≤ 5) ≡ ∀x ∈ R, |x| > 5

Instructor’s Comments: Let them validate the truth of the above state-
ments. This could take you to the 20 minute mark easily

Note: A proof that a statement is false is called a disproof.

Example: Prove or disprove: Let a, b, c ∈ Z. If a | bc then a | b or a | c.

Solution: This is false! A counter example is given by a = 6, b = 2 and c = 3. Then
a | bc BUT 6 - 2 and 6 - 3.

Note: It turns out that this is true if you require additionally that a is prime. This is
called Euclid’s Lemma. We’ll see a proof of this in 5 weeks. It is actually very nontrivial
to prove.

Instructor’s Comments: Get them to think about the prime condition.
The proof of this requires GCDs in the prime case to the best of my knowledge.
This is the 27 minute mark.

3



Handout or Document Camera or Class Exercise

Which of the following are true?

(i) ∀x ∈ R,∀y ∈ R, x3 − y3 = 1

(ii) ∃x ∈ R,∃y ∈ R, x3 − y3 = 1

(iii) ∀x ∈ R,∃y ∈ R, x3 − y3 = 1

(iv) ∃x ∈ R,∀y ∈ R, x3 − y3 = 1

Solution:

(i) False (Choose x = y = 0)

(ii) True (Choose x = 1 and y = 0)

(iii) True.

Proof: Let x ∈ R be arbitrary. then choose y = 3
√
x3 − 1. Then

x3 − y3 = x3 − (
3
√
x3 − 1)3 = x3 − (x3 − 1) = 1

(iv) False. Idea: Negate and show the negation is true!

¬(∃x ∈ R,∀y ∈ R, x3 − y3 = 1) ≡ ∀x ∈ R,∃y ∈ R, x3 − y3 6= 1

Proof: Let x ∈ R be arbitrary. Take y = x. Then x3 − y3 = x3 − x3 = 0 6= 1.

Instructor’s Comments: This is the 40 minute mark



Handout or Document Camera or Class Exercise

List all elements of the set:

{n ∈ Z : n > 1 ∧ ((m ∈ Z ∧m > 0 ∧m | n)⇒ (m = 1 ∨m = n))} ∩ {n ∈ Z : n | 42}

Solution: The first set is the set of all primes. The second set is the set of all divisors of 42,
namely

{±1,±2,±3,±6,±7,±14,±21,±42}.
The intersection is therefore {2, 3, 7}.

5



Check out http://www.cemc.uwaterloo.ca/~cbruni/Math135Resources.php for symbol
cheat sheets and theorem cheat sheets and other goodies!

Instructor’s Comments: End of class
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Lecture 9

Handout or Document Camera or Class Exercise

Rewrite the following using as few English words as possible.

(i) No multiple of 15 plus any multiple of 6 equals 100.

(ii) Whenever three divides both the sum and difference of two integers, it also divides
each of these integers.

Solution:

(i) ∀m,n ∈ Z, (15m + 6n 6= 100)

(ii) ∀m,n ∈ Z, ((3 | (m + n) ∧ 3 | (m− n))⇒ 3 | m ∧ 3 | n)

Instructor’s Comments: This is the 10 minute mark

1



Handout or Document Camera or Class Exercise

Write the following statements in (mostly) plain English.

(i) ∀m ∈ Z, ((∃k ∈ Z,m = 2k)⇒ (∃` ∈ Z, 7m2 + 4 = 2`))

(ii) n ∈ Z⇒ (∃m ∈ Z,m > n)

Solution:

(i) If m is an even integer, then 7m2 + 4 is even.

(ii) There is no greatest integer. (Alternatively, for every integer, there exists a greater
integer).

Instructor’s Comments: This is the 20 minute mark

2



Contrapositive

Note: Proofs are not always easy to discover. Sometimes you can convert a given problem
to an easier equivalent problem.

Example: 7 - n⇒ 14 - n ≡ 14 | n⇒ 7 | n

Definition: The contrapositive of H ⇒ C is ¬C ⇒ ¬H.

Note: H ⇒ C ≡ ¬C ⇒ ¬H. This follows since

H ⇒ C ≡ ¬H ∨ C

≡ C ∨ ¬H
≡ ¬(¬C) ∨ ¬H
≡ ¬C ⇒ ¬H

or by using a Truth table

H C H ⇒ C ¬C ¬H ¬C ⇒ ¬H
T T T F F T
T F F T F F
F T T F T T
F F T T T T

Since the third and sixth columns are equal, their headings are logically equivalent.

Instructor’s Comments: This is the 32-37 minute mark

Example: Let x ∈ R. Prove x3 − 5x2 + 3x 6= 15⇒ x 6= 5.

Proof: We prove the contrapositive. Let x = 5. Then

x3 − 5x2 + 3x = (5)3 − 5(5)2 + 3(5)

= 53 − 53 + 15

= 15.

�

Example: Suppose a, b ∈ R and ab ∈ R − Q (the set of irrational numbers). Show
either a ∈ R−Q or b ∈ R−Q.

Proof: Proceed by the contrapositive. Suppose that a is rational and b is rational. Then
∃k, `,m, n ∈ Z such that a = k

`
and b = m

n
with `, n 6= 0. Then

ab = km
`n
∈ Q

as required. �

Instructor’s Comments: This is the 50 minute mark.

3



Lecture 10

Handout or Document Camera or Class Exercise

Example: Prove that if x ∈ R is such that x3 + 7x2 < 9, then x < 1.1.

Proof: We prove the contrapositive. Suppose that x ≥ 1.1 > 1. Then

x3 + 7x2 ≥ (1.1)3 + 7(1.1)2

=

(
11

10

)3

+ 7

(
11

10

)2

=
1331

1000
+ 7

(
121

100

)
=

1331 + 8470

1000

=
9801

1000
≥ 9

as required. �

Instructor’s Comments: This is the 10 minute mark

1



Types of Implications

Let A,B,C be statements.

(i) (A ∧ B) ⇒ C These we have seen in say Divisibility of Integer Combinations or
Bounds by Divisibility.

(ii) A⇒ (B ∧ C).

Example: Let S, T, U be sets. If (S ∪ T ) ⊆ U , then S ⊆ U and T ⊆ U .

Proof: Suppose S ∪ T ⊆ U . If x ∈ S, then x ∈ S ∪ T ⊆ U . Thus x ∈ U . Thus,
S ⊆ U . By symmetry (or similarly), T ⊆ U . �

Instructor’s Comments: Here you can make note of the use of the word
‘similarly’. It should be used sparingly and only when the argument is
truly identical.

(iii) (A ∨B)⇒ C

Example: (x = 1 ∨ y = 2)⇒ x2y + y − 2x2 + 4x− 2xy = 2

Proof: Assume that (x = 1∨y = 2). Then one of these two values is true. If x = 1,
then

LHS = x2y + y − 2x2 + 4x− 2xy

= (1)2y + y − 2(1)2 + 4(1)− 2(1)y

= y + y − 2 + 4− 2y

= 2

= RHS.

If instead y = 2, then

LHS = x2y + y − 2x2 + 4x− 2xy

= x2(2) + (2)− 2x2 + 4x− 2x(2)

= 2x2 + 2− 2x2 + 4x− 4x

= 2

= RHS.

completing the proof. �

(iv) A⇒ (B ∨ C). (Elimination)

Example: If x2 − 7x + 12 ≥ 0 then x ≤ 3 ∨ x ≥ 4.

Proof: Suppose x2−7x+12 ≥ 0 and x > 3. Then 0 ≤ x2−7x+12 = (x−3)(x−4).
Now, x− 3 > 0 and so we must have that x− 4 ≥ 0. Hence x ≥ 4.

Instructor’s Comments: This is the 25-30 minute mark
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Handout or Document Camera or Class Exercise

How many years has it been since the Toronto Maple Leafs have won the Stanley Cup?

A) -3

B) 49

C) 1000000

D) 1500

Instructor’s Comments: Argue that many answers are ridiculous and so
only the plausible answer remains. Change the second answer to (current
year - 1967). You could also introduce contradiction by using a sudoku board
which can be fun.

3



Proof by contradiction

Let S be a statement. Then S ∧ ¬S is false.

Instructor’s Comments: Mention we sometimes use # to denote a contra-
diction has been reached.

Example: There is no largest integer.

Proof: Assume towards a contradiction that M0 is the largest integer. Then, since
M0 < M0 +1 and M0 +1 ∈ Z, we have contradicted the definition of M0. Thus, no largest
integer exists. �

Instructor’s Comments: This is the 32-37 minute mark
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Handout or Document Camera or Class Exercise

Instructor’s Comments: The following is an example of reading proofs and
seeing the difference between the direct proofs and proofs by contradiction.

Example: Let n ∈ Z such that n2 is even. Show that n is even.

Direct Proof: As n2 is even, there exists a k ∈ Z such that

n · n = n2 = 2k.

Since the product of two integers is even if and only if at least one of the integers is even,
we conclude that n is even.

Proof By Contradiction: Suppose that n2 is even. Assume towards a contradiction
that n is odd. Then there exists a k ∈ Z such that n = 2k + 1. Now,

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

Hence, n2 is odd, a contradiction since we assumed in the statement that n2 is even. Thus
n is even.

Instructor’s Comments: This is the 40 minute mark.

5



Instructor’s Comments: It should be noted that the Well Ordering Prin-
ciple is not officially in the Math 135 curriculum. Since it is an easier to
understand form of Mathematical Induction, I’ve chosen to include it.

Axiom Well Ordering Principle (WOP). Every subset of the natural numbers that is
nonempty contains a least element.

6



Handout or Document Camera or Class Exercise

Instructor’s Comments: It’s conceivable that you might want to write out
the first proof and then display the other two proofs. Feel free to ignore these
proofs as well. I do however recommend the first one.

Example: Prove that
√

2 is irrational.

Proof: Assume towards a contradiction that
√

2 = a
b
∈ Q with a, b ∈ N (Think: Why

is it okay to use N instead of Z?).

Proof 1: Assume further that a and b share no common factor (otherwise simplify
the fraction first). Then 2b2 = a2. Hence a is even. Write a = 2k for some integer k.
Then 2b2 = a2 = (2k)2 = 4k2 and canceling a 2 shows that b2 = 2k2. Thus b2 is even and
hence b is even. This implies that a and b share a common factor, a contradiction.

Proof 2 (Well Ordering Principle): Let

S = {n ∈ N : n
√

2 ∈ N}.

Since b ∈ S, we have that S is nonempty. By the Well Ordering Principle, there must be
a least element of S, say k. Now, notice that

k(
√

2− 1) = k
√

2− k ∈ N

(positive since
√

2 >
√

1 = 1). Further,

k(
√

2− 1)
√

2 = 2k − k
√

2 ∈ N

and so k(
√

2 − 1) ∈ S. However, k(
√

2 − 1) < k which contradicts the definition of k.
Thus,

√
2 is not rational.

Proof 3 (Infinite Descent): Isolating from
√

2 = a
b
, we see that 2b2 = a2. Thus a2

is even hence a is even. Write a = 2k for some integer k. Then 2b2 = a2 = (2k)2 = 4k2.
Hence b2 = 2k2 and so b is even. Write b = 2` for some integer `. Then repeating the
same argument shows that k is even. So a = 2k = 4m for some integer m. Since we can
repeat this argument indefinitely and no integer has infinitely many factors of 2, we will
(eventually) reach a contradiction. Thus,

√
2 is not rational.

Instructor’s Comments: If you do all three proofs, notice that the simple
proof and the infinite descent proofs are similar.
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Lecture 11

Uniqueness

Definition: ∃! means “There exists a unique”.

Note: To prove uniqueness, we can do one of the following:

(i) Assume ∃x, y ∈ S such that P (x) ∧ P (y) is true and show x = y.

(ii) Argue by assuming that ∃x, y ∈ S are distinct such that P (x) ∧ P (y), then derive
a contradiction.

To prove uniqueness and existence, we also need to show that ∃x ∈ S such that P (x) is
true.

Example: Suppose x ∈ R − Z and m ∈ Z such that x < m < x + 1. Show that m is
unique.

Proof: Assume that ∃m,n ∈ Z such that

x < m < x + 1 and x < n < x + 1

Look at the value m− n. This value is largest when m is largest and n is smallest. Since
m < x + 1 and n > x, we see that m− n < 1. Further, for this to be minimal, we could
flip the roles of m and n above to see that −1 < m − n. Thus −1 < m − n < 1 and
m− n ∈ Z. Hence m− n = 0, that is m = n.

1



Handout or Document Camera or Class Exercise

Let f(x) be the function defined by

f : (0,∞)→ (0,∞)

x 7→ x2.

Prove for all y ∈ (0,∞) there exists a unique x ∈ (0,∞) such that f(x) = y

Instructor’s Comments: Some things to note: This is the first time stu-
dents will realize that in order to properly define a function, a function has
a domain and codomain that are given. Note that the range is the set of all
values the domain maps into. The codomain might actually be larger than the
range. They have not seen this notation before so you’ll be wise to explain to
them that this is the same as f(x) = x2.

Proof: Existence. For each y ∈ (0,∞), let x =
√
y. Then

f(x) = f(
√
y) = (

√
y)2 = y

Uniqueness. Suppose that there exists a, b ∈ (0,∞) such that

f(a) = f(b)

a2 = b2

|a| = |b|

and since a, b > 0, we have that a = b. �

Instructor’s Comments: Use this as a lead in to Injections and Surjections.
This is the 15 minute mark.
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Injections and Surjections

Definition: Let S and T be sets. A function f : S → T is said to be

(i) Injective (or one to one or 1 : 1) if and only if

∀x, y ∈ S, f(x) = f(y)⇒ x = y.

(ii) Surjective (or onto) if and only if

∀y ∈ T ∃x ∈ S such that f(x) = y

Example: A function that is one to one but not onto:

Example: A function that is onto but not one to one:

Example: Prove

f : R→ R
x 7→ x2

3



is not injective.

Proof: Notice that
f(−1) = (−1)2 = 1 = (1)2 = f(1)

but −1 6= 1. �

Instructor’s Comments: Emphasize that this is the negation of the defi-
nition above. Disproving a for all means finding a counter example.

Example: Prove

f : R→ R
x 7→ 2x3 + 1

is one to one.

Proof: Let x, y ∈ R such that f(x) = f(y). Then

2x3 + 1 = 2y3 + 1

x3 = y3

3
√
x3 = 3

√
y3

x = y

Thus f is injective. �

Example: Prove

f : R→ (−∞, 1)

x 7→ 1− e−x

is onto.

Proof: We need to show that every y ∈ (−∞, 1) has some x ∈ R with f(x) = y.

Discovery:

1− e−x = y

e−x = 1− y

−x = ln(1− y)

x = − ln(1− y)

Formal proof: Take x = − ln(1 − y) for any y ∈ (−∞, 1). Notice that this is well
defined since ln(1− y) is defined on (−∞, 1). Then

f(x) = 1− e−x

= 1− e−(− ln(1−y))

= 1− eln(1−y)

= 1− (1− y)

= y

4



Therefore, f is an onto function. �

Instructor’s Comments: This is the 35-40 minute mark.

Division Algorithm

This is just like grade school division. For example, 51/7 can be written as:

51 = 7(7) + 2

where a = 51, b = 7, q = 7 and r = 2. Similarly, −35/6 can be written as

−35 = 6(−6) + 1

where a = −35, b = 6, q = −6, and r = 1.

5



Handout or Document Camera or Class Exercise

Theorem: (Division Algorithm) Let a ∈ Z and b ∈ N. Then ∃!q, r ∈ Z such that
a = bq + r where 0 ≤ r < b.

Proof: Existence: Use the Well Ordering Principle on the set

S = {a− bq : a− bq ≥ 0 ∧ q ∈ Z}

Uniqueness:

Suppose that a = q1b + r1 with 0 ≤ r1 < b. Also, suppose that a = q2b + r2 with
0 ≤ r2 < b and r1 6= r2. Without loss of generality, we can assume r1 < r2.

Instructor’s Comments: Introduce the acronym WLOG. Explain that if
two integers are not equal, then one must be bigger than the other and the
proof is symmetric depending if r1 < r2 or r2 < r1

Then 0 < r2 − r1 < b and (q1 − q2)b = r2 − r1.

Instructor’s Comments: Take the difference of the two a values. Given that
0 ≤ r1, r2 < b, the biggest value of r2 − r1 is b.

Hence b | (r2 − r1). By Bounds By Divisibility, b ≤ r2 − r1 which contradicts the fact
that r2 − r1 < b.

Instructor’s Comments: This is a contradiction. Notice that we don’t need
|b| as in (BBD) since b ∈ N.

Therefore, the assumption that r1 6= r2 is false and in fact r1 = r2. But then (q1−q2)b =
r2 − r1 implies q1 = q2.

Instructor’s Comments: This is the 50 minute mark. Note you could
leave the division algorithm for extra reading if you’d like and replace it by an
example with a negative number. If you have time, I’d recommend digesting
the Division algorithm proof carefully. If you’re really ahead try the following:
Define a line to be the set of points (x, y) satisfying y = mx+b for some m, b ∈ R.
Show that if two lines have distinct slopes (m values) and that they intersect,
then this solution is unique.
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Lecture 12

Handout or Document Camera or Class Exercise

Let n ∈ Z. Consider the following implication.

If (∀x ∈ R, x ≤ 0 ∨ x+ 1 > n), then n = 1.

The contrapositive of this implication is

A) If n = 1, then (∀x ∈ R, x ≤ 0 ∨ x+ 1 > n).

B) If n = 1, then (∃x ∈ R, x > 0 ∧ x+ 1 ≤ n).

C) If n 6= 1, then (∃x ∈ R, x ≥ 0 ∧ x+ 1 < n).

D) If n 6= 1, then (∀x ∈ R, x ≤ 0 ∨ x+ 1 > n).

E) None of the above.

Solution: None of the above (Watch the inequality signs above!).

Instructor’s Comments: This is the 5 minute mark. You will likely want
to repoll the students (when I first gave this problem, many of my students
got this wrong).

1



Instructor’s Comments: This is a catch up lecture where if anything form
the previous lectures took too long, then you can use this lecture to catch up.
The only thing I would do in this lecture is show them sigma notation which
I will do first and then give the class a lot of time to do practice problems.

Introduction to Summations
Example: Tower of Hanoi:

In this modified version of the Tower of Hanoi, we create a tower with levels where
each level is a cylinder of height 1 and increasing radius begining with 1 and increasing
by 1 at each level. Below is a level 4 Tower of Hanoi

Question: What is the volume of the 4 level Tower of Hanoi?

Solution:

VTower = V1 + V2 + V3 + V4

= π(1)2(1) + π(2)2(1) + π(3)2(1) + π(4)2(1)

= π + 4π + 9π + 16π

= 30π

Question: What about computing the volume of the 100 level Tower of Hanoi?

Solution:

VTower = V1 + V2 + ...+ V100

= π(1)2(1) + π(2)2(1) + ...+ π(100)2(1)

= π + 4π + ...+ 10000π

Note: There are two concerns here. How do we evaluate this last sum? How to we write
the above sum nicely and more formally without using dots?

Instructor’s Comments: This is the 10 minute mark.

Sigma and Pi Notation

Definition: Let {a1, ..., an} be a sequence of n real numbers. We write

n∑

i=1

ai := a1 + a2 + ...+ an.

We call i the index variable, 1 is the starting number, n is the upper bound. We can also
write ∑

x∈S
x

2



to mean the sum of elements in S.

Instructor’s Comments: Make sure you discuss the := symbol.

Similarly, we define

n∏

i=1

ai := a1a2...an
∏

x∈S
= Product of elements in S

We make the following conventions when j > k are integers (that is, the start index
exceeds the end index)

k∑

i=j

ai =
∑

x∈∅
= 0

and further,
k∏

i=j

ai =
∏

x∈∅
= 1

Note: Sums are linear:

For c, j, k ∈ Z,
k∑

i=j

(cai ± bi) = c
k∑

i=j

ai ±
k∑

i=j

bi

Example:

(i)
4∑

i=1

i2 = (1)2 + (2)2 + (3)2 + (4)2 = 1 + 4 + 9 + 16 = 30

(ii)
4∏

i=1

i2 = (1)2(2)2(3)2(4)2 = (1)(4)(9)(16) = 576

(iii)
3.5∑

i=1

i = 1 + 2 + 3 = 6

(iv) For k ∈ N fixed,
2k∑

i=k

1/i = 1/k + 1/(k + 1) + ...+ 1/(2k).

(v) So we can write the 100 level tower of Hanoi volume as
100∑

i=1

πi2 = π
100∑

i=1

i2

Definition: We define the factorial notation for n ≥ 0 an integer by n! :=
n∏

i=1

i. Note

0! = 1.

Example: 4! = (4)(3)(2)(1) = 24.

Note: We will see next week how to compute the sum in our volume computation of the
100 level Tower of Hanoi.

Instructor’s Comments: This is the 25-30 minute mark
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Handout or Document Camera or Class Exercise

Instructor’s Comments: I suggest letting students work on these and either
getting them to write solutions on the board or at least telling you which ones
they want to see solved.

Try some of the following problems:

• min{a, b} ≤ a+b
2

for all real numbers a and b.

• Let x be real. Then x2 − x > 0 if and only if x 6∈ [0, 1].

• If r is irrational, then 1
r

is irrational.

• There do not exist integers p and q satisfying p2 − q2 = 10.

• The complete real solution to x2 + y2 − 2y = −1 is (x, y) = (0, 1).

• Let S and T be sets with respect to a universe U . Prove that S ∩ T ⊆ S ∪ T .

• Let a, b, c ∈ Z. Prove that if a - b and a | (b+ c), then a - c.

Instructor’s Comments: Hints in order

(i) Direct proof with cases

(ii) iff, contrapositive

(iii) contrapositive

(iv) contradiction

(v) factor

(vi) set inclusion

(vii) contrapositive and elimination.

4



Solution:

• Let a, b ∈ R. Without loss of generality, suppose that a ≤ b. Then 2 min{a, b} =
2a < a+ b. Hence min{a, b} ≤ a+b

2

• Let x be real. Then

x2 − x > 0⇔ x(x− 1) > 0

⇔ x > 0 ∧ x− 1 > 0 or x < 0 ∧ x− 1 < 0

⇔ x > 1 or x < 0

⇔ x 6∈ [0, 1].

• We proceed by the contrapositive. If 1
r

is rational, say 1
r

= a
b

with a, b ∈ Z and
b 6= 0, then r = b

a
∈ Q.

• Assume towards a contradiction that there exists integers p and q satisfying p2−q2 =
10. Without loss of generality, we may assume that p, q ≥ 0 since p2 = (−p)2 so if
(p, q) is a solution, then all of (±p,±q) are solutions. Factoring gives (p−q)(p+q) =
10. Since p + q > 0, we have that p − q > 0. Since p − q < p + q, we see that
p − q = 1 and p + q = 10 or p − q = 2 and p + q = 5. Adding the two equalities
gives 2p = 11 and 2p = 7, both of which are a contradiction since p is an integer.

Instructor’s Comments: The previous problem can also be solved by a
parity argument.

• Isolating and factoring gives x2 + (y − 1)2 = 0. Hence x = 0 and y = 1.

• Suppose that x ∈ S ∩ T . We are required to show that x ∈ S ∪ T . By definition,
x ∈ U − (S ∩ T ) and hence x ∈ U and x 6∈ S ∩ T . Thus, if x ∈ T , then x 6∈ S and
so x ∈ S. Otherwise, x 6∈ T and hence x ∈ T . Thus, x ∈ S ∪ T .

• We prove the contrapositive. Suppose that a | c. Then we need to show that a | b or
a - (b+ c). By elimination, we may assume that a | (b+ c) (otherwise a - (b+ c) and
the conclusion is true). Now, a | c and a | (b + c) and so by Divisibility of Integer
Combinations, we have that a | c(−1) + (b+ c)(1) and hence a | b.

5



Lecture 13

Principle of Mathematical Induction (POMI)

Axiom: If sequence of statements P (1), P (2), ... satisfy

(i) P (1) is true

(ii) For any k ∈ N, if P (k) is true then P (k + 1) is true

then P (n) is true for all n ∈ N.

Instructor’s Comments: Here describe the domino analogy. Explain that
you’re creating a chain of implications P (1) ⇒ P (2), P (2) ⇒ P (3), and so on
and you want the chain to begin.

In practice, these arguments proceed as follows:

(i) Prove the base case, that is, verify that P (1) is true

(ii) Inductive hypothesis: Let k ∈ N be an arbitrary number. Assume that P (k) is true.

(iii) Inductive conclusion. Deduce that P (k + 1) is true.

(iv) Then conclude by the Principle of Mathematical Induction (POMI) that P (n) holds

Instructor’s Comments: Emphasize the for some part in the IH step. Note
also that the induction proof needn’t start at 1 (it could start at 0 or −1 etc.)

Example: Prove that
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

for all n ∈ N.

Proof: Let P (n) be the statement that

n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

holds. We prove P (n) is true for all natural numbers n by the Principle of Mathematical
Induction.

(i) Base case: When n = 1, P (1) is the statement that

1∑

i=1

i2 =
(1)((1) + 1)(2(1) + 1)

6
.

This holds since

(1)((1) + 1)(2(1) + 1)

6
=

1(2)(3)

6
= 1 =

1∑

i=1

i2.

1



(ii) Inductive Hypothesis. Assume that P (k) is true for some k ∈ N. This means that

k∑

i=1

i2 =
k(k + 1)(2k + 1)

6
.

(iii) Inductive Step. We now need to show that

k+1∑

i=1

i2 =
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6
.

To do this, we will start with the left hand side, reduce to the assumption made in
the inductive hypothesis and then conclude the right hand side.

LHS =
k+1∑

i=1

i2

=
k∑

i=1

i2 + (k + 1)2

=
k(k + 1)(2k + 1)

6
+ (k + 1)2 Inductive Hypothesis

= (k + 1)

(
k(2k + 1)

6
+ k + 1

)

= (k + 1)

(
2k2 + k

6
+

6k + 6

6

)

= (k + 1)

(
2k2 + 7k + 6

6

)

=
(k + 1)(k + 2)(2k + 3)

6
= RHS

Hence,
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

is true for all natural numbers n by the Principle of Mathematical Induction. �

Instructor’s Comments: It is important to note where you used the induc-
tive hypothesis!

Note: Now, we can finally solve the Tower of Hanoi example for the 100 level tower:

Vtower =
100∑

i=1

Vi

=
100∑

i=1

πi2(1)

= π
100∑

i=1

i2

= π
(100)(101)(2(100) + 1)

6
= 338350π

2



Instructor’s Comments: This could easily be 25-30 minutes of your lecture.
The rest of the time is spent doing examples:

Handout or Document Camera or Class Exercise

Prove that
n∑

i=1

i =
n(n+ 1)

2

holds for all natural numbers n.

Solution:

(i) Base case:

(1)(1 + 1)

2
= 1 =

n∑

i=1

i.

(ii) Inductive Hypothesis. Assume that

k∑

i=1

i =
k(k + 1)

2

holds for some k ∈ N

(iii) Inductive step. For k + 1,

k+1∑

i=1

i =
k∑

i=1

i+ (k + 1)

=
k(k + 1)

2
+ (k + 1) Inductive Hypothesis

= (k + 1)(k
2

+ 1)

=
(k + 1)(k + 2)

2

Therefore, the claim holds by the Principle of Mathematical Induction for all n ∈ N.
�

Instructor’s Comments: This is the 40 minute mark
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Instructor’s Comments: An example where we don’t start at 1

Example: Prove that n! > 2n for all n ∈ N with n ≥ 4.

Proof: We proceed by mathematical induction.

(i) Base case: When n = 4, notice that 4! = 24 > 16 = 24 so the inequality holds in
this case.

(ii) Inductive Hypothesis: Assume that k! > 2k for some k ∈ N with k ≥ 4.

(iii) Inductive Step: Notice that

(k + 1)! = (k + 1)k!

> (k + 1)2k Inductive Hypothesis

> (1 + 1)2k Since k ≥ 4 > 1

= 2k+1

Thus, the conclusion holds for all k ∈ N with k ≥ 4 by the Principle of Mathematical
Induction. �
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Handout or Document Camera or Class Exercise

Examine the following induction “proofs”. Find the mistake

Question: For all n ∈ N, n > n+ 1.

Proof: Let P (n) be the statement: n > n + 1. Assume that P (k) is true for some
integer k ≥ 1. That is, k > k + 1 for some integer k ≥ 1. We must show that P (k + 1)
is true, that is, k + 1 > k + 2. But this follows immediately by adding one to both sides
of k > k + 1. Since the result is true for n = k + 1, it holds for all n by the Principle of
Mathematical Induction.

Instructor’s Comments: No base cases!

Question: All horses have the same colour. (Cohen 1961).

Proof:

Base Case: If there is only one horse, there is only one colour.

Inductive hypothesis and step: Assume the induction hypothesis that within any
set of n horses for any n ∈ N, there is only one colour. Now look at any set of n+1 horses.
Number them: 1, 2, 3, ..., n, n+ 1. Consider the sets {1, 2, 3, ..., n} and {2, 3, 4, ..., n+ 1}.
Each is a set of only n horses, therefore by the induction hypothesis, there is only one
colour. But the two sets overlap, so there must be only one colour among all n+ 1 horses.

Instructor’s Comments: However, the logic of the inductive step is in-
correct for n = 1, because the statement that ”the two sets overlap” is false
(there are only n + 1 = 2 horses prior to either removal, and after removal
the sets of one horse each do not overlap. This is the 50 minute mark
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Lecture 14

Handout or Document Camera or Class Exercise

Instructor’s Comments: In this lecture, you might want to consider giving
a midterm survey of your teaching.

Prove P (n) : 6 | (2n3 + 3n2 + n) holds ∀n ∈ N.

Solution:

(i) Base case

2n3 + 3n2 + n = 2 + 3 + 1 = 6

and 6 | 6. Hence P (1) is true.

(ii) Inductive Hypothesis. Assume P (k) is true for some k ∈ N, that is, ∃` ∈ Z such
that 6` = 2k3 + 3k2 + k.

(iii) Inductive Step: Prove that P (k + 1) is true.

2(k + 1)3 + 3(k + 1)2 + (k + 1) = 2k3 + 6k2 + 6k + 2 + 3k2 + 6k + 3 + k + 1

= (2k3 + 3k2 + k) + 6k2 + 12k + 6

= 6` + 6(k2 + 2k + 1) IH

= 6(` + (k + 1)2)

Hence, 6 | 2(k + 1)3 + 3(k + 1)2 + (k + 1). Thus P (k + 1) is true. Hence by the
Principle of Mathematical Induction, we have that P (n) is true for all n ∈ N. �

Instructor’s Comments: This is the 10 minute mark

1



Handout or Document Camera or Class Exercise

Instructor’s Comments: This illustrates the need for something “stronger”
than induction.

Let {xn} be a sequence defined by x1 = 4, x2 = 68 and

xm = 2xm−1 + 15xm−2 for all m ≥ 3

Prove that xn = 2(−3)n + 10 · 5n−1 for n ≥ 1.

Solution: We proceed by induction.

Base Case: For n = 1, we have

x1 = 4 = 2(−3)1 + 10 · 50 = 2(−3)n + 10 · 5n−1.

Inductive Hypothesis: Assume that

xk = 2(−3)k + 10 · 5k−1

is true for some k ∈ N.

Inductive Step: Now, for k + 1,

xk+1 = 2xk + 15xk−1 Only true if k ≥ 2!!!

= 2(2(−3)k + 10 · 5k−1) + 15xk−1

= 4(−3)k + 20 · 5k−1 + 15xk−1

= ...?

Instructor’s Comments: This is the 15 minute mark
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Principle of Strong Induction (POSI)

Axiom: If sequence of statements P (1), P (2), ... satisfy

(i) P (1) ∧ P (2) ∧ ... ∧ P (b) are true for some b ∈ N

(ii) P (1) ∧ P (2) ∧ ... ∧ P (k) are true implies that P (k + 1) is true for all k ∈ N

then P (n) is true for all n ∈ N.

Note: This is equivalent in strength to the Principle of Mathematical Induction and to
the Well Ordering Principle!

Question: Let {xn} be a sequence defined by x1 = 4, x2 = 68 and

xm = 2xm−1 + 15xm−2 for all m ≥ 3

Prove that xn = 2(−3)n + 10 · 5n−1 for n ≥ 1.

Solution: We proceed by strong induction.

Base Case: For n = 1, we have

x1 = 4 = 2(−3)1 + 10 · 50 = 2(−3)n + 10 · 5n−1.

For n = 2, we have x2 = 68 and

2(−3)2 + 10 · 52−1 = 18 + 50 = 68.

Inductive Hypothesis: Assume that

xi = 2(−3)i + 10 · 5i−1

is true for all i ∈ {1, 2, ..., k} for some k ∈ N and k ≥ 2.

Inductive Step: Now, for k + 1,

xk+1 = 2xk + 15xk−1 Valid since k ≥ 2

= 2(2(−3)k + 10 · 5k−1) + 15(2(−3)k−1 + 10 · 5k−2)

= 4(−3)k + 20 · 5k−1 + 30(−3)k−1 + 150 · 5k−2

= −12(−3)k−1 + 100 · 5k−2 + 30(−3)k−1 + 150 · 5k−2

= 18(−3)k−1 + 250 · 5k−2

= 2 · (−3)2(−3)k−1 + 10 · 52 · 5k−2

= 2(−3)k+1 + 10 · 5k

Hence, xk+1 = 2(−3)k+1 + 10 · 5k. Thus, by the Principle of Strong Induction, we have
that xn = 2(−3)n + 10 · 5n−1 for all n ≥ 1. �

Instructor’s Comments: This is the 40 minute mark
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Handout or Document Camera or Class Exercise

Instructor’s Comments: I would make them do half of this example - say
the base cases and the inductive hypothesis

Suppose x1 = 3, x2 = 5 and for all m ≥ 3,

xm = 3xm−1 + 2xm−2.

Prove that xn < 4n for all n ∈ N.

Proof: Let P (n) be the given statement. We prove P (n) by strong induction.

(i) Base cases: P (1) is true since x1 = 3 < 4 and P (2) is true since x2 = 5 < 16 = 42.

(ii) Inductive Hypothesis: Assume that P (i) is true for all i ∈ {1, 2, ..., k} for some
k ∈ N with k ≥ 2.

(iii) Inductive Step. For k ≥ 2, we have

xk+1 = 3xk + 2xk−1 Valid since k + 1 ≥ 3

< 3 · 4k + 2 · 4k−1

< 4k−1(3 · 4 + 2)

= 4k−1(14)

< 4k−1(16)

= 4k+1

Hence P (k+1) is true and thus P (n) is true for all n ∈ N by the Principle of Strong
Induction.
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Fibonacci Sequence Definition: Define a sequence by f1 = 1, f2 = 1 and

fn = fn−1 + fn−2 For all n ≥ 3

so f3 = 2, f4 = 3, f5 = 5, and so on.

Note: For a cool link between this sequence and music, check out Tool - Lateralus on
Youtube!

Instructor’s Comments: This is the 50 minute mark
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Lecture 15

Instructor’s Comments: If you did the surveys, you could go over them at
the beginning

Handout or Document Camera or Class Exercise

Fibonacci Sequence Definition: Define a sequence by f1 = 1, f2 = 1 and

fn = fn−1 + fn−2 For all n ≥ 3

so f3 = 2, f4 = 3, f5 = 5, and so on.

(i) Prove that
n∑

r=1

f 2
r = fnfn+1 for all n ∈ N.

(ii) Prove that fn <
(
7
4

)n
for all n ∈ N.

Solution: We prove only the first one. The second can be found on the Math 135
resources page

http://www.cemc.uwaterloo.ca/~cbruni/Math135Resources.php

(i) Base case: n = 1

LHS =
n∑

r=1

f 2
r

=
1∑

r=1

f 2
r

= f 2
1

= 12

= 1

and

RHS = fnfn+1 = f1f2 = (1)(1) = 1 = LHS

(ii) Inductive Hypothesis. Assume that

k∑

r=1

f 2
r = fkfk+1

holds for some k ∈ N.

(iii) Inductive Step. We want to show that

k+1∑

r=1

f 2
r = fk+1fk+2.

1



We begin with the left and proceed towards the right

LHS =
k+1∑

r=1

f 2
r

=
k∑

r=1

f 2
r + f 2

k+1

= fkfk+1 + f 2
k+1 Induction Hypothesis

= fk+1(fk + fk+1)

= fk+1fk+2 By definition of Fibonacci Sequence

= RHS

Hence
n∑

r=1

f 2
r = fnfn+1 for all n ∈ N by the Principle of Mathematical Induction. �

Instructor’s Comments: This easily is the 20-30 minute mark. Students
might struggle with the notation.
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Definition: Closed form: “Easy to put into a calculator” (This is not a formal defini-
tion!)

Example: Find a closed form expression for

Pn =
n∏

r=2

(
1− 1

r2

)

where n ≥ 2 and prove it is correct by induction.

Proof: We begin with some guessing and napkin (discovery) work.

P2 =
2∏

r=2

(
1− 1

r2

)
=

(
1− 1

22

)
= 1− 1

4
= 3

4

P3 =
3∏

r=2

(
1− 1

r2

)
=

(
1− 1

22

)(
1− 1

32

)
= (1− 1

4
)(1− 1

9
) = 3

4
· 8
9

= 2
3

= 4
6

P4 =
4∏

r=2

(
1− 1

r2

)
=

(
1− 1

22

)(
1− 1

32

)(
1− 1

42

)
= (1− 1

4
)(1− 1

9
)(1− 1

16
) = 3

4
· 8
9
· 15
16

= 5
8

Claim: P5 = 6
10

and in general Pn = n+1
2n

for all n ≥ 2. We prove this by induction.

(i) Base case: n = 2

P2 =
2∏

r=2

(
1− 1

r2

)
=

(
1− 1

22

)
= 1− 1

4
= 3

4
= n+1

2n

(ii) Inductive Hypothesis. Assume that P (k) is true for some k ≥ 2 and k ∈ N, that is,
assume

k∏

r=2

(
1− 1

r2

)
=

k + 1

2k

(iii) Inductive Step. We want to show that

k+1∏

r=2

(
1− 1

r2

)
=

(k + 1) + 1

2(k + 1)
=

k + 2

2k + 2

3



We proceed starting from the left.

LHS =
k+1∏

r=2

(
1− 1

r2

)

=
k∏

r=2

(
1− 1

r2

)
·
(

1− 1

(k + 1)2

)

=
k + 1

2k
· (k + 1)2 − 1

(k + 1)2
Inductive Hypothesis

=
k + 1

2k
· k

2 + 2k

(k + 1)2

=
k + 1

2k
· k(k + 2)

(k + 1)2

=
k + 2

2(k + 1)

= RHS

Therefore, by the Principle of Mathematical Induction, we have that

Pn = n+1
2n

for all n ≥ 2. �

Instructor’s Comments: This is the 50 minute mark.
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Lecture 16

Handout or Document Camera or Class Exercise

A statement P (n) is proved true for all n ∈ N by induction.

In this proof, for some natural number k, we might:

A) Prove P (1). Prove P (k). Prove P (k + 1).

B) Assume P (1). Prove P (k). Prove P (k + 1).

C) Prove P (1). Assume P (k). Prove P (k + 1).

D) Prove P (1). Assume P (k). Assume P (k + 1).

E) Assume P (1). Prove P (k). Assume P (k + 1).

Solution: Prove P (1). Assume P (k). Prove P (k + 1).

Instructor’s Comments: This is the 5 minute mark.

1



Instructor’s Comments: This is the last induction example - something
slightly different.

Prove that an m× n chocolate bar consisting of unit squares can be broken into unit
squares using

mn− 1

breaks.

Instructor’s Comments: Mention below that the base case should be for-
mally proven using induction but that we want. It will help to draw pictures
as well. This is the first time that an induction question has two variables.

Proof: Let m ∈ N be fixed. We proceed by induction on n.

Base Case: When n = 1, we have an m×1 chocolate bar. This requires m−1 breaks
to get m unit squares (can prove formally by induction).

Inductive hypothesis: Assume that an m×k chocolate bar can be broken into unit
squares using mk − 1 breaks for some k ∈ N.

Inductive step: For an m × (k + 1) sized chocolate bar, we see that by breaking
off the top row, gives a m× 1 sized chocolate bar and a m× k sized chocolate bar. The
first we know can be broken into unit squares using m− 1 breaks (this was the base case)
and the latter can be broken into unit squares using mk − 1 breaks via the induction
hypothesis. Hence, the total is

1 + m− 1 + mk − 1 = m(k + 1)− 1

as required. Hence, the claim is true for all n ∈ N by the Principle of Mathematical
Induction.

Instructor’s Comments: Again it helps to draw a picture above. We finish
induction with the Fundamental Theorem of Arithmetic. Technically we can’t
prove it now but I will prove it up to Euclid’s Lemma. This basically marks
the midterm exam line in Fall2015 and Winter 2016.

Instructor’s Comments: What you might want to do is do the following
proof more informally and then return to it at the end of the term after more
mathematical maturity has been developed and then redo this proof.

Theorem: (Euclid’s Lemma [PAD - Primes and Divisibility]) Suppose a, b ∈ Z and p is
a prime number. Show that if p | ab then p | a or p | b.

Corollary: (Generalized Euclid’s Lemma) Suppose a1, a2, ..., an ∈ Z and p is a prime
number. Show that if p | a1a2...an then p | ai for some integer 1 ≤ i ≤ n.

Note: The proof of this lemma will be delayed until after we do some techniques through
greatest common divisors. For now we will take this for granted and prove our first major
theorem of the course. The generalization follows immediately.

Theorem: (Fundamental Theorem of Arithmetic) (UFT)

Every integer n > 1 can be factored uniquely as a product of prime numbers, up to
reordering.

2



Note: Prime numbers are just the product of a single number.

Proof: Existence.

Assume towards a contradiction that not every number can be factored into prime
numbers. Let n be the smallest such number (which exists by WOP). Then either n is
prime, a contradiction, or n = ab with 1 < a, b < n. However, since a, b < n, the numbers
a and b can be written as a product of primes (since n was minimal). Thus n = ab is a
product of primes, contradicting the definition of n.

Uniqueness

Assume towards a contradiction that there exists a natural number n > 1 such that

n = p1p2...pk = q1q2...qm

where each pi and qj are primes (not necessarily distinct) and further assume that this n
is minimal (WOP). By definition, p1 | n = q1q2...qm. Hence, by the generalized Euclid’s
Lemma, we see that p1 | qj for some 1 ≤ j ≤ m. Hence, since p1 and qj are prime numbers,
we have that p1 = qj. Without loss of generality, we may reorder the primes qj so that qj
is the first prime, that is, p1 = q1. Canceling out these primes gives

N0 := p2...pk = q2...qm

Now N0 < n and so, the above representations must be equal up to reordering by the
minimality of n. Hence, k = m and we may reorder so that

p` = q` for all 2 ≤ ` ≤ k

Multiplying N0 by p1 shows that the two representations of the factorizations of n are
the same up to reordering. This contradicts the existence of n hence all numbers can be
written uniquely as a product of primes up to reordering of primes.

Instructor’s Comments: This is a difficult proof. I would advise taking
some time and really going through it. If you’re lucky this will take you to
just the 50 minute mark.
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Lecture 17

Theorem: (Euclid’s Theorem) (INF P) There exists infinitely many primes.

Proof: Assume towards a contradiction that there exists finitely many primes, say
p1, p2, ..., pn. Consider the number

N = 1 +
n∏

i=1

pi

By the Fundamental Theorem of Arithmetic (UFT), N can be written as a product of
primes. In particular, there exists a prime p | N by the Generalized Euclid’s Lemma.
Since we have only finitely many primes, p = p1 for some 1 ≤ i ≤ n. Since p | N and

p

∣∣∣∣∣
n∏

i=1

pi , we conclude by Divisibility of Integer Combinations that

p

∣∣∣∣∣

(
N −

n∏

i=1

pi

)
= 1

This is a contradiction since no prime divides 1 (you could use Bounds by Divisibility
since primes are bigger than 1). Hence, there must be infinitely many primes. �

To complete the gaps in the previous proofs, we need to talk about the two forms of
Euclid’s Lemma. To do this, we will need to talk about greatest common divisors and
more importantly, Bézouts Lemma.

Instructor’s Comments: This is the 7-10 minute mark

Greatest Common Divisors

Instructor’s Comments: Arguably, this is the toughest portion of the course.
These arguments for gcds are often tricky and counter intuitive and take a bit
of practice before mastering.

As an exercise, let’s list the divisors of 84:

±1,±2,±3,±4,±6,±7,±12,±14,±21,±28,±42,±81

Divisors of 120:

±1,±2,±3,±4,±5,±6,±8,±10,±12,±15,±20,±24,±30,±40,±60,±120

Hence the greatest common divisors of 84 and 120 is 12.

Definition: The greatest common divisors of integers a and b with a 6= 0 or b 6= 0 is an
integer d > 0 such that

(i) d | a and d | b

(ii) If c | a and c | b, then c ≤ d

We write d = gcd(a, b).

Note:

1



(i) gcd(a, a) = |a| = gcd(a, 0)

(ii) Define gcd(0, 0) = 0. Note that gcd(a, b) = 0⇔ a = b = 0

(iii) Exercise: gcd(a, b) = gcd(b, a)

Instructor’s Comments: This is the 20 minute mark

2



Handout or Document Camera or Class Exercise

Example: Prove that gcd(3a + b, a) = gcd(a, b) using the definition directly.

Proof: . Let d = gcd(3a + b, a) and e = gcd(a, b). Then by definition, d | (3a + b) and
d | a. By Divisibility of Integer Combinations,

d | (3a + b)− 3a = b

Since e is the maximal divisor of a and b, we have that d ≤ e.

Now, since e | a and e | b, Divisibility of Integer Combinations gives us that e | (3a+b).
Since d is maximal, e ≤ d. Hence d = e. �

Instructor’s Comments: This is the 30 minute mark

3



Claim: gcd(a, b) exists.

Proof: Suppose that a 6= 0 or b 6= 0. Clearly 1 | a and 1 | b so a divisor exists.

To show there is a greatest common divisor, it suffices to show that there is an upper
bound on common divisors of a and b. If d is a positive integer such that d | a and d | b,
then Bounds by Divisibility states that d ≤ |a| and d ≤ |b|. Hence,

1 ≤ d ≤ min{|a|, |b|}

Since the range on divisors is bounded, there must be a maximum. �

Claim: gcd(a, b) is unique.

Proof: Suppose d and e are both the greatest common divisors of a and b. Then d | a
and d | b. Thus, since e is maximal, d ≤ e. Similarly, e ≤ d. Hence d = e.

Instructor’s Comments: This is the 40 minute mark

Suppose we wanted to find a divisors of two numbers a and b. Can we do so? How
far do we have to look? Here is a theorem explaining this.

Proposition: (Finding a Prime Factor) (FPF) Let a, b ∈ N. If n = ab, then a ≤ √n or
b ≤ √n.

Proof: Suppose n = ab and a >
√
n. Then

ab > b
√
n

n > b
√
n

√
n > b

Hence b ≤ √n. �

Instructor’s Comments: This is the 45 minute mark. From this point on in
the course, the theorem cheat sheets on the Math 135 Resources page will be
quite useful for students. There will be many named theorems that students
will be expected to know.. Don’t rush the next example. Maybe do it in this
lecture and review it a bit in the next lecture. GCDWR works very well if
the two parameters in the greatest common divisor depend on each other in
some way.

Proposition: GCD With Remainder (GCDWR) If a, b, q, r ∈ Z and a = bq + r, then
gcd(a, b) = gcd(b, r).

Example: gcd(72, 40) = 8. Now, 72 = 40(2) − 8 and so GCD With Remainder says
that

gcd(72, 40) = gcd(40,−8) = 8

Note that this looks similar to the division algorithm, but the ‘remainder’ here can be
negative. You can apply this multiple times to help reduce the gcd computation a lot
(this we will see later).
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Instructor’s Comments: Delay the proof until next class. Talk about the
previous example more - maybe even It’s included here only if my timings
above are incorrect.

Proof: (of GCDWR) If a = b = 0, then r = a− bq = 0. Hence gcd(a, b) = 0 = gcd(b, r).
Now assume that a 6= 0 or b 6= 0. Let d = gcd(a, b) and e = gcd(b, r). Since a = bq + r
and d | a and d | b, by Divisibility of Integer Combinations, d | (a− bq) = r. Thus, since
e is the maximal common divisor of b and r, we see that d ≤ e.

Now, e | b and e | r so by Divisibility of Integer Combinations, e | (bq + r) = a. Since
d is the largest divisor of a and b, we see that e ≤ d.

Hence d = e. �

5



Lecture 18

Proposition: GCD With Remainder (GCDWR) If a, b, q, r ∈ Z and a = bq + r, then
gcd(a, b) = gcd(b, r)

Proof: (of GCDWR) If a = b = 0, then r = a− bq = 0. Hence gcd(a, b) = 0 = gcd(b, r).
Now assume that a 6= 0 or b 6= 0. Let d = gcd(a, b) and e = gcd(b, r). Since a = bq + r
and d | a and d | b, by Divisibility of Integer Combinations, d | (a− bq) = r. Thus, since
e is the maximal common divisor of b and r, we see that d ≤ e.

Now, e | b and e | r so by Divisibility of Integer Combinations, e | (bq + r) = a. Since
d is the largest divisor of a and b, we see that e ≤ d.

Hence d = e. �

Instructor’s Comments: This is the 7-10 minute mark

1



Handout or Document Camera or Class Exercise

Prove that gcd(3s + t, s) = gcd(s, t) using GCDWR.

Solution: 3s + t = (3)s + t. Thus, GCD With Remainders states that gcd(3s + t, s) =
gcd(s, t) by setting a = 3s + t, b = s, q = 3 and r = t. �

Instructor’s Comments: This is the 15 minute mark
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Euclidean Algorithm How can we compute the greatest common divisor of two
numbers quickly? This is where we can combine GCD With Remainders and the Division
Algorithm in a clever way to come up with an efficient algorithm discovered over 2000
years ago that is still used today.

Example: Compute gcd(1239, 735).

Solution:

1239 = 735(1) + 504 Eqn 1

725 = 504(1) + 231 Eqn 2

504 = 231(2) + 42 Eqn 3

231 = 42(5) + 21 Eqn 4

42 = 21(1) + 0

Thus, by GCDWR, we have

gcd(1239, 735) = gcd(735, 504)

= gcd(504, 231)

= gcd(231, 42)

= gcd(42, 21)

= gcd(21, 0)

= 21

Note: This process stops since remainders form a sequence of non-negative decreasing
integers. In this process, the greatest common divisor is the last nonzero remainder.

Instructor’s Comments: This is the 25 minute mark

Question: Food for thought: What is the runtime of the Euclidean Algorithm?

Back Substitution Remember our goal for GCDs is to prove Euclid’s Lemma. It
turns out that this question is deeply connected to the following question:

Question: Do there exist integers x and y such that ax + by = gcd(a, b)?

It turns out that the answer to this question is yes! This result is known as Bézout’s
Lemma (or EEA in this course). We first show this is true in an example by using the
method of Back Substitution and then later using the Extended Euclidean Algorithm.
Using the gcd(1239, 735) = 21 example from before, we start with the last line and work
our way backwards to see:

21 = 231(1) + 42(−5) By Eqn 4

= 231(1) + (504(1) + 231(−2))(−5) By Eqn 3

= 231(11) + 504(−5)

= (735(1) + 504(−1))(11) + 504(−5) By Eqn 2

= 735(11) + 504(−16)

= 735(11) + (1239 + 735(−1))(−16) By Eqn 1

= 735(27) + 1239(−16)

Instructor’s Comments: This is the 35 minute mark
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Handout or Document Camera or Class Exercise

Use the Euclidean Algorithm to compute gcd(120, 84) and then use back substitution
to find integers x and y such that gcd(120, 84) = 120x + 84y.

Instructor’s Comments: If a student finishes quickly, challenge them to find
two such linear combinations.

Solution:

120 = 84(1) + 36

84 = 36(2) + 12

36 = 12(3) + 0

Thus, by the Euclidean Algorithm (or by GCDWR), we have that gcd(120, 84) = 12.
Next,

12 = 84 + 36(−2)

= 84 + (120 + 84(−1))(−2)

= 84(3) + 120(−2)

Note: Food for thought: Note also that 84(3 + 120) + 120(−2 − 84) will also work and
so on.

Instructor’s Comments: This is the 45 minute mark
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Theorem: (Bézout’s Lemma (Extended Euclidean Algorithm - EEA)) Let a, b ∈ Z.
Then there exist integers x, y such that ax + by = gcd(a, b)

Proof: We’ve seen the outline of the proof via an example. Just make the argument
abstract. The proof is left as a reading exercise. �

Theorem: GCD Characterization Theorem (GCDCT) If d > 0, d | a, d | b and there
exist integers x and y such that ax + by = d, then d = gcd(a, b).

Proof: Let e = gcd(a, b). Since d | a and d | b, by definition and the maximality of
e we have that d ≤ e. Again by definition, e | a and e | b so by Divisibility of Integer
Combinations, e | (ax+ by) implying that e | d. Thus, by Bounds by Divisibility, |e| ≤ |d|
and since d, e > 0, we have that e ≤ d. Hence d = e. �

Instructor’s Comments: This is the 50 minute mark
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Lecture 19

Instructor’s Comments: Do these proofs if you missed them. Otherwise
review the theorems with examples.

Theorem: (Bézout’s Lemma (Extended Euclidean Algorithm - EEA)) Let a, b ∈ Z.
Then there exist integers x, y such that ax + by = d

Proof: We’ve seen the outline of the proof via an example. Just make the argument
abstract. The proof is left as a reading exercise. �

Theorem: GCD Characterization Theorem (GCDCT) If d > 0, d | a, d | b and there
exist integers x and y such that ax + by = d, then d = gcd(a, b).

Proof: Let e = gcd(a, b). Since d | a and d | b, by maximality we have that d ≤ e. Now
e | a and e | b so by Divisibility of Integer Combinations, e | (ax + by) = d. Thus, by
Bounds by Divisibility, |e| ≤ |d| and since d, e > 0, we have that e ≤ d. Hence d = e. �

Example: 6 > 0, 6 | 30, 6 | 42 and 30(3) + 42(−2) = 6 and hence by the GCD
Characterization Theorem, we have that gcd(30, 42) = 6.

Example: Prove if a, b, x, y ∈ Z, are such that gcd(a, b) 6= 0 and ax + by = gcd(a, b),
then gcd(x, y) = 1.

Proof: Since gcd(a, b) | a and gcd(a, b) | b, we divide by gcd(a, b) 6= 0 to see that

a

gcd(a, b)
x +

b

gcd(a, b)
y = 1

Since 1 | x and 1 | y and 1 > 0, GCD Characterization Theorem implies that gcd(x, y) = 1.
�

Instructor’s Comments: This is the 10 minute mark.

Now, we’ve reached the point where we can prove Euclid’s Lemma.

Theorem: (Euclid’s Lemma - [Primes and Divisibility PAD]). If p is a prime and p | ab,
then p | a or p | b.

Proof: Suppose p is prime, p | ab and p - a (possible by elimination). Since p - a,
gcd(p, a) = 1. By Bézout’s Lemma, there exist x, y ∈ Z such that

px + ay = 1

pbx + aby = b

Now, since p | p and p | ab, by Divisibility of Integer Combinations, p | p(bx) + ab(y) and
hence p | b.

Instructor’s Comments: This is the 20 minute mark
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Handout or Document Camera or Class Exercise

Prove or disprove the following:

(i) If n ∈ N then gcd(n, n + 1) = 1.

(ii) Let a, b, c ∈ Z. If ∃ x, y ∈ Z such that ax2 + by2 = c then gcd(a, b) | c.

(iii) Let a, b, c ∈ Z. If gcd(a, b) | c then ∃ x, y ∈ Z such that ax2 + by2 = c.

Solution:

(i) n + 1 = n(1) + 1 and so by the GCD Characterization Theorem, gcd(n + 1, n) =
gcd(n, 1) = 1. Hence this is true.

(ii) gcd(a, b) | a and gcd(a, b) | b. Thus, by Divisibility of Integer Combinations,
gcd(a, b) | (ax2 + by2) which implies that gcd(a, b) | c. Hence this is true.

(iii) This is false. Suppose that a = 3, b = 0 and c = 6. Then gcd(a, b) = 3 | 6 = c
however, 3x2 + 0y2 = 6 implies that x2 = 2, a contradiction.

Instructor’s Comments: This is the 30-35 minute mark. At the end of this
lecture, I think it would be wise to talk about the midterm a bit. It is coming
up so I’ve left a bit of extra time to review for the midterm.
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Lecture 20

Handout or Document Camera or Class Exercise

Instructor’s Comments: This is where things might start to differ. The
idea at this point is to make the Monday lecture the Extended Euclidean
Algorithm because this is a computational topic and it would help ease the
lecture before the midterm. Thus, this lecture and lecture 21 can be swapped
without harm. I’m going to give the gcd theorem lecture here and delay the
EEA lecture until Lecture 21.

Instructor’s Comments: This may or may not be a Friday lecture. Friday
lectures I reserve time to do a clicker question. Modify accordingly.

Which of the following statements is false?

A) ∀a ∈ Z,∀b ∈ Z, (gcd(a, b) ≤ b ∧ gcd(a, b) ≤ a)

B) ∀a ∈ Z,∀b ∈ Z, (gcd(a, b) 6= 0 =⇒ (a 6= 0) ∨ (b 6= 0))

C) ∀a ∈ Z,∀b ∈ Z, (gcd(a, b) | a ∧ gcd(a, b) | b)

D) ∀a ∈ Z,∀b ∈ Z, (((c | a) ∧ (c | b)) ∧ gcd(a, b) 6= 0 =⇒ c ≤ gcd(a, b))

E) ∀a ∈ Z,∀b ∈ Z, gcd(a, b) ≥ 0

Solution: The first is false. Consider a = b = −1. The second is true (use the contra-
positive). The third is true by definition (mention the a = b = 0 case). The fourth is also
true by definition. The fifth is true again by definition.

1



In this lecture, we’ll go over some key gcd theorems that you will need to prove some
problems on your assignment.

Instructor’s Comments: IMPORTANT TIP: If the gcd condition appears
in the hypothesis, then Bézout’s Lemma (EEA) might be useful. If the gcd
condition appears in the conclusion, then GCDCT might be useful. It might
be good to rewrite GCDCT on the board: if d is a positive integer and a
common divisor of a and b and gcd(a,b) is an integer linear combination of
a,b. Then gcd(a,b) = d.

Handout or Document Camera or Class Exercise

Example: Let a, b, c ∈ Z. Prove if gcd(ab, c) = 1 then gcd(a, c) = gcd(b, c) = 1.

Example: State the converse of the previous statement and prove or disprove.

Proof: By Bézout’s Lemma, there exists x, y ∈ Z such that ab(x) + c(y) = 1. Since 1 | a
and 1 | c and a(bx) + c(y) = 1, by the GCD Characterization Theorem, gcd(a, c) = 1.
Similarly, gcd(b, c) = 1. �

Proof: If gcd(a, c) = gcd(b, c) = 1, then gcd(ab, c) = 1. Since gcd(a, c) = 1, Bézout’s
Lemma, there exists integers x and y such that ax+cy = 1. Similarly, there exists integers
k and m such that bk + cm = 1. Multiplying gives

1 = (ax + cy)(bx + cm)

= abx2 + acxm + bcyx + c2ym

= abx2 + c(axm + byx + xym)

Since 1 | ab, 1 | c and 1 > 0, by GCD Characterization theorem, gcd(ab, c) = 1. �

Instructor’s Comments: This is the 10-15 minute mark
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Note: IMPORTANT TIP: If the gcd condition appears in the hypothesis, then EEA or
Bézout’s theorem is useful. If the gcd condition appears in the conclusion, then GCDCT
is useful.

Proposition: (GCD of One) (GCDOO). Let a, b ∈ Z. Then gcd(a, b) = 1 if and only if
there exists integers x and y such that ax + by = 1.

Proof: Suppose gcd(a, b) = 1. Then by Bézout’s Lemma, there exists integers x and y
such that ax + by = 1.

Now, suppose that there exist integers x and y such that ax+ by = 1. Then since 1 | a
and 1 | b, then by the GCD Characterization Theorem, gcd(a, b) = 1. �

Instructor’s Comments: This is the 25 minute mark

Proposition: Division by the GCD (DBGCD). Let a, b ∈ Z. If gcd(a, b) = d and d 6= 0,
then gcd(a

d
, b
d
) = 1.

Proof: Suppose that gcd(a, b) = d 6= 0. Then by Bézout’s Lemma, there exist integers
x and y such that ax + by = d. Dividing by the nonzero d gives a

d
x + b

d
y = 1. Thus, by

GCDOO, we see that gcd(a
d
, b
d
) = 1. �

Example: Let a = 91 and b = 70. Then gcd(a, b) = 7 and by DBGCD, we have that

1 = gcd(a
d
, b
d
) = gcd(91

7
, 70

7
) = gcd(13, 10).

Instructor’s Comments: This is the 35-37 minute mark

Definition: We say that two integers a and b are coprime if gcd(a, b) = 1.

Proposition: Coprimeness and Divisibility (CAD). If a, b, c ∈ Z and c | ab and
gcd(a, c) = 1, then c | b.

Proof: Suppose that gcd(a, c) = 1 and c | ab. Since gcd(a, c) = 1, by Bézout’s Lemma,
there exists integers x and y such that ax+ cy = 1. Multiplying by b gives abx+ cby = b.
Since c | ab and c | c, by Divisibility of Integer Combinations, we have that c | (ab(x) +
c(by)) and hence c | b. �

Example: Let a = 14, b = 30 and c = 15. Then c | ab since 15 | (14)(30) = 420 and
gcd(a, c) = gcd(14, 15) = 1. Thus, by CAD, c | b or 15 | 30.

Instructor’s Comments: This is the 50 minute mark. Remind students of
the theorem cheat sheets on the website.
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Lecture 21

Instructor’s Comments: This should be the lecture you give on the day of
the midterm. It is a very light computational lecture.

Definition: For x ∈ R, define the floor function bxc to be the greatest integers less than
or equal to x.

Example:

(i) b2.5c = 2 = b2c

(ii) bπc = 3

(iii) b0c = 0

(iv) b−2.5c = −3

Example: Find gcd(56, 35)

56(1) + 35(0) = 56 Eqn [1]

56(0) + 35(1) = 35 Eqn [2]

56(1) + 35(−1) = 21 q1 = b56
35
c = 1 Eqn [3] = [1]− q1[2]

56(−1) + 35(2) = 14 q2 = b35
21
c = 1 Eqn [4] = [2]− q2[3]

56(2) + 35(−3) = 7 q3 = b21
14
c = 1 Eqn [5] = [3]− q3[4]

56(−5) + 35(8) = 0 q4 = b14
7
c = 2 Eqn [6] = [4]− q4[5]

Therefore gcd(56, 35) = 7 = 56(2) + 35(−3). This process gives rise to the Extended
Euclidean Algorithm.

Example: Find x, y ∈ Z such that 506x+ 391y = gcd(506, 391).

x y r q
1 0 506 0
0 1 391 0
1 -1 115 b506

391
c = 1

-3 4 46 b391
115
c = 3

7 -9 23 b115
46
c = 2

-17 22 0 b46
23
c = 2

Therefore, 506(7) + 391(−9) = 23 = gcd(506, 391). �

Note: This process is known as the Extended Euclidean Algorithm.

1



Handout or Document Camera or Class Exercise

Use the Extended Euclidean Algorithm to find integers x and y such that 408x+170y =
gcd(408, 170).

Solution:

x y r q
1 0 408 0
0 1 170 0
1 -2 68 b408

170
c = 2

-2 5 34 b170
68
c = 2

5 -12 0 b68
34
c = 2

Therefore, 408(−2) + 170(5) = 34 = gcd(408, 170). �
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Note:

(i) Bézout’s Lemma is the Extended Euclidean Algorithm in the textbook.

(ii) With gcd(a, b), what if

1. b > a? Then swap a and b. This works since gcd(a, b) = gcd(b, a).

2. a < 0 or b < 0? Solution is to make all the terms positive. This works since

gcd(a, b) = gcd(−a, b) = gcd(a,−b) = gcd(−a,−b).

(iii) In practice, one can accomplish these goals by changing the headings then accounting
for this in the final steps.

3



Handout or Document Camera or Class Exercise

Use the Extended Euclidean Algorithm to find integers x and y such that 399x −
2145y = gcd(399,−2145).

Solution:

x −y r q
0 1 2145 0
1 0 399 0
-5 1 150 b2145

399
c = 5

11 -2 99 b399
150
c = 2

-16 3 51 b150
99
c = 1

27 -5 48 b99
51
c = 1

-43 8 3 b51
48
c = 1

27-(16)(-43) -5-16(8) 0 b48
3
c = 1

Therefore, x = −43, −y = 8 and so y = −8, gcd(399,−2145) = 3. Hence

399(−43)− 2145(−8) = 3 = gcd(399,−2145)
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Lecture 22

Instructor’s Comments: One thing I noticed that I want to spend a bit of
time going over at the beginning was how to write a factorization of a number
n

Recall: Fundamental Theorem of Arithmetic. Suppose that n > 1 is an integer. Then
n can be factored uniquely as a product of prime numbers up to reordering of prime
numbers.

Note: For a natural number n we can write down this factorization in a number of ways:

(i) n =
k∏

i=1

pi where each pi is prime. (n > 1 required)

(ii) n =
k∏

i=1

pαi
i where each αi ≥ 1 is an integer and each pi is distinct. (n > 1 required)

(iii) n =
k∏

i=1

pαi
i where each αi ≥ 0 is an integer and each pi is distinct. This is useful

if you have two numbers and want to write them using the same primes pi. They
might not have the same prime factors, but allowing for the exponent to be 0 allows
you to write them using the same prime factors. For example, 30 = 21 · 31 · 51 · 70

and 14 = 21 · 30 · 50 · 71.

Instructor’s Comments: This is the 5 minute mark.

Theorem: Divisors From Prime Factorization (DFPF). Let n =
k∏

i=1

pαi
i where each

αi ≥ 1 is an integer. Then d is a positive divisor of n if and only if a prime factorization
of d can be given by

d =
k∏

i=1

pδii where δi ∈ Z, 0 ≤ δi ≤ αi for 1 ≤ i ≤ k

Proof: Extra reading. �

Example: Positive divisors of 63 = 32 · 7 are given by

30 · 70, 30 · 71, 31 · 70, 31 · 71, 32 · 70, 32 · 71

or
1, 7, 3, 21, 9, 63

Instructor’s Comments: This is the 15 minute mark
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Handout or Document Camera or Class Exercise

How many multiples of 12 are positive divisors of 2940? What are they?

Solution: Notice that 2940 = 12(245) (say by long division). Then, to find the number
of divisors of 2940 that are multiples of 12, you just need to take the divisors of 245
(and then multiply them all by 12). Since 245 = 5 · 72, the total number of divisors is
(1 + 1)(2 + 1) = 6.

Instructor’s Comments: Explain to students this is like taking 0 or 1 five
and then 0, 1, or 2 sevens.

Hence the multiples are:

12, 12 · 5, 12 · 7, 12 · 5 · 7, 12 · 72, 12 · 5 · 72

Instructor’s Comments: This is the 25 minute mark
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Example: Prove that a2 | b2 if and only if a | b.

Proof: Assume that a | b. Then there exists a k ∈ Z such that ak = b. Now a2k2 = b2

and hence a2 | b2 by definition.

Now, assume that a2 | b2. For convenience, assume that a, b > 0. Now, write

a =
k∏

i=1

pαi
i b =

k∏

i=1

pβii .

where 0 ≤ αi and 0 ≤ βi are integers and the pi are distinct primes. Since a2 | b2, we have
that

k∏

i=1

p2αi
i

∣∣∣∣∣
k∏

i=1

p2βii

Now, Divisors From Prime Factorization implies that 2αi ≤ 2βi and so αi ≤ βi true for
1 ≤ i ≤ k. Divisors From Prime Factorization again implies that

a =
k∏

i=1

pαi
i

∣∣∣∣∣
k∏

i=1

pβii = b

as required. �

Instructor’s Comments: One more theorem. This is the 35 minute mark

Example:

gcd(25 · 30 · 54, 24 · 31 · 54) = 2min{4,5} · 3min{0,1} · 5min{4,4}

= 24 · 54

= 10000

Instructor’s Comments: Mention that factoring is very complicated.

Theorem: (GCD From Prime Factors (GCDPF)) If

a =
k∏

i=1

pαi
i b =

k∏

i=1

pβii .

where 0 ≤ αi and 0 ≤ βi are integers and the pi are distinct primes, then

gcd(a, b) =
k∏

i=1

pmi
i

where mi = min{αi, βi} for 1 ≤ i ≤ k.

Proof: More extra reading. �

Instructor’s Comments: The next topic is completely optional on least
common multiples. Do it if you have time

Let lcm(a, b) represent the least common multiple of a and b.

Example:

3



(i) Write out a formal definition of lcm(a, b).

(ii) Show that lcm(a, b) =
∏k

i=1 p
ei
i where ei = max{αi, βi}.

(iii) Prove that gcd(a, b) · lcm(a, b) = ab.

Instructor’s Comments: Lastly, I give tips for solving GCD problems. The
analogy is going to Toronto: Taking the 401 (might be hard but is ideal).
Walking (Slow but will get you there). Flying (Theoretically fastest but takes
longer to set up) These are continued on the lecture if you run out of time.

When solving GCD problems, the following gives a rough order of how and when you
should try a technique

(i) Bézout’s Theorem (EEA) [Good when gcd is in hypothesis]

(ii) GCDWR [Good when terms in gcd depend on each other; good for computations]

(iii) GCDCT [Good when gcd is in conclusion]

(iv) Definition [Good when nothing else seems to work]

(v) GCDPF [Good when you’re desperate]

4



Lecture 23

Instructor’s Comments: If you ran out of time last lecture, you should give
students the following tips.

When solving GCD problems, the following gives a rough order of how and when you
should try a technique

(i) Bézout’s Theorem (EEA) [Good when gcd is in hypothesis]

(ii) GCDWR [Good when terms in gcd depend on each other; good for computations]

(iii) GCDCT [Good when gcd is in conclusion]

(iv) Definition [Good when nothing else seems to work]

(v) GCDPF [Good when you’re desperate]

1



Handout or Document Camera or Class Exercise

Find x, y ∈ Z such that 143x + 253y = gcd(143, 253).

Determine which of the following equations are solvable for integers x and y:

(i) 143x + 253y = 11

(ii) 143x + 253y = 155

(iii) 143x + 253y = 154

Instructor’s Comments: The answers to these questions will be part of the
lecture today.

2



Linear Diophantine Equations (LDE)

We want to solve ax + by = c where a, b, c ∈ Z under the condition that x, y ∈ Z

Instructor’s Comments: Relate this to solving for the equation of a line
over the real case and invite students to think critically about the difference
in the integer case.

Example: Solve the LDE 143x + 253y = 11.

Solution: We can solve this using the Extended Euclidean Algorithm!

x y r q
0 1 253
1 0 143
-1 1 110 1
2 -1 33 1
-7 4 11 3
23 -13 0 3

Therefore, 143(−7) + 254(4) = 11. Are there other solutions?

Instructor’s Comments: This is the 10-15 minute mark depending on the
introduction. Students should do the EEA on their own and you should do it
simultaneously.

Questions to ask about LDE’s

(i) Is there a solution?

(ii) What is it?

(iii) Are there more than one?

Example: Solve the LDE
143x + 253y = 155

Solution: Assume towards a contradiction that there exist x0 and y0 integers such that

143x0 + 253y0 = 155

By before, 11 | 143 and 11 | 253. Hence by Divisibility of Integer Combinations, 143x0 +
253y0 is divisible by 11. HOWEVER,

11 - 155 = 143x0 + 253y0

which is a contradiction. Hence the original LDE has no integer solutions. �

Instructor’s Comments: This is the 25 minute mark.

What about
143x + 253y = 154

as an LDE? Now, notice that 154 = 11 · 14. Hence, since

143(−7) + 253(4) = 11

3



multiplying by 14 gives

143(−7 · 14) + 253(4 · 14) = 11 · 14

143(−98) + 253(56) = 154

Instructor’s Comments: This is the 35 minute mark.

These insights lead to the following theorem

Theorem: (LDET1) Let d = gcd(a, b). The LDE

ax + by = c

has a solution if and only if d | c.

Proof: (⇒) Assume that ax + by = c has an integer solution, say x0, y0 ∈ Z. Since d | a
and d | b, by Divisibility of Integer Combinations, we have that d | (ax0 + by0) = c.

(⇐) Assume that d | c. Then, there exists an integer k such that dk = c. By Bézout’s
Lemma, there exist integers u and v such that au + bv = gcd(a, b) = d. Multiplying by k
gives

a(uk) + b(vk) = dk = c

Therefore, a solution is given by x = uk and y = vk. �

Instructor’s Comments: This is the 45 minute mark.

Example: Solve 20x + 35y = 5 as an LDE.

Solution: Notice here that we can simplify the LDE by dividing by 5 first to give

4x + 7y = 1

An easy solution is given by x = 2 and y = −1.

Now, look at x2 = 2 + 7 and y2 = −1− 4. Notice that

4x2 + 7y2 = 4(2 + 7) + 7(−1− 4)

= 4(2) + 4(7) + 7(−1) + 7(−4)

= 4(2) + 7(−1)

= 4x + 7y

= 1

In fact, if I take x2 = 2 + 7(11) and y2 = −1− 4(11). Notice that

4x2 + 7y2 = 4(2 + 7(11)) + 7(−1− 4(11))

= 4(2) + 4(7)(11) + 7(−1) + 7(−4)(11)

= 4(2) + 7(−1)

= 4x + 7y

= 1

and 11 above is very arbitrary. In fact, this gives us an insight into the complete charac-
terization of solutions for an LDE.
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Lecture 24

Handout or Document Camera or Class Exercise

Let a, b, x, y ∈ Z.

Which one of the following statements is true?

A) If ax + by = 6, then gcd(a, b) = 6.

B) If gcd(a, b) = 6, then ax + by = 6.

C) If a = 12b + 18, then gcd(a, b) = 6.

D) If ax + by = 1, then gcd(6a, 6b) = 6.

E) If gcd(a, b) = 3 and gcd(x, y) = 2, then gcd(ax, by) = 6.

Solution: Answer: If ax + by = 1, then gcd(6a, 6b) = 6.

1



Theorem: (LDET2) Let d = gcd(a, b) where a 6= 0 and b 6= 0. If (x, y) = (x0, y0) is a
solution to the LDE

ax + by = c

then all solutions are given by

x = x0 + b
d
n y = y0 − a

d
n

for all n ∈ Z. Alternatively, the solution set is given by

{(x0 + b
d
n, y0 − a

d
n) : n ∈ Z}

Proof: Note that the above are actually solutions to the LDE. It suffices to show that
these are all the solutions. Let (x, y) be a different solution to the LDE (other than
(x0, y0)). Then,

ax + by = c

ax0 + by0 = c

Subtracting gives

a(x− x0) + b(y − y0) = 0

a(x− x0) = −b(y − y0)
a
d
(x− x0) = −b

d
(y − y0)

Now, since gcd(a
d
, b
d
) = 1 (by DBGCD) and since

b
d
| −b

d
(y − y0) = a

d
(x− x0)

we use Coprimeness and Divisibility (CAD) to see that b
d
| (x − x0). Thus, there exists

an integer n such that x− x0 = b
d
n and thus, x = x0 + b

d
n. Plug this into the following:

a
d
(x− x0) = −b

d
(y − y0)

a
d
· b
d
n = −b

d
(y − y0)

−a
d
n = y − y0

Hence, y = y0 − a
d
n completing the proof. �

Instructor’s Comments: Something to note about the proof. An argument
using ‘similarly’ won’t work above since you want to ensure that the n you
get from doing the above (and the one you would get by arguing ‘similarly’)
is the same.

Instructor’s Comments: This is the 20 minute mark.

Example: Alice has a lot of mail to send. She wishes to spend exactly 100 dollars
buying 49 cent and 53 cent stamps. In how many ways can she do this?

Solution: Let x be the number of 49 cent stamps. Let y be the number of 53 cent
stamps. Note that x, y ∈ Z and that x, y ≥ 0. We want to solve

0.49x + 0.53y = 100

49x + 53y = 10000
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x y r q
0 1 53 0
1 0 49 0
-1 1 4 1
13 -12 1 12
* * 0 4

We solve this using the Extended Euclidean Algorithm:
Therefore, 49(13) + 53(−12) = 1. Hence, 49(130000) + 53(−120000) = 10000. Thus,

by LDET2, all solutions are given by

x = 130000− 53n

y = −120000 + 49n

for all n ∈ Z. Now, to answer the question, we need to determine all the answers that
make sense. Since x and y are physical quantities, we know that x ≥ 0 and y ≥ 0. The
first condition gives

x ≥ 0

130000− 53n ≥ 0

2452 +
44

53
=

130000

53
≥ n

whereas the second condition gives

y ≥ 0

−120000 + 49n ≥ 0

n ≥ 120000

49
= 2448 +

48

49

Since n ∈ Z, we see that 2449 ≤ n ≤ 2452. Thus there are 4 possible solutions. �

Instructor’s Comments: Watch for the off by one error! This is the 30-35
minute mark
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Handout or Document Camera or Class Exercise

Find all non-negative integer solutions to 15x− 24y = 9 where x ≤ 20 and y ≤ 20.

Solution: Dividing by 3 gives
5x− 8y = 3

By inspection, x0 = −1 and y0 = −1 is a solution. Since gcd(5,−8) = 1, by LDET2 we
have that the complete solution set is given by

x = −1− (−8)n = −1 + 8n

y = −1 + 5n

for all n ∈ Z. By the statement,

0 ≤ x ≤ 20

0 ≤ −1 + 8n ≤ 20

1 ≤ 8n ≤ 21

Giving n = 1, 2 and

0 ≤ y ≤ 20

0 ≤ −1 + 5n ≤ 20

1 ≤ 5n ≤ 21

giving n = 1, 2, 3, 4. Hence the overlap of n = 1 or n = 2 gives all solutions. These are
given by (7, 4) and (15, 9). �

Instructor’s Comments: This is the 40-45 minute mark.
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Instructor’s Comments: This last page is to motivate the switch to con-
gruences. This is where the number theory really kicks off. If you get the
opportunity to, mention the definition of congruences. Seeing this definition
once or twice is really useful. Students should be told to commit this to mem-
ory quickly otherwise these next two weeks will seem unnecessarily difficult.

Congruences

Idea: Simplify problems in divisibility.

(i) Is 156723 divisible by 11?

(ii) What angle do you get after a 1240 degree rotation?

(iii) What time is it 400 hours from now?

Note: We only care about the above values up to multiples of 11, 360 and 24.

Definition: Let m ∈ N. We say that two integers a and b are congruent modulo m if and
only if m | (a− b) and we write a ≡ b (mod m). If m - (a− b), we write a 6≡ b (mod m).

Instructor’s Comments: It’s important enough to mention again - commit
the previous definition to memory!!!

Example:

7 ≡ 4 (mod 3)

4 ≡ 7 (mod 3)

4 ≡ 4 (mod 3)

7 6≡ 4 (mod 4)

10 ≡ 15 (mod 5)

15 ≡ 30 (mod 5)

10 ≡ 30 (mod 5)
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Lecture 25

Instructor’s Comments: First part is to recall the definition of congruence.
This is extremely important. Get students to do this on their own

Definition: Let a, b ∈ Z and n ∈ N. Then a is congruent to b modulo n if and only
if n | (a − b) and we write a ≡ b (mod n). This is equivalent to saying there exists an
integer k such that a− b = kn or a = b + kn.

Instructor’s Comments: This is the 5 minute mark

1



Handout or Document Camera or Class Exercise

Instructor’s Comments: Write on the board and get students to prove.
These are follow your nose proofs

Congruence is an Equivalence Relation (CER)

Let n ∈ N. Let a, b, c ∈ Z. Then

(i) (Reflexivity) a ≡ a (mod n).

(ii) (Symmetry) a ≡ b (mod n)⇒ b ≡ a (mod n).

(iii) (Transitivity) a ≡ b (mod n) and b ≡ c (mod n)⇒ a ≡ c (mod n).

Proof:

(i) Since n | 0 = (a− a), we have that a ≡ a (mod n).

(ii) Since n | (a− b), there exists an integer k such that nk = (a− b). This implies that
n(−k) = b− a and hence n | (b− a) giving b ≡ a (mod n).

(iii) Since n | (a − b) and n | (b − c), by Divisibility of Integer Combinations, n |
((a− b) + (b− c)). Thus n | (a− c) and hence a ≡ c (mod n)

Instructor’s Comments: This is the 20 minute mark
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Example: Without a calculator, determine if 167 ≡ 2015 (mod 4) is true.

Solution: Since 2015 ≡ 3 (mod 4) (valid as 4 | 2012 = 2015 − 3) and 167 ≡ 3 (mod 4)
(valid as 4 | 164 = 167 − 3), we see by symmetry that 3 ≡ 2015 (mod 4) and hence by
transitivity that 167 ≡ 2015 (mod 4).

Alternate Solution: Does 4 | (2015− 167) = 1848?

Instructor’s Comments: This is the 25 minute mark
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Handout or Document Camera or Class Exercise

Instructor’s Comments: Write on board and get students to prove on their
own

Properties of Congruence (PC) Let a, a′, b, b′ ∈ Z. If a ≡ a′ (mod m) and b ≡ b′

(mod m), then

(i) a + b ≡ a′ + b′ (mod m)

(ii) a− b ≡ a′ − b′ (mod m)

(iii) ab ≡ a′b′ (mod m)

Proof:

(i) Since m | (a− a′) and n | (b− b′), we have by Divisibility of Integer Combinations
m | (a−a′ + (b− b′)). Hence m | ((a+ b)− (a′ + b′)) and so a+ b ≡ a′ + b′ (mod m).

(ii) Since m | (a− a′) and n | (b− b′), we have by Divisibility of Integer Combinations
m | (a−a′− (b− b′)). Hence m | ((a− b)− (a′− b′)) and so a− b ≡ a′− b′ (mod m).

(iii) Since m | (a− a′) and n | (b− b′), we have by Divisibility of Integer Combinations
m | ((a− a′)b + (b− b′)a′). Hence m | ab− a′b′ and so ab ≡ a′b′ (mod m).

Instructor’s Comments: This is the 40 minute mark
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Corollary If a ≡ b (mod m) then ak ≡ bk (mod m) for k ∈ N.

Example: Since 2 ≡ 6 (mod 4), we have that

22 ≡ 62 (mod 4), that is, 4 ≡ 36 (mod 4).
Example: Is 59 + 622000 − 14 divisible by 7?

Solution: Reduce modulo 7. By Properties of Congruence, we have

59 + 622000 − 14 ≡ (−2)9 + (−1)2000 − 0 (mod 7)

≡ −29 + 1 (mod 7)

≡ −(23)3 + 1 (mod 7)

≡ −(8)3 + 1 (mod 7)

≡ −(1)3 + 1 (mod 7)

≡ 0 (mod 7)

Therefore, the number is divisible by 7.

Instructor’s Comments: This is the 50 minute mark. Some things to note
above: In computations, we often don’t cite every single time a basic propo-
sition is used like PC or CER or the major corollary above. Be sure though
while explaining to mention the use of the corollary above.
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Lecture 26

Leading Question: Is 98654320480 divisible by 120?

Instructor’s Comments: Note that 120 = 5!

Divisibility Rules

A positive integer n is divisible by

A) 2k if and only if the last k digits are divisible by 2k where k ∈ N.

B) 3 (or 9) if and only if the sum of the digits is divisible by 3 (or 9).

C) 5k if and only if the last k digits are divisible by 5k where k ∈ N.

D) 7 (or 11 or 13) if and only if the alternating sum of triples of digits is divisible by 7
(or 11 or 13).

Example: n = 123456333. Look at 333 − 456 + 123 = 0 Since 7 | 0 (and 11 and
13), we see that 7 | n (and 11 and 13).

We prove that 9 divides a number n if and only if the sum of the digits is divisible by 9.

Proof: Let n ∈ N. Write

n = d0 + 10d1 + 102d2 + ... + 10kdk

where di ∈ {0, 1, 2, ..., 9}. (For example, 213 = 3 + 10(1) + 100(2)). Thus,

9 | n⇔ n ≡ 0 (mod 9)

⇔ 0 ≡ d0 + 10d1 + ... + 10kdk (mod 9)

⇔ 0 ≡ d0 + d1 + ... + dk (mod 9) By (PC)

⇔ 9 | (d0 + d1 + ... + dk)

Hence 9 | n if and only if 9 divides the sum of the digits of n. �

Instructor’s Comments: Note this is the first time I used an iff bidirectional
proof. If this is your first time too you should make a note. This is the 10-15
minute mark. Note that if you’re running low on time you needn’t write out
all the divisibility rules (or even mention them!)

Let’s look at some examples of division of congruences. Can I divide integers with
congruences?

(i) 3 ≡ 24 (mod 7)

(ii) 1 ≡ 8 (mod 7)

(iii) 3 ≡ 27 (mod 6)

(iv) 1 6≡ 9 (mod 6)

1



The above examples suggests that if you’re dividing by a number that is coprime to the
modulus, then you can divide. This is true in general.

Proposition: (Congruences and Division (CD)). Let a, b, c ∈ Z and let n ∈ N. If
ac ≡ bc (mod n) and gcd(c, n) = 1, then a ≡ b (mod n).

Proof: By assumption, n | (ac− bc) so n | c(a− b). Since gcd(c, n) = 1, by Coprimeness
and Divisibility, n | (a− b). Hence a ≡ b (mod n).

Instructor’s Comments: This is the 20-25 minute mark. introduce the next
proposition as something they know but helps organize thoughts.

Proposition: (Congruent iff Same Remainder - CISR) Let a, b ∈ Z. Then a ≡
b (mod n) if and only if a and b have the same remainder after division by n.

Instructor’s Comments: Delay the proof until after they get a chance to
use it.
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What is the remainder when 77100(999)− 683 is divided by 4?

Solution: Notice that

6 = 4(1) + 2 77 = 19(4) + 1 999 = 249(4) + 3

Hence, by Congruent if and only if Same Remainder, we have 77 ≡ 1 (mod 4) and 999 ≡
3 (mod 4). Thus, by Properties of Congruences,

77100(999)− 683 ≡ (1)100(3)− 283 (mod 4)

≡ 3− 22 · 281 (mod 4)

≡ 3− 4 · 281 (mod 4)

≡ 3− 0(281) (mod 4)

≡ 3 (mod 4)

Once again by Congruent If and only If Same Remainder, 3 is the remainder when
77100(999)− 683 is divided by 4. �
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Restating,

Proposition: (Congruent iff Same Remainder - CISR) Let a, b ∈ Z. Then a ≡
b (mod n) if and only if a and b have the same remainder after division by n.

Proof: By the Division Algorithm, write a = nqa +ra and b = nqb +rb where 0 ≤ ra, rb <
n. Subtracting gives

a− b = n(qa − qb) + ra − rb

To prove ⇒, first assume that a ≡ b (mod n), that is n | a − b. Since n | n(qa − qb), we
have by Divisibility of Integer Combinations that n | (a − b) + n(qa − qb)(−1) and thus,
n | ra− rb. By our restriction on the remainders, we see that the difference is bounded by

−n + 1 ≤ ra − rb ≤ n− 1

However, only 0 is divisible by n in this range! Since n | (ra − rb), we must have that
ra − rb = 0. Hence ra = rb.

⇐ Assume that ra = rb. Since

a− b = n(qa − qb) + ra − rb = n(qa − qb)

we see that n | (a− b) and hence a ≡ b (mod n). �

Instructor’s Comments: This is likely the 50 minute mark. If it isn’t get
students to work or think about the following problem which you’ll take up
in the next class.

Question: What is the last digit of 532310 + 922?
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Lecture 27

Instructor’s Comments: An important announcement. Students should
probably read the textbook but I anticipate most don’t just due to timing
restrictions. However, I would strongly advise students read Chapter 26 to
get practice with the plethora of notation.

Handout or Document Camera or Class Exercise

What is the last digit of 532310 + 922?

Solution: Want the remainder when we divide by 10. Hence reduce modulo 10 and use
Congruent If and Only If Same Remainder.

532 · 310 + 922 ≡ (52)16 · 95 + (−1)22 (mod 10)

≡ 516(−1)5 + 1 (mod 10)

≡ (52)8(−1) + 1 (mod 10)

≡ −58 + 1 (mod 10)

≡ −(52)4 + 1 (mod 10)

≡ −54 + 1 (mod 10)

≡ −625 + 1 (mod 10)

≡ −4 (mod 10)

≡ 6 (mod 10)

Hence the last digit is 6. �

Instructor’s Comments: This is the 10 minute mark.
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Linear Congruences

Question: Solve ax ≡ c (mod m) where a, c ∈ Z and m ∈ N for x ∈ Z.

Note: when we are solving ax = c over the integers, we know that this has a solution if
and only if a | c.

Example: Solve 4x ≡ 5 (mod 8).

Solution: We associate a linear Diophantine equation to this linear congruence. By
definition, there exists a z ∈ Z such that 4x− 5 = 8z, that is, 4x− 8z = 5. Now, letting
y = −z. gives the linear Diophantine equation

4x + 8y = 5

Instructor’s Comments: From now on I will jump straight to this version
of the LDE without mentioning it so make sure they understand this change
of variables trick to translate to an LDE quickly. This is why I go through
this here.

Since gcd(4, 8) = 4 - 5, by LDET1, we see that this LDE has no solution. Hence the
original congruence has no solutions. �

Solution 2: Let x ∈ Z. By the Division Algorithm, x = 8q + r for some 0 ≤ r ≤ 7 and
q, r integers. By Congruent If and Only If Same Remainder, 4x ≡ 5 (mod 8) holds if and
only if 4r ≡ 5 (mod 8). Thus, if we can prove that no number from 0 ≤ x ≤ 7 works,
then no integer x can satisfy the congruence.

Instructor’s Comments: Again make a note that this explanation is not
needed anymore to do these problems and is included here only for clarity.

Trying the possibilities

4(0) ≡ 0 (mod 8)

4(1) ≡ 4 (mod 8)

4(2) ≡ 0 (mod 8)

4(3) ≡ 4 (mod 8)

4(4) ≡ 0 (mod 8)

4(5) ≡ 4 (mod 8)

4(6) ≡ 0 (mod 8)

4(7) ≡ 4 (mod 8)

shows that 4x ≡ 5 (mod 8) has no solution. �

Solution 3: Assume towards a contradiction that there exists an integer x such that
4x ≡ 5 (mod 8). Multiply both sides by 2 to get (by Properties of Congruence) that

0 ≡ 0x ≡ 8x ≡ 10 (mod 8)

Hence, 8 | 10 however 8 - 10. This is a contradiction. Thus, there are no integer solutions
to 4x ≡ 5 (mod 8). �
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Instructor’s Comments: This is the 25 minute mark. Take your time with
the previous argument. Encourage students to be creative with how they
argue! If they find a solution encourage them to find another!

Example: 5x ≡ 3 (mod 7).

Solution: Look Modulo 7. Then there are only 7 possibilities to consider for x. Trying
them gives

5(0) ≡ 0 (mod 7)

5(1) ≡ 5 (mod 7)

5(2) ≡ 3 (mod 7)

5(3) ≡ 1 (mod 7)

5(4) ≡ 6 (mod 7)

5(5) ≡ 4 (mod 7)

5(6) ≡ 2 (mod 7)

Therefore, x ≡ 2 (mod 7) gives the complete set of solutions. �

Solution 2: This is equivalent to solving the LDE

5x + 7y = 3

A solution is given by (x, y) = (2,−1). By LDET2, x = 2 + 7n and y = −1 + 5n for all n
gives the complete set of solutions. Hence x ≡ 2 (mod 7) gives the complete solutions. �

Solution 3: 5x ≡ 3 (mod 7)⇔ x ≡ 2 (mod 7). We see this by multiplying by 5 to go in
reverse and multiplying by 3 to go from the left to the right. Something like:

5x ≡ 3 (mod 7)

(3)5x ≡ (3)3 (mod 7)

15x ≡ 9 (mod 7)

x ≡ 2 (mod 7)

and multiply by 3 to go in reverse.

Instructor’s Comments: Mention that this is related to something called
finding an inverse for 5.

Example: 2x ≡ 4 (mod 6).

Solution: Trying all 6 possibilities yields,

2(0) ≡ 0 (mod 6)

2(1) ≡ 2 (mod 6)

2(2) ≡ 4 (mod 6)

2(3) ≡ 0 (mod 6)

2(4) ≡ 2 (mod 6)

2(5) ≡ 4 (mod 6)
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Hence, x ≡ 2, 5 (mod 6) give solutions. These solutions are captured by x ≡ 2 (mod 3).
(It is not a coincidence that 3 = 6/ gcd(2, 4)). �

Instructor’s Comments: Try to make this the 35 minute mark.

Summarizing the above give the following theorem:

Theorem: LCT1 (Linear Congruence Theorem 1). Let a, c ∈ Z and m ∈ N and
gcd(a,m) = d. Then ax ≡ c (mod m) has a solution if and only if d | c. Further, we have
d solutions modulo m and 1 solution modulo m/d. Moreover, if x = x0 is a solution, then
x ≡ x0 (mod m/d) forms the complete solution set or alternatively, x = x0 + m

d
n for all

n ∈ Z or for another alternative way to write the solution:

x ≡ x0, x0 + m
d
, x0 + 2m

d
, ..., x0 + (d− 1)m

d
(mod m)

Proof: Read p. 180. �

Instructor’s Comments: This is the 40-45 minute mark.
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Handout or Document Camera or Class Exercise

Solve 9x ≡ 6 (mod 15).

Solution: Notice that 9(4) = 36 ≡ 6 (mod 15). Hence, by LCT1, all solutions are
given by x ≡ 4 (mod 15/ gcd(9, 15)), or x ≡ 4 (mod 5). This is equivalent to x ≡
4, 9, 14 (mod 15).

Alternate Solution: Equivalent to solving the LDE

9x + 15y = 6

=⇒ 3x + 5y = 2

By LDET2, since (x, y) = (−1, 1) is a solution, all solutions are given by

x = −1 + 5n

y = 1− 3n

for all n ∈ Z. Therefore, a solution is given by x ≡ −1 (mod 5) or x ≡ 4 (mod 5).
Equivalently, x ≡ 4, 9, 14 (mod 15).

Instructor’s Comments: This is the 50 minute mark.
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Lecture 28

Handout or Document Camera or Class Exercise

Which of the following satisfies x ≡ 40 (mod 17) ?

(Do not use a calculator.)

A) x = 173

B) x = 155 + 193 − 4

C) x = 5 · 18100

D) x = 2 · 3 · 5 · 7 · 11 · 13

E) x = 170 + 171 + 172 + 173 + 174 + 175 + 176

Solution:

A) x = 173 ≡ 3 (mod 17)

B) x = 155 + 193 − 4 ≡ (−2)5 + 23 − 4 ≡ −32 + 8− 4 ≡ 2 + 4 ≡ 6 (mod 17)

C) x = 5 · 18100 ≡ 5(1)100 ≡ 5 (mod 17)

D) x = 2 · 3 · 5 · 7 · 11 · 13 ≡ 6 · 35 · (−6)(−4) ≡ 6 · 1 · 24 ≡ 6 · 7 ≡ 42 ≡ 8 (mod 17)

E) x = 170 + 171 + 172 + 173 + 174 + 175 + 176 ≡ 1 (mod 17)

Answer is the second option since x ≡ 40 ≡ 6 (mod 17).

Instructor’s Comments: This is the 5-10 minute mark
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Instructor’s Comments: Try to make the next exercise only take you to
the 10 minute mark.

Example: Show that there are no integer solutions to x2 + 4y = 2.

Proof: Assume towards a contradiction that there exist integers x and y such that
x2 + 4y = 2. Reducing modulo 4 yields x2 ≡ 2 (mod 4). Trying all the possibilities yields

(0)2 ≡ 0 (mod 4)

(1)2 ≡ 1 (mod 4)

(2)2 ≡ 0 (mod 4)

(3)2 ≡ 1 (mod 4)

Hence there are no integer solutions. �

Note: Notice that sometimes, you end up with many solutions. For example, x2 ≡
1 (mod 8) has 4 solutions (all the odd numbers work! This is an exercise to check)

Instructor’s Comments: Now comes what I think is the hardest to grasp
concept in this course; the abstraction of Z/mZ. I personally am going to
discuss rings here and take a bit more time here to save a bit of time later
on in the course. I will introduce the notion of a ring and field here so that
when we get to complex numbers, it will go a bit quicker. This will cause me
to spend more time here on topics but I think that’s okay.

Zm or Z/mZ The integers modulo m

Definition: The congruence or equivalence class modulo m of an integer a is the set of
integers

[a] := {x ∈ Z : x ≡ a (mod m)}
Note: := means “defined as”.

Further, define
Zm = Z/mZ := {[0], [1], ..., [m− 1]}

Definition: A commutative ring is a set R along with two closed operations + and ·
such that for a, b, c ∈ R and

(i) Associative (a + b) + c = a + (b + c) and (ab)c = a(bc).

(ii) Commutative a + b = b + a and ab = ba.

(iii) Identities: there are [distinct] elements 0, 1 ∈ R such that a + 0 = a and a · 1 = a.

(iv) Additive inverses: There exists an element −a such that a + (−a) = 0.

(v) Distributive Property a(b + c) = ab + ac.

Example: Z, Q, R. Not N

Definition: If in addition, every nonzero element has a multiplicative inverse, that is
an element a−1 such that a · a−1 = 1, we say that R is a field.
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Example: Q, R. Not N or Z.

Instructor’s Comments: This should take you tot he 25-30 minute mark

Definition: We make Zm a ring by defining addition and subtraction and multiplication
by [a]± [b] := [a± b] and [a] · [b] := [ab]. This makes [0] the additive identity and [1] the
multiplicative identity.

Instructor’s Comments: Note that the [a+b] means add then reduce modulo
m. There is something subtle going on here that might be lost on students.

There is one issue we need to resolve here; the issue of being well defined. How do we
know that the above definition does not depend on the representatives chosen for [a] and
[b]?

Example: For example, in Z6, is it true that [2][5] = [14][−13]?

Instructor’s Comments: Note that [2] = [14] and [5] = [−13]. To properly
prove well-definedness, you would have to do this for all possible representa-
tions of [a]. Since this will create a notational disaster, I think it’s best to try
to illustrate the point with a concrete example.

Proof: Note that in Z6, we have

LHS = [2][5] = [2 · 5] = [10] = [4]

and also
RHS = [14][−13] = [14(−13)] = [−182] = [−2] = [4]

completing the proof. �

Definition: The members [0], [1], ..., [m− 1] are sometimes called representative mem-
bers.

Instructor’s Comments: Minimum this is the 35 minute mark.

Instructor’s Comments: In practice, this was the 50 minute mark but either
way that’s okay - hopefully you can squeeze in the addition table.

Addition table for Z4

+ [0] [1] [2] [3]
[0] [0] [1] [2] [3]
[1] [1] [2] [3] [0]
[2] [2] [3] [0] [1]
[3] [3] [0] [1] [2]
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Lecture 29

Handout or Document Camera or Class Exercise

Solve the following equations in Z14. Express answers as [x] where 0 ≤ x < 14.

i) [75]− [x] = [50]

ii) [10][x] = [1]

iii) [10][x] = [2]

Hint: Rewrite these using congruences.

Instructor’s Comments: Note to “properly” prove these, you would have
to prove these as an equality of sets.

Solution:

(i) [75] − [x] = [50] is equivalent to solving 75 − x ≡ 50 (mod 14). Solving here gives
x ≡ 25 ≡ 11 (mod 14).

(ii) [10][x] = [1] is equivalent to solving 10x ≡ 1 (mod 14). Since gcd(10, 14) = 2 - 1,
we see by LCT1 that this has no solution.

(iii) [10][x] = [2] is equivalent to solving 10x ≡ 2 (mod 14). Notice that x = 3 is a
solution and so by LCT1, we see that x ≡ 3 (mod 14/ gcd(2, 14)) gives a complete
solution. This is the same as x ≡ 3 (mod 7) or x ≡ 3, 10 (mod 14) or x = [3], [10].

Instructor’s Comments: This is the 10 minute mark. The last point that
x ≡ 3 (mod 7) and x ≡ 3, 10 (mod 14) are equivalent is lost on some students.
Remind them that the first meant x = 3 + 7k and that k has two options
- being even (which is equivalent to 3 modulo 14) or being odd (which is
equivalent to 10 modulo 14). A similar argument can be applied if it were say
7 to 21 etc.

Instructor’s Comments: If you want an extra problem with congruences,
try Solve [15][x] + [7] = [12] in Z10. Otherwise mention this later.

Inverses

(i) [−a] is the additive inverse of [a], that is, [a] + [−a] = [0].

(ii) If there exists an element [b] ∈ Zm such that [a][b] = [1] = [b][a], we call [b] the
multiplicative inverse of [a] and write [b] = [a]−1 or b ≡ a−1 (mod m).

Example: [5][11] = [1] in Z18. Therefore, [5]−1 = [11] and [11]−1 = [5].

Note: WARNING Multiplicative inverses do not always exist!

1



Example: [9][x] = [1] in Z18 has no solution. The left hand side is always [0] or [9] for
every value of [x]. Hence [9]−1 does not exist in Z18.

Instructor’s Comments: This is the 15 minute mark
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Handout or Document Camera or Class Exercise

Find the additive and multiplicative inverses of [7] in Z11. Give your answers in the
form [x] where 0 ≤ x ≤ 10.

Solution: Additive inverse: [−7] = [4]. For the multiplicative inverse, we want to solve

[7][x] = [1] ⇔ 7x ≡ 1 (mod 11)

You can solve this by turning this into the LDE 7x+ 11y = 1 and solving that. However,
because the numbers are small, guessing and checking is a far more efficient strategy.
Notice that

7 · 3 ≡ 21 ≡ 10 ≡ −1 (mod 11)

Thus, 7(−3) ≡ 1 (mod 11) and so [x] = [−3] = [8] is the inverse of [7] in Z11.

Instructor’s Comments: This is the 25 minute mark
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Proposition: Let a ∈ Z and m ∈ N.

(i) [a]−1 exists in Zm if and only if gcd(a,m) = 1.

(ii) [a]−1 is unique if it exists.

Proof:

(i)

[a]−1 exists ⇔ [a][x] = [1] is solvable in Zm

⇔ ax + my = 1 is a solvable LDE

⇔ gcd(a,m) = 1 GCDOO

completing the proof. �

(ii) Assume [a]−1 exists. Suppose there exists a [b] ∈ Zm such that [a][b] = [1] = [b][a].
Then

[a]−1[a][b] = [a]−1[1]

[1][b] = [a]−1

[b] = [a]−1

Instructor’s Comments: This is the 35 minute mark

Exercise: Solve [15][x] + [7] = [12] in Z10.

Instructor’s Comments: Solution: This is equivalent to solving

15x + 7 ≡ 12 (mod 10).

Isolating for x gives
15x ≡ 5 (mod 10).

Since 15 ≡ 5 (mod 10), Properties of Congruences states that

5x ≡ 5 (mod 10).

This clearly has the solution x = 1. Hence, by Linear Congruence Theorem 1,
we have that

x ≡ 1 (mod 10
gcd(5,10)

)

gives the complete set of solutions. Thus, x ≡ 1 (mod 2) or x ≡ 1, 3, 5, 7, 9 (mod 10).
Since the original question is framed in terms of congruence classes, our an-
swer should be as well and hence

[x] ∈ {[1], [3], [5], [7], [9]}.

For extra practice, see if you can phrase this argument using Linear Con-
gruence Theorem 2.
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Handout or Document Camera or Class Exercise

Instructor’s Comments: This is a good time to introduce the notation
TFAE

The following are equivalent [TFAE]

• a ≡ b (mod m)

• m | (a− b)

• ∃k ∈ Z, a− b = km

• ∃k ∈ Z, a = km + b

• a and b have the same remainder when divided by m

• [a] = [b] in Zm.

Theorem: [LCT 2] Let a, c ∈ Z and let m ∈ N. Let gcd(a,m) = d. The equation
[a][x] = [c] in Zm has a solution if and only if d | c. Moreover, if [x] = [x0] is one
particular solution, then the complete solution is

{
[x0], [x0 + m

d
], [x0 + 2m

d
], . . . , [x0 + (d− 1)m

d
]
}

Instructor’s Comments: This is the 40 minute mark
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Instructor’s Comments: This is the FLT part of the course. I think this
proof is fantastic and really creative so I like doing it. One could of course
prove FLT using induction and the binomial theorem, which I would say if
you have in the course you should do. You can choose to not to the proof or
maybe show why it’s true for a specific prime but I like actually showing the
proof. It’s elegant clever and really just awesome. I recommend being brave
and showing it. This proof will spill over to the next lecture. Keep shifting
content until you reach the square and multiply algorithm which is optional
material that you can afford to skip and catch up there.

Theorem: Fermat’s Little Theorem (F`T). If p is a prime number and p - a then
ap−1 ≡ 1 (mod p). Equivalently, [ap−1] = [1] in Zp.

Example:

(i) 56 ≡ 1 (mod 7)

(ii) 46 ≡ 1 (mod 7)

(iii) 396 ≡ 1 (mod 7)

Note: p− 1 is in the exponent and not the base. For example, (5− 1)3 ≡ 4 (mod 5).

Note: p − 1 is not necessarily the smallest exponent such that ak ≡ 1 (mod p). For
example 62 ≡ 1 (mod 7).

Lemma: Let gcd(a, p) = 1. Let

S := {a, 2a, ..., (p− 1)a} T := {1, 2, ..., p− 1}.

Then the elements of S are unique modulo p and for all s ∈ S, there exists a unique
element t ∈ T such that s ≡ t (mod p).

Proof: We first show that S contains p− 1 distinct nonzero elements modulo p.

Let ka,ma ∈ S with 1 ≤ k,m ≤ p − 1 integers. Now, if ka ≡ ma (mod p), then
p | a(k−m). Since gcd(a, p) = 1, we see that p | (k−m) by Coprimeness and Divisibility.
Since

−p < 2− p ≤ k −m ≤ p− 2 < p

and p | (k −m), we see that k −m = 0, that is, k = m. Lastly, if ka ≡ 0 (mod p), then
p | ka. By Euclid’s Lemma, p | k, a contradiction since 1 ≤ k ≤ p− 1 and p is prime, or
p | a also a contradiction since gcd(a, p) = 1. Thus, S has p− 1 distinct nonzero elements
modulo p.

So if ka ∈ S, then ka ≡ n (mod p) for some 1 ≤ n ≤ p− 1 and this n is unique since
if in addition ka ≡ ` (mod p) with 1 ≤ ` ≤ p− 1, subtracting the two congruences gives
p | (n− `), a contradiction unless ` = n since

−p < 2− p ≤ `− n ≤ p− 2 < p.

This completes the proof. �
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Proof: (of Fermat’s Little Theorem). Using the lemma, valid since p - a holds if and
only if gcd(a, p) = 1 (by say GCDPF), we have that by the lemma S and T contain the
same elements modulo p and hence their products must be congruent modulo p. Thus,

∏

x∈S
x ≡

∏

y∈T
y (mod p)

p−1∏

k=1

ka ≡
p−1∏

j=1

j (mod p)

ap−1
p−1∏

k=1

k ≡
p−1∏

j=1

j (mod p)

Let Q =

p−1∏

j=1

j = (1)(2)...(p− 1). Then

Qap−1 ≡ Q (mod p)

Since gcd(Q, p) = 1 (as Q is a product of numbers less than a prime p), we have that Q−1

exists and hence

Q−1Qap−1 ≡ Q−1Q (mod p)

and thus ap−1 ≡ 1 (mod p) completing the proof . �

Instructor’s Comments: This is the 50 minute mark. It’s a bit of an intense
proof but really cool.
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Lecture 30

Handout or Document Camera or Class Exercise

Find the remainder when 792 is divided by 11.

Solution: Recall (F`T): If p - a, then ap−1 ≡ 1 (mod p) where p is a prime.

By F`T,

710 ≡ 1 (mod 11)

790 ≡ 1 (mod 11) Raise both sides to the power of 9

792 ≡ 72 ≡ 49 ≡ 5 (mod 11)

Alternatively,

792 ≡ 79(10)+2 (mod 11)

≡ (710)972 (mod 11)

≡ 19 · 72 (mod 11) By F`T since 11 - 7

≡ 49 (mod 11)

≡ 5 (mod 11)

completing the question. �

Instructor’s Comments: This is the 10 minute mark
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Corollary: If p is a prime and a ∈ Z, then ap ≡ a (mod p).

Proof: If p | a, then a ≡ 0 (mod p). This implies that ap ≡ 0 ≡ a (mod p).

If p - a, then by F`T, ap−1 ≡ 1 (mod p) and hence ap ≡ a (mod p) completing the
proof. �

Corollary: If p is a prime number and [a] 6= [0] in Zp, then there exists a [b] ∈ Zp such
that [a][b] = [1].

Proof: Since [a] 6= [0], we see that p - a. Hence by F`T, ap−1 ≡ 1 (mod p) and thus
a · ap−2 ≡ 1 (mod p). This is sensible since p− 2 ≥ 0. Thus, take [b] = [ap−2]. �

Instructor’s Comments: Students should be able to do the next one - give
them a shot at it on their own first! There’s a handout one that depends on
this so it might be good to get them thinking.

Corollary: If r = s + kp, then ar ≡ as+k (mod p) where p is a prime and a ∈ Z and
r, s, k ∈ N.

Instructor’s Comments: It should be noted that here we want r, s, k to be
at least nonnegative. We haven’t really talked about what it means to take
ak when k < 0 except for k = −1. It’s not hard but in this corollary, the
important fact is that a might not be invertible so things like a−3 don’t make
sense necessarily.

Proof: We have

ar ≡ as+kp (mod p)

≡ as(ap)k (mod p)

≡ as(a)k (mod p) By corollary to F`T

≡ as+k (mod p)

Instructor’s Comments: This is the 20 minute mark.
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Handout or Document Camera or Class Exercise

Let p be a prime. Prove that if p - a and r ≡ s (mod (p− 1)), then ar ≡ as (mod p)
for any r, s ∈ Z.

Solution: Since r ≡ s (mod (p− 1)), we have that (p− 1) | (r− s). Thus, there exists a
k ∈ Z such that (p− 1)k = r − s. Hence r = s + (p− 1)k. Thus,

ar ≡ as+(p−1)k (mod p)

≡ as(ap−1)k (mod p)

≡ as(1)k (mod p) By F`T since p - a
≡ as (mod p).

This completes the proof. �

Instructor’s Comments: This is the 30 minute mark
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Chinese Remainder Theorem (CRT)

Solve

x ≡ 2 (mod 7)

x ≡ 7 (mod 11)

Instructor’s Comments: Note to students this is the first time they are
seeing two congruences with different moduli.

Using the first condition, write x = 2 + 7k for some k ∈ Z. Plugging into the second
condition gives

2 + 7k ≡ 7 (mod 11)

7k ≡ 5 (mod 11)

Now there are a few ways to proceed. One could guess and check the inverse of 7. With
this approach, we see that multiplying both sides by 3 gives

3 · 7k ≡ 15 (mod 11)

21k ≡ 4 (mod 11)

−k ≡ 4 (mod 11)

k ≡ −4 (mod 11)

k ≡ 7 (mod 11)

Therefore, k = 7 + 11` for some ` ∈ Z. Alternatively, one can use the LDE approach on
7k + 11y = 5 and use the Extended Euclidean Algorithm:

k y r q
0 1 11 0
1 0 7 0
-1 1 4 1
2 -1 3 1
-3 2 1 1

0 3

Hence 7(−3) + 11(2) = 1 and thus 7(−15) + 11(10) = 5. So by LDET2, we have that
k = −15 + 11n for all n ∈ Z. Thus k ≡ −15 ≡ 7 (mod 11) and as above k = 7 + 11` for
some ` ∈ Z.

Instructor’s Comments: Note here that to find all solution we need to use
for all n ∈ Z. Because out specific k is fixed however, we us for some at the
end. What’s happened here is that we’ve overloaded the use of k - once in
the question but once in the LDE question process. This isn’t a big deal and
probably isn’t worth mentioning unless a student asks.

Thus, since x = 2 + 7k and k = 7 + 11`, we have

x = 2 + 7k

= 2 + 7(7 + 11`)

= 51 + 77`
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Therefore, x ≡ 51 (mod 77) is the solution. �

Instructor’s Comments: This might take you to the 50 minute mark. Oth-
erwise state the slide on the next lecture.
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Lecture 31

Handout or Document Camera or Class Exercise

Theorem: [Chinese Remainder Theorem (CRT) If
gcd(m1,m2) = 1, then for any choice of integers a1 and a2, there exists a solution to the
simultaneous congruences

n ≡ a1 (mod m1)

n ≡ a2 (mod m2)

Moreover, if n = n0 is one integer solution, then the complete solution is n ≡ n0

(mod m1m2).

Theorem: (Generalized CRT (GCRT)) If m1,m2, . . . ,mk are integers and gcd(mi,mj) =
1 whenever i 6= j, then for any choice of integers a1, a2, . . . , ak, there exists a solution to
the simultaneous congruences

n ≡ a1 (mod m1)

n ≡ a2 (mod m2)

...

n ≡ ak (mod mk)

Moreover, if n = n0 is one integer solution, then the complete solution is

n ≡ n0 (mod m1m2 . . .mk)

Instructor’s Comments: This is the 5 minute mark. Remark that the
statement of CRT is not nearly as useful as understanding the proof.
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Example: Solve

x ≡ 5 (mod 6)

x ≡ 2 (mod 7)

x ≡ 3 (mod 11)

From the first equation, x = 5 + 6k for some k ∈ Z. Plug this into the second equation
gives

5 + 6k ≡ 2 (mod 7)

6k ≡ −3 (mod 7)

−k ≡ −3 (mod 7)

k ≡ 3 (mod 7)

and hence k = 3 + 7` for some ` ∈ Z. Therefore, x = 5 + 6(3 + 7`) = 23 + 42`. Therefore
x ≡ 23 (mod 42). Now, we need to satisfy

x ≡ 23 (mod 42)

x ≡ 3 (mod 11)

Instructor’s Comments: This is done so that students can see the reduction
pattern that emerges.

Since x = 23 + 42`, plugging this into the final equation gives

23 + 42` ≡ 3 (mod 11)

−2` ≡ −20 (mod 11)

` ≡ 10 (mod 11) By Congruences and Divisibility [CD] valid since gcd(−2, 11) = 1

Hence, ` = 10 + 11m for some m ∈ Z. Combining gives

x = 23 + 42` = 23 + 42(10 + 11m) = 443 + 462m

Therefore, x ≡ 442 (mod 462).

Instructor’s Comments: This is the 20 minute mark.

Some twists to Chinese Remainder Problems: Example: Solve

3x ≡ 2 (mod 5)

2x ≡ 6 (mod 7)

Instructor’s Comments: The twist here is that the left hand sides are not
just x but they have a coefficient.

Solution: Treat each congruence separately and solve using Linear Congruence Theorem
1 (LCT1). By inspection x = 4 solves the first congruence (could also use Linear Diophan-
tine Equation techniques). Hence by LCT1, x ≡ 4 (mod 5/ gcd(3, 5)) or x ≡ 4 (mod 5).
Similarly, notice that x = 3 is a solution to the second congruence. Hence by LCT1 again,

2



x ≡ 3 (mod 7/ gcd(2, 7)). This is equivalent to x ≡ 3 (mod 7). Thus, the above system
is equivalent to solving

x ≡ 4 (mod 5)

x ≡ 3 (mod 7)

which can be solved like a typical Chinese Remainder Theorem problem.

Instructor’s Comments: Don’t do this in class - included only because I
used to solve this this way.

Alternate Solution: Multiplying the first equation by 2 and the second equation by
4 gives

6x ≡ 4 (mod 5)

8x ≡ 24 (mod 7).

Simplifying gives

x ≡ 4 (mod 5)

x ≡ 3 (mod 7)

Then proceed like a typical Chinese Remainder Theorem problem.

Example: Solve

x ≡ 4 (mod 6)

x ≡ 2 (mod 8)

Instructor’s Comments: The twist here is that the moduli are not coprime.
Turns out that the engine that proves the Chinese Remainder Theorem is
exactly what one needs to do here. Sometimes however there are no solutions
and usually there are solutions but at a moduli smaller than the product.

Solution: Using the first equation gives x = 4 + 6k for some k ∈ Z. Plug this into the
second equation gives

4 + 6k ≡ 2 (mod 8)

6k ≡ −2 (mod 8)

6k ≡ 6 (mod 8)

Now, note that k = 1 is definitely a solution. By LCT1, we have that

k ≡ 1 (mod 8/(gcd(6, 8)))

gives all solution. Hence k ≡ 1 (mod 4) and thus k = 1 + 4` for some ` ∈ Z. Therefore,

x = 4 + 6(1 + 4`) = 10 + 24`

Therefore, x ≡ 10 (mod 24) gives the complete set of solutions.
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Instructor’s Comments: This is the 40 minute mark. Could even take your
time and make this a full lecture if you wanted. We’re reaching a catch up
lecture if you have fallen behind.

Example: Solve x2 ≡ 34 (mod 99).

This implies that 99 | (x2−34). Note that 9 | 99. Therefore 9 | (x2−34) by transitivity,
x2 ≡ 34 (mod 9). Note further that 11 | 99. Therefore, 11 | (x2− 34) by transitivity. this
implies that

x2 ≡ 34 (mod 11)

x2 ≡ 1 (mod 11)

x2 ≡ ±1 (mod 11) By trying all 11 possibilities

Similarly, x2 ≡ 34 ≡ 7 (mod 9) and so x ≡ ±4 (mod 9) (try all 9 possibilities).

This gives four systems of equations:

x ≡ 1 (mod 11) x ≡ 1 (mod 11)

x ≡ 4 (mod 9) x ≡ −4 (mod 9)

x ≡ −1 (mod 11) x ≡ −1 (mod 11)

x ≡ 4 (mod 9) x ≡ −4 (mod 9)

To finish solving this, we can use the Chinese Remainder Theorem 4 times to give the
solutions

x ≡ 23, 32, 67, 76 (mod 99)

This leads to the following theorem.

Theorem: Splitting the Modulus (SM) Let m and n be coprime positive integers. Then,
for any integers x and a, we have

x ≡ a (mod m)

x ≡ a (mod n)

simultaneously if and only if x ≡ a (mod mn).

Instructor’s Comments: This is the 50 minute mark. If not, start the proof.
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Lecture 32

Instructor’s Comments: This is a make up lecture. You can choose to cover
many extra problems if you wish or head towards cryptography. I will prob-
ably include the square and multiply algorithm at some point as an extra
topic.

Handout or Document Camera or Class Exercise

Which of the following is equal to [53]242 + [5]−1 in Z7?

(Do not use a calculator.)

A) [5]

B) [4]

C) [3]

D) [2]

E) [1]

Solution: Note that

53242 + 5−1 ≡ 4242 + 3 (mod 7)

≡ 42 · 4240 + 3 (mod 7)

≡ 2 · (46)40 + 3 (mod 7)

≡ 2 · 140 + 3 (mod 7)

≡ 5

Instructor’s Comments: This is the 5-7 minute mark.
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Theorem: Splitting the Modulus (SM) Let m and n be coprime positive integers. Then,
for any integers x and a, we have

x ≡ a (mod m)

x ≡ a (mod n)

simultaneously if and only if x ≡ a (mod mn).

Proof: (⇐) Assume that x ≡ a (mod mn). Then mn | (x − a). Since m | mn, by
transitivity, we have that m | (x−a) and hence x ≡ a (mod m). Similarly, x ≡ a (mod n).

(⇒) Assume that x ≡ a (mod m) and x ≡ a (mod n). Note that x = a is a solution.
Since gcd(m,n) = 1, by the Chinese Remainder Theorem, x ≡ a (mod mn) gives all
solutions.

Instructor’s Comments: This is the 15 minute mark.
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Handout or Document Camera or Class Exercise

For what integers is x5 + x3 + 2x2 + 1 divisible by 6?

Solution: We want to solve x5 + x3 + 2x2 + 1 ≡ 0 (mod 6). By Splitting the Modulus,
we see that

x5 + x3 + 2x2 + 1 ≡ 0 (mod 2)

x5 + x3 + 2x2 + 1 ≡ 0 (mod 3)

Using equation 1 and plugging in x ≡ 0 (mod 2) and x ≡ 1 (mod 2) gives in both cases
that

x5 + x3 + 2x2 + 1 ≡ 1 (mod 2)

Therefore, x5 + x3 + 2x2 + 1 is never divisible by 6. �

Instructor’s Comments: This is the 25 minute mark. From here you can
choose to do more practice and have a full lecture on Cryptography or just
do a half lecture on cryptography.

Cryptography

Note: The practice/study of secure communication.

Alice wants to communicate with Bob and receive messages from Bob but Eve is
listening to all the messages they send to each other.

Instructor’s Comments: Include a picture

Alice needs to encrypt messages to Bob so that even if Eve can see them, she cannot
read them. However Bob needs to be able to read them and so needs a way to decrypt
them.

Note: A cryptosystem should not depend on the secrecy of the methods of encryption
and decryption used (except for possibly secret keys). The method must be assumed to
be known by all.

Private Key Cryptography

Agree before hand on a secret encryption and decryption key.

Instructor’s Comments: Mention ASCII encryption. Break up messages
into many chunks and send those chunks.

Example: Caesar Cipher. Map a plain text message M to a ciphertext (encrypted
message) given by

C ≡M + 3 (mod 26)

where 0 ≤ C ≤ 26. In this way, one can encrypt letters to new letters. This worked well
for Caesar mainly because most soldiers could not read (so even an unencrypted message
might not have been understood).
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Example: APPLE gets translated as a sequence of numbers 0, 15, 15, 11, 4 then en-
crypted by adding 3 to get 3, 18, 18, 14, 7 and then converted back to letters DSSOH.

Cons of Private Key Cryptography

(i) Tough to share private key before hand.

(ii) Too many private keys to store.

(iii) Difficult to communicate with strangers.

Public Key Cryptography

Analogy: Pad lock. A pad lock is easy to lock but difficult to unlock without the key.
The main paradigm here is as follows:

(i) Alice produces a private key d and a public key e.

(ii) Bob uses the public key e to take a message M and encrypt it to some ciphertext C

(iii) Bob then sends C over an insecure channel to Alice.

(iv) Alice decrypts C to M using d.

Note:

(i) Encryption and decryption are inverses to each other.

(ii) d and e are different,

(iii) Only d is secret.

Instructor’s Comments: This is the 40 minute mark - maybe the 50 minute
mark

Question: What makes a problem hard?

Instructor’s Comments: Something along the lines of the first thing you
try doesn’t work, a problem that has resisted proof for many years etc.

Example: Given the number 1271, find it’s prime factorization.

Instructor’s Comments: The answer is 31 times 41. The point here is
that even for small numbers humans struggle with this. For not-very-large
numbers, even computers struggle.

Factoring a number is a difficult problem and helps form the basis for RSA. If we could
factor numbers easily, the RSA encryption we will talk about in the next lecture would
be hard.

Instructor’s Comments: This next question is completely optional as well.
It doesn’t add much to RSA. Question: Given 2n ≡ 9 (mod 11), find n.

Solution: The answer is n = 6. However this isn’t the real point of this
question. The point is that to find 6, you likely tried all the possibilities from
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1 to 6 reducing reach time. This problem in general, that is, given a, b and
an ∈ N for some n ∈ N to determine n is called the Discrete Logarithm Problem.
There is currently no known efficient algorithm to solve it. Solving this would
also help break the RSA encryption scheme.

Instructor’s Comments: This is probably the 50 minute mark but if not,
have fun with the square and multiply algorithm below. This topic is com-
pletely optional (as of W2016)

Square and Multiply Algorithm
The idea of this algorithm is to enable computers to compute large powers of integers

modulo a natural number n quickly.

Example: Compute 599 (mod 101)

Solution: First, we compute successive square powers of 5:

51 ≡ 5 (mod 101)

52 ≡ 25 (mod 101)

54 ≡ (25)2 ≡ 625 ≡ 19 (mod 101)

58 ≡ (19)2 ≡ 361 ≡ 58 (mod 101)

516 ≡ (58)2 ≡ 31 (mod 101)

532 ≡ (31)2 ≡ 52 (mod 101)

564 ≡ (52)2 ≡ 78 (mod 101)

Now, write 99 in binary, that is, as a simple sum of powers of 2 with no power of 2
repeated.

64 ≤ 99 < 128 Replace 99 with 99− 64 = 35

32 ≤ 35 < 64 Replace 35 with 35− 32 = 3

2 ≤ 3 < 4 Replace 3 with 3− 2 = 1

1 ≤ 1 < 2 Replace 1 with 1− 1 = 0

Thus, 99 = 64 + 32 + 2 + 1 = 26 + 25 + 21 + 20. Hence,

599 ≡ 564 · 532 · 52 · 51 (mod 11)

≡ 78 · 52 · 25 · 5 (mod 11)

≡ 81 (mod 11)

Instructor’s Comments: Note the minimal number of computations needed.
In general, it would be 98 computations. Here it’s 6 + 3 =9 computations. A
huge savings.
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Handout or Document Camera or Class Exercise

(i) Show that x = 2129 solves 2x ≡ 1 (mod 131).

(ii) Use the square and multiply algorithm to find the remainder when 2129 is divided
by 131.

(iii) Solve 2x ≡ 3 (mod 131) for 0 ≤ x ≤ 130.

Solution:

(i) By Fermat’s Little Theorem (valid since gcd(2, 131) = 1,

2(2129) ≡ 2130 ≡ 1 (mod 131)

(ii) First, we create a chart of the powers of 2:

21 ≡ 2 (mod 131)

22 ≡ 4 (mod 131)

24 ≡ 16 (mod 131)

28 ≡ 256 ≡ −6 (mod 131)

216 ≡ (−6)2 ≡ 36 (mod 131)

232 ≡ (36)2 ≡ 1296 ≡ −14 (mod 131)

264 ≡ (−14)2 ≡ 196 ≡ 65 (mod 131)

2128 ≡ (65)2 ≡ 52 · 132 ≡ 25 · 169 ≡ 25 · 38

≡ 5 · 190 ≡ 5 · 59 ≡ 295 ≡ 33 (mod 131)

Hence, 2129 ≡ 2128 · 21 ≡ 33 · 2 ≡ 66 (mod 131).

(iii) Since 2 · 66 ≡ 132 ≡ 1 (mod 131), we see that 2 · (66 · 3) ≡ 3 (mod 131) and since
66 · 3 ≡ 198 ≡ 67 (mod 131), we have completed the question. �
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Lecture 33

Instructor’s Comments: I like to introduce Exponentiation Ciphers first
and then tackle RSA - this way students can see the build up and see why one
prime is an insecure procedure whereas two primes gives a secure procedure.

Exponentiation Cipher
We begin describing RSA by first explaining exponentiation ciphers. Suppose Alice

and Bob want to share a message but there is an eavesdropper (Eve) watching their
communications.

Instructor’s Comments: Include picture while lecturing.

In an exponentiation cipher, Alice chooses a (large) prime p and an e satisfying

1 < e < (p− 1) and gcd(e, p− 1) = 1.

Alice then makes the pair (e, p) public and computes her private key d satisfying

1 < d < (p− 1) and ed ≡ 1 (mod p− 1)

which can be done quickly using the Euclidean Algorithm (the inverse condition above is
why we required that gcd(e, p− 1)).

To send a message M to Alice, an integer between 0 and p−1 inclusive, Bob computes
a ciphertext (encrypted message) C satisfying

0 ≤ C < p and C ≡M e (mod p).

Bob then sends C to Alice.

Alice then computes R ≡ Cd (mod p) with 0 ≤ R < p.

Instructor’s Comments: Include picture - this is the 10 minute mark
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Proposition: R ≡M (mod p).

Proof: If p | M , then all of M , C and R are 0 and the claim follows. So we assume
that p -M . Recall that ed ≡ 1 (mod p− 1) and so we have that there exists an integer k
such that ed = 1 + k(p− 1). Using this, we have

R ≡ Cd (mod p)

≡ (M e)d (mod p) by definition of C

≡M ed (mod p)

≡M (mod p) Corollary to F`T since ed ≡ 1 (mod p− 1).

as required �

Corollary: R = M

Proof: By the previous proposition, R ≡ M (mod p). Recall that 0 ≤ M,R < p and so
the values must be equal. �

Instructor’s Comments: This is the 20 minute mark.

The good news is that this scheme works. However, Eve can compute d just as easily
as Alice! Eve knows p, hence knows p−1 and can use the Euclidean algorithm to compute
d just like Alice. This means our scheme is not secure. To rectify this problem, we include
information about two primes.

RSA Alice chooses two (large) distinct primes p and q, computes n = pq and selects
any e satisfying

1 < e < (p− 1)(q − 1) and gcd(e, (p− 1)(q − 1)) = 1

Alice then makes the pair (e, n) public and compute her private key d satisfying

1 < d < (p− 1)(q − 1) and ed ≡ 1 (mod (p− 1)(q − 1))

again which can be done quickly using the Euclidean Algorithm (Alice knows p and q and
hence knows (p− 1)(q − 1)).

Instructor’s Comments: Note that in the textbook (d, n) is the private key
pair.

To send a message M to Alice, an integer between 0 and n−1 inclusive, Bob computes
a ciphertext C satisfying

0 ≤ C < pq and C ≡M e (mod pq).

Bob then sends C to Alice. Alice then computes R ≡ Cd (mod pq) with 0 ≤ R < pq.

2



Instructor’s Comments: Include a diagram of what’s happening. This is the
30 minute mark.
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Proposition: R = M .

Proof: Since ed ≡ 1 (mod (p− 1)(q − 1)), transitivity of divisibility tells us that

ed ≡ 1 (mod p− 1) and ed ≡ 1 (mod q − 1).

Since gcd(e, (p− 1)(q− 1)) = 1, GCD Prime Factorization (or by definition) tells us that
gcd(e, p − 1) = 1 and that gcd(e, q − 1) = 1. Next, as C ≡ M e (mod pq), Splitting the
Modulus states that

C ≡M e (mod p) and C ≡M e (mod q)

Similarly, by Splitting the Modulus, we have

R ≡ Cd (mod p) and R ≡ Cd (mod q).

By the previous proposition applied twice, we have that

R ≡M (mod p) and R ≡M (mod q).

Now, an application of the Chinese Remainder Theorem (or Splitting the Modulus), valid
since p and q are distinct, gives us that R ≡M (mod pq). Recalling that 0 ≤ R,M < pq,
we see that R = M . �

Is this scheme more secure? Can Eve compute d? If Eve can compute (p− 1)(q − 1)
then Eve could break RSA. To compute this value given only n (which recall is pq), Eve
would need to factor n (or compute p+ q). Factoring n is a notoriously hard problem and
we know of no quick way of doing so. Eve could also break RSA if she could solve the
problem of computing M given M e (mod n).

Note: Let φ be the Euler Phi Function. This function has the valuation φ(n) = (p −
1)(q − 1) when n = pq a product of distinct primes.

Instructor’s Comments: This is the 40 minute mark
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Handout or Document Camera or Class Exercise

Let p = 2, q = 11 and e = 3

(i) Compute n, φ(n) and d.

(ii) Compute C ≡M e (mod n) when M = 8 (reduce to least nonnegative C).

(iii) Compute R ≡ Cd (mod n) when C = 6 (reduce to least nonnegative R).

Solution:

(i) Note n = 22, φ(n) = (2 − 1)(11 − 1) = 10 and lastly, 3d ≡ 1 (mod 10) and
multiplying by 7 gives d ≡ 7 (mod 10). Hence d = 7.

(ii) Note that

C ≡M e (mod 22)

≡ 83 (mod 22)

≡ 8 · 64 (mod 22)

≡ 8 · (−2) (mod 22)

≡ −16 (mod 22)

≡ 6 (mod 22)

(iii) The quick way to solve this is to recall the RSA theorem and hence M = 8. The
long way is to do the following:

R ≡ Cd (mod 22)

≡ 67 (mod 22)

≡ 6 · (63)2 (mod 22)

≡ 6 · (216)2 (mod 22)

≡ 6 · (−4)2 (mod 22)

≡ 6 · 16 (mod 22)

≡ 6 · (−6) (mod 22)

≡ −36 (mod 22)

≡ 8 (mod 22)

5



Food for thought:

(i) How does Alice choose primes p and q? (Answer: Randomly choose odd numbers!
If p and q are 100 digit primes, then choosing 100 gives you more than a 50% chance
that you have a prime - can check using primality tests).

(ii) What if Eve wasn’t just a passive eavesdropper? What if Eve could change the
public key information before it reaches Bob? (This involves using certificates).

(iii) What are some advantages of RSA? (Believed to be secure, uses the same hardware
for encryption and decryption, computations can be done quickly using a square
and multiply algorithm).
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Lecture 34

Instructor’s Comments: There’s a large probability that you might have
extra time in this lecture - there are ways to fill that time in later lectures
with some extra complex numbers proofs.

Complex Numbers
Our current view of important sets:

N ⊆ Z ⊆ Q ⊆ R

These sets can be thought of as helping us to solve polynomial equations. However,
x2 + 1 = 0 has no solution in any of these sets.

Instructor’s Comments: This is the 3 minute mark

Definition: A complex numbers (in standard form) is an expression of the form x+ yi
where x, y ∈ R and i is the imaginary unit. Denote the set of complex numbers by

C := {x+ yi : x, y ∈ R}

Example: 1 + 2i, 3i,
√

13 + πi, 2 (or 2 + 0i).

Note:

(i) R ⊆ C

(ii) If z = x + yi, then x = Re(z) = <(z) is called the real part and y = Im(z) = =(z)
is called the imaginary part.

Definition: Two complex numbers z = x + yi and w = u + vi are equal if and only if
x = u and y = v.

Definition: A complex number z = x+ yi is...

(i) Purely real (or simply real) if =(z) = 0, that is, z = x

(ii) Purely Imaginary if <(z) = 0, that is, x = yi.

We turn C into a commutative ring by defining operations as follows:

(i) (x+ yi)± (u+ vi) := (x± u) + (y ± v)i

(ii) (x+ yi)(u+ vi) := (xu− vy) + (xv + uy)i

By this definition, we have

i2 = i · i = (0 + i)(0 + i) = −1 + 0i = −1.

Therefore, i is a solution of x2 + 1. With this in mind, you can remember multiplication
just by multiplying terms as you would with polynomials before.

(x+ yi)(u+ vi) = xu+ xvi+ yiu+ yivi = xu+ (xv + yu)i+ yvi2 = xu− yv + (xv + uy)i

Example:

1



(i) (1 + 2i) + (3 + 4i) = 4 + 6i

(ii) (1 + 2i)− (3 + 4i) = −2− 2i

(iii) (1 + 2i)(3 + 4i) = 3− 8 + (4 + 6)i = −5 + 10i

We note that C is a field by observing that the multiplicative inverse of a nonzero complex
numbers is

(x+ yi)−1 =
x

x2 + y2
− y

x2 + y2
i

Exercise: If z ∈ C and z 6= 0, then z · z−1 = 1

Instructor’s Comments: This is the 20-25 minute mark.

For complex numbers u, v, w, z with v and z nonzero, the above is consistent with the
usual fraction rules:

u

v
+
w

z
=
uz + vw

vz
and

u

v
· w
z

=
uw

vz

For k ∈ N and z ∈ C, define

z0 = 1 z1 = z zk+1 = z · zk

and further that z−k := (z−1)k. With these definitions, the usual exponent rules hold,
namely

zm+n = zm · zn (zm)n = zmn

for m,n ∈ Z.

Example: Write 1+2i
3−4i

in standard form.

Solution:

1 + 2i

3− 4i
= (1 + 2i)(3− 4i)−1

= (1 + 2i)

(
3

32 + 42
− (−4)

32 + 42
i

)

= (1 + 2i)

(
3

25
+

4

25
i

)

=
3

25
− 8

25
+

(
4

25
+

6

25

)
i

=
−5

25
+

10

25
i

=
−1

5
+

2

5
i

Instructor’s Comments: This is the 30 minute mark
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Handout or Document Camera or Class Exercise

Express the following in standard form

(i) z = (1−2i)−(3+4i)
5−6i

(ii) w = i2015

Solution:

(i)

z = ((1− 2i)− (3 + 4i))(5− 6i)−1

= (−2− 6i)

(
5

52 + 62
− (−6)

52 + 62
i

)

= (−2− 6i)

(
5

61
+

6

61
i

)

=
−10

61
+

36

61
+

(−12

61
− 30

61

)
i

=
26

61
− 42

61
i

(ii) Recall that i2 = −1 and i4 = 1. Thus,

w = i2015

= (i4)503 · i3
= 1503 · i2 · i
= −i

Instructor’s Comments: This is the 40 minute mark - you can easily go on
to the next lecture or use this time to catch up.
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Lecture 35

Instructor’s Comments: The following is a technical note. In the textbook,
they use the quadratic formula without any real justification as to why it
makes sense with the rest of complex numbers. Here I justify it over real
polynomials (and then later we’ll make a note that it holds over complex
polynomials)

Instructor’s Comments: This is a great spot to catch up if you’re behind.
I would advise grouping the four ’work on their own’ problems together at
the end of class and spend the last say 15-20 minutes battling through them.
Then get students to ask to take one of them up. If doing this I suggest
starting with the last problem then mentions the first two in this lecture. The
last problem is very easy and they shouldn’t have problems. The first two are
challenging and you want them to battle through it a bit more. Whatever you
get done in class great. Tell them to do the others for homework and refer
them to the online notes if they can’t solve them.

Example: For z ∈ C, solve z2 − z + 1 = 0.

Instructor’s Comments: Note to students that z will almost exclusively
stand for a complex number in this course.

Solution: Ideally, we’d like to write something like

z =
−(−1)±

√
(−1)2 − 4(1)(1)

2(1)
=

1±
√
−3

2
=

1±
√

3i

2
.

However there is one big gap. The expression
√
−3 has no meaning. Not to mention,

we have not discussed what the solutions are to
√
−3 as a complex number. Are there 2

solutions? One solution? Ten solutions? Zero solutions? This needs to be addressed.

Question: What are the solutions to z2 = −r for r ∈ R with r > 0?

Solution: Let z = x + yi with x, y ∈ R. Then

−r = z2 = (x + yi)2 = x2 − y2 + 2xyi

Therefore, 2xy = 0 and x2 − y2 = −r. Thus, either x = 0 or y = 0. If y = 0, then
x2 = −r, a contradiction since x2 ≥ 0. Hence, x = 0 and −y2 = −r or y = ±√r.
Therefore, z = ±√ri. �

Note: Therefore, we have just validated the use of
√−r = ±√ri. The quadratic for-

mula still works for real polynomials (and later we will see it still works for complex
polynomials).

Proposition: If the discriminant ∆ of a real polynomial az2 + bz + c is negative, zeroes
of the equation are given by

z =
−b±

√
−∆i

2a

1



Solution: We complete the square as usual:

a

(
z2 +

b

a
z

)
+ c = 0

a

(
z2 +

b

a
z +

(
b

2a

)2

−
(

b

2a

)2
)

+ c = 0

a

(
z2 +

b

a
z +

(
b

2a

)2
)
−
(
b2

4a

)
+ c = 0

a

(
z +

b

2a

)2

=

(
b2

4a

)
− c

Clearing denominators and moving the outer factor in the square term gives

(2az + b)2 = b2 − 4ac = ∆

Now, since ∆ < 0, we can apply the previous result to get that the solutions to this
equation are given by

2az + b = ±
√
−∆i

2az = −b±
√
−∆i

z =
−b±

√
−∆i

2a

as stated in the claim. �

The above essentially states that the quadratic formula works as usual if we believe a
common convention that

√
−∆ is equal to

√
∆i (We shouldn’t be writing square roots of

negative numbers however!)

Definition: The complex conjugate of a complex number z = x + yi is z := x− yi.

Instructor’s Comments: This is the 13 minute mark
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Handout or Document Camera or Class Exercise

Instructor’s Comments: Give the next two exercises simultaneously for
students to battle through

Solve z2 = iz̄ for z ∈ C

Solution: Let z = x + yi where x, y ∈ R. Then

(x + yi)2 = i(x− yi)

x2 − y2 + 2xyi = y + xi

x2 − y2 = y and 2xy = x

The latter implies that 2xy − x = 0 and hence x(2y − 1) = 0. Therefore, either x = 0 or
y = 1

2
. Substituting into the first equation above gives

x = 0 =⇒ −y2 = y =⇒ y2 + y = 0 =⇒ y = 0 or − 1

y = 1
2

=⇒ x2 − (1
2
)2 = 1

2
=⇒ x2 = 3

4
=⇒ x = ±

√
3
2

Hence, z ∈ {0,−i,
√
3
2

+ 1
2
i, −

√
3

2
+ 1

2
i}. �
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Handout or Document Camera or Class Exercise

Find a real solution to

6z3 + (1 + 3
√

2i)z2 − (11− 2
√

2i)z − 6 = 0

Solution: Take z = r ∈ R. Then, if this r is a solution, it must satisfy

6r3 + (1 + 3
√

2i)r2 − (11− 2
√

2i)r − 6 = 0

Expanding and collecting terms gives

(6r3 + r2 − 11r − 6) + (3
√

2r2 + 2
√

2r)i = 0

Therefore, 3
√

2r2 +2
√

2r = 0. Factoring gives
√

2r(3r+2) = 0 and thus, r = 0 or r = −2
3

.
Since the real part above must also be zero, we see that the r must satisfy

6r3 + r2 − 11r − 6 = 0

Note that r = 0 is not a solution to this and that r = −2
3

is a solution since

6(−2
3

)3 + (−2
3

)2 − 11 · −2
3
− 6 = 6 · −8

27
+ 4

9
+ 22

3
− 6 = 0

Thus, r = −2
3

is the lone solution. �
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Instructor’s Comments: This is the 35 minute mark

Proposition: (Properties of Conjugates (PCJ)) Let z, w ∈ C. Then

(i) z + w = z + w

(ii) zw = z · w

(iii) z = z

(iv) z + z = 2<(z)

(v) z − z = 2i=(z).

Instructor’s Comments: For your sanity’s sake, you should only do a few of
these, say 2 and 3.

Solution: Let z = x + yi and w = u + vi. Then

(i)

z + w = x + yi + u + vi

= (x + u) + (y + v)i

= (x + u)− (y + v)i

= x− yi + u− vi

= z + w

(ii)

zw = (x + yi)(u + vi)

= (xu− yv) + (xv + uy)i

= (xu− yv)− (xv + uy)i

= (x− yi)(u− vi)

= zw

(iii) z = x + yi = x− yi = x + yi = z

(iv) z + z = x + yi + x− yi = 2x = 2<(z)

(v) z − z = x + yi− (x− yi) = 2yi = 2i=(z)

Instructor’s Comments: This is the 40 minute mark.
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Handout or Document Camera or Class Exercise

Prove the following for z ∈ C

(i) z ∈ R if and only if z = z̄.

(ii) z is purely imaginary if and only if z = −z̄.

Instructor’s Comments: Note that 0 is both real and purely imaginary.

Solution:

(i) (⇒) Let z = x + 0i ∈ R. Then z = x− 0i = x = z.

(⇐) Let z = x + yi for x, y ∈ R. Assume that z = z. Then,

z = z

x + yi = x− yi

y = −y
2y = 0

y = 0

Therefore, z = x + 0i ∈ R. �

(ii)

z is purely imaginary ⇔ iz ∈ R
⇔ iz = iz By the above

⇔ iz = −iz By PCJ

⇔ z = −z

completing the proof. �

Instructor’s Comments: This is the 50 minute mark.
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Lecture 36

Handout or Document Camera or Class Exercise

Instructor’s Comments: There are two clicker questions here. Choose the
one you prefer. I like the first one because students often forget they can use
LDEs to find inverses.

Let [x] be the inverse of [241] in Z1001, if it exists, where 0 ≤ x < 1001. Determine the
sum of the digits of x.

A) 7

B) 9

C) 11

D) 12

E) [x] does not exist

Solution: We use the Extended Euclidean Algorithm (EEA) on 241x+ 1001y = 1 to see
that

x y r q
0 1 1001 0
1 0 241 0
-4 1 37 b1001

241
c = 4

25 -6 19 b241
37
c = 6

-29 7 18 b37
19
c = 1

54 -13 1 b19
18
c = 1

Hence 241(54) + 1001(−13) = 1 and so [54] is the inverse of [241] in Z1001. Since
5 + 4 = 9, the correct answer is B.

1



Handout or Document Camera or Class Exercise

How many integers x satisfy all of the following three conditions?

x ≡ 6 (mod 13)

4x ≡ 3 (mod 7)

−1000 < x < 1000

A) 1

B) 7

C) 13

D) 22

E) 91

Solution: Note that multiplying 4x ≡ 3 (mod 7) by 2 gives x ≡ 6 (mod 7). By the
Chinese Remainder Theorem or by Splitting the Modulus, we see that x ≡ 6 (mod 91).
Thus, x = 6 + 91k. Using this with the range restriction gives

−1000 < 6 + 91k < 1000

−1006 < 91k < 994

Note that 91 · 10 = 910 and 91 · 11 = 1001. Therefore, the above condition with the fact
that k ∈ Z reduces to −11 ≤ k ≤ 10 and thus, there are 22 solutions.

Instructor’s Comments: This is the 10 minute mark; this is a longer prob-
lem
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Definition: The modulus of z = x+ yi is the nonnegative real number

|z| = |x+ yi| :=
√
x2 + y2

Proposition: (Properties of Modulus (PM))

(i) |z| = |z|

(ii) zz = |z|2

(iii) |z| = 0⇔ z = 0

(iv) |zw| = |z||w|

(v) |z + w| ≤ |z|+ |w| (This is called the triangle inequality)

Instructor’s Comments: Mention that properties 3,4,5 define a norm. I rec-
ommend not doing the proof of all of these. I would do 2,4 and 5. In fact, I
would make 5 an in-class reading proof to get some reading practice in.

Proof: Throughout, let z = x+ yi.

(i) Note that

|z| = |x− yi| =
√
x2 + (−y)2 =

√
x2 + y2 = |z|

(ii) zz = (x+ yi)(x− yi) = x2 + y2 = |z|2

(iii) |z| = 0 if and only if
√
x2 + y2 = 0 if and only if x2 +y2 = 0 if and only if x = y = 0

if and only if z = 0.

(iv) Using the second property above and Properties of Conjugates, we have

|zw|2 = (zw)zw = zzww = |z|2|w|2

Hence, since all the numbers above are real, we have that |zw| = |z||w|.

(v) (See the handout on next page)
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Handout or Document Camera or Class Exercise

To prove |z + w| ≤ |z|+ |w|, it suffices to prove that

|z + w|2 ≤ (|z|+ |w|)2 = |z|2 + 2|zw|+ |w|2

since the modulus is a positive real number. Using the Properties of Modulus and the
Properties of Conjugates, we have

|z + w|2 = (z + w)(z + w) PM

= (z + w)(z̄ + w̄) PCJ

= zz̄ + zw̄ + wz̄ + ww̄

= |z|2 + zw̄ + zw̄ + |w|2 PCJ and PM

Now, from Properties of Conjugates, we have that

zw̄ + zw̄ = 2<(zw̄) ≤ 2|zw̄| = 2|zw|

and hence

|z + w|2 = |z|2 + zw̄ + zw̄ + |w|2 ≤ |z|2 + 2|zw|+ |w|2

completing the proof.
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Instructor’s Comments: This is the 25-30 minute mark

Revisit Inverses

Recall, we defined the inverse of z by

z−1 =
x

x2 + y2
− y

x2 + y2
i

Note that

z−1 =
1

z
· z
z

=
z

z · z =
z

|z|2
Argand Diagram

Instructor’s Comments: This is the 35 minute mark.

Polar Coordinates

A point in the plane corresponds to a length and an angle:

Example: (r, θ) = (3, π
4
) corresponds to

3 cos(π/4) + i(3 sin(π/4)) =
3√
2

+
3√
2
i

via the picture

5



Given z = x+ yi, we see that

r = |z| =
√
x2 + y2

θ = arccos(x/r) = arcsin(y/r) = arctan(y/x)

Note: WARNING. The angle θ might be arctan(y/x) OR π+ arctan(y/x) depending on
which quadrant we are in. More on this next class.

Example: Write z =
√

6 +
√

2i using polar coordinates.

Solution: Note that r =

√√
6
2

+
√

2
2

=
√

8 = 2
√

2. Further,

arctan(
√

2/
√

6) = arctan 1/
√

3 = π/6

Note: There is no need to add π to the above answer since the answer lies in the first
quadrant.

6



Therefore, z corresponds to (r, θ) = (2
√

2, π/6). �

Definition: The polar form of a complex number z is z = r(cos(θ) + i sin(θ)) where
r is the modulus of z and θ is called an argument of z. This is sometimes denoted by
arg(z) = θ. Further, denote cis(θ) := cos(θ) + i sin(θ).

Example: If z =
√

6 +
√

2i, then z = 2
√

2(cos(π/6) + i sin(π/6)) = 2
√

2cis(π/6).

Instructor’s Comments: This is the 50 minute mark.
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Lecture 37

Handout or Document Camera or Class Exercise

Express the following in terms of polar coordinates:

(i) −3

(ii) 1− i

Solution:

(i) Note that r = | − 3| = 3 and θ = arctan(0/− 3) = 0. Then, since −3 lives between
the second and third quadrant, you need to add π to the previous answer. Thus
θ = π and hence −3 = 3cis(π).

Instructor’s Comments: Make sure to note the addition of pi above.

(ii) Note that r = |1− i| =
√
12 + 12 =

√
2. Hence

1− i =
√
2

(
1√
2
− i√

2

)

=
√
2(cos(7π/4) + i sin(7π/4))

=
√
2cis(7π/4)

Instructor’s Comments: This is the 10 minute mark.
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Handout or Document Camera or Class Exercise

(i) Write cis(15π/6) in standard form.

(ii) Write −3
√
2 + 3

√
6i in polar form.

Solution:

(i) cis(15π/6) = cos(5π/2) + i sin(5π/2) = i.

(ii) Note that

r = | − 3
√
2 + 3

√
6i|

=

√
(−3
√
2)2 + (3

√
6)2

=
√
18 + 54

=
√
72

= 6
√
2

Therefore, −3
√
2+3
√
6i = 6

√
2
(
−1
2
+
√
3
2
i
)
= 6
√
2cis(2π/3) where the last equality

holds since

Instructor’s Comments: This is the 20 minute mark
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Theorem: (Polar Multiplication of Complex Numbers (PMCN)) If z1 = r1cis(θ1)
and z2 = r2cis(θ2), then

z1z2 = r1r2cis(θ1 + θ2)

Proof: We have

z1z2 = r1(cos(θ1) + i sin(θ1))r2(cos(θ2) + i sin(θ2))

= r1r2(cos(θ1) cos(θ2)− sin(θ1) sin(θ2) + i(cos(θ1) sin(θ2) + sin(θ1) cos(θ2)))

= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2))

= r1r2cis(θ1 + θ2)

where in line 3 above, we used trig identities. This completes the proof. �

Corollary: Multiplication by i = cos(π/2) + i sin(π/2) gives a rotation by π/2.

Example: Using Polar Multiplication of Complex Numbers on (
√
6+
√
2i)(−3

√
2+3
√
6i)

gives

(
√
6 +
√
2i)(−3

√
2 + 3

√
6i) = 2

√
2cis(π/6) · 6

√
2cis(2π/3)

= 24cis(π/6 + 2π/3) By PMCN

= 24cis(5π/6)

= 24(−
√
3/2 + i/2)

= −12
√
3 + 12i

Instructor’s Comments: This is the 30-35 minute mark.

Theorem: (De Moivre’s Theorem (DMT)) If θ ∈ R and n ∈ Z, then

(cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ)

or more compactly,
cis(θ)n = cis(nθ).

3



Instructor’s Comments: Emphasize here that we want to use induction but
need to reduce to the natural numbers first

Proof: First note that when n = 0, we see that (cos(θ) + i sin(θ))0 = 1 and that
cos(0θ) + i sin(0θ) = 1 so the statement holds. For n > 0, we proceed by induction on n.
For the base case, consider n = 1. Then

(cos(θ) + i sin(θ))n = cos(θ) + i sin(θ) = cos(nθ) + i sin(nθ).

Now, assume that
(cos(θ) + i sin(θ))k = cos(kθ) + i sin(kθ)

holds for some k ∈ N. For the inductive step, note that

(cos(θ) + i sin(θ))k+1 = (cos(θ) + i sin(θ))k(cos(θ) + i sin(θ))

= (cos(kθ) + i sin(kθ))(cos(θ) + i sin(θ)) Inductive hypothesis

= cos((k + 1)θ) + i sin((k + 1)θ) By PMCN

For n < 0, we write n = −m for some m ∈ N. Then

cis(θ)n = cis(θ)−m

= (cis(θ)m)−1

= cis(mθ)−1

=
cos(mθ)− i sin(mθ)
cos2(mθ) + sin2(mθ)

Since z−1 = z/|z|2

= cos(mθ)− i sin(mθ)

and cos(−mθ) + i sin(−mθ) = cos(mθ) − i sin(mθ) since cosine is even and sine is odd.
This completes the proof. �

Corollary: If z = rcis(θ) then zn = rncis(nθ).

Instructor’s Comments: This is the 50 minute mark.
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Lecture 38

Handout or Document Camera or Class Exercise

Write (
√

3− i)10 in standard form.

Solution: Convert
√

3− i to polar coordinates.

√
3− i = 2

(√
3

2
− i

2

)

= 2cis(−π/6)

= 2cis(11π/6)

seen via the diagram

Lastly,

(2cis(11π/6))10 = 210cis(110π/6) DMT

= 210cis(55π/3)

= 210cis(9(2π) + π/3)

= 210cis(π/3)

= 210

(
1

2
+

√
3

2
i

)

= 29 + 29
√

3i

= 512 + 512
√

3i

seen via the diagram

1



Instructor’s Comments: This is the 10-15 minute mark
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Complex Exponential Function

Definition: For a real θ, define

eiθ := cos(θ) + i sin(θ) = cis(θ)

Note: Can write z ∈ C as z = reiθ where r = |z| and θ is an argument of z.

Question: Why is this definition reasonable? While we can’t prove the answer to this
question, we can give convincing arguments.

Reason 1: Exponential Laws Work! For θ, α ∈ R and n ∈ N,

eiθ · eiα = ei(θ+α) PMCN

(eiθ)n = einθ DMT

Reason 2: Derivative with respect to θ makes sense.

d

dθ
(cos(θ) + i sin(θ)) = − sin(θ) + i cos(θ)

= i(cos(θ) + i sin(θ))

= ieiθ

Reason 3: Power series.

ex = 1 + x+
x2

2!
+
x3

3!
+ ...

sin(x) = x− x3

3!
+
x5

5!
− ...

cos(x) = 1− x2

2!
+
x4

4!
− ...

Using these and combining gives

eix = cos(x) + i sin(x)

Setting θ = π gives Euler’s Formula:

eiπ = cos(π) + i sin(π) = −1

Instructor’s Comments: This is the 25 minute mark.

Example: Write (2e11π/6)6 in standard form.

Solution: By exponent rules (DMT), we have

(2e11π/6)6 = 26e11πi

= 26(cos(11π) + i sin(11π))

= 26(−1 + 0i)

= −64

Instructor’s Comments: This is the 30 minute mark.
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Example: Solve z6 + 2z3 − 3 = 0

Solution: Factoring gives

0 = z6 + 2z3 − 3 = (z3 − 1)(z3 + 3)

Hence z3 = 1 or z3 = −3.

Question: Can we solve zn = w for a fixed w ∈ C?

Note: We saw a case of this already with n = 2 and w = −r. We’ll delay the previous
question until later.

Example: Solve z6 = −64.

Solution: We already saw that 2e11π/6 was a solution. Note that ±2i are two others
found by inspection. How do we find all the solutions in general? The answer involves
using polar coordinates. Write z = reiθ. Then

z6 = r6ei6θ = −64

Taking the modulus yields |r|6|ei6θ| = 64. Since for any real α, we have

|eiα| = | cos(α) + i sin(α)| =
√

cos2(α) + sin2(α) = 1

we see that |r|6 = 64 and hence r = 2 since r is a positive real number.

Instructor’s Comments: This is the 40 minute mark.

Hence, we see that −64 = r6ei6θ = 64ei6θ and so ei6θ = −1. Thus,

cos(6θ) + i sin(6θ) = −1 = cos(π) + i sin(π)

Hence, this is true when 6θ = π + 2πk for all k ∈ Z. Solving for θ gives

θ =
π + 2πk

6
=
π

6
+
π

3
k

Now, when do two values of θ coincide with the same complex point? Answer: When
they differ by multiples of 2π.

Claim: θ1 = π
6

+ π
3
k1 and θ2 = π

6
+ π

3
k2 are equal up to 2π rotations if and only if

k1 ≡ k2 (mod 6).

Proof: We have that

θ1 = θ2 + 2πm for some m ∈ Z
π

6
+
π

3
k1 =

π

6
+
π

3
k2 + 2πm

π

3
k1 =

π

3
k2 + 2πm

k1 = k2 + 6m

k1 ≡ k2 (mod 6)

and each of the above steps are if and only if steps. This completes the proof of the claim.
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Hence θ = π
6

+ π
3
k1 for k1 ∈ {0, 1, 2, 3, 4, 5}. Thus,

θ ∈ {π
6
, 3π

6
, 5π

6
, 7π

6
, 9π

6
, 11π

6
}

or rewritten as
θ ∈ {π

6
+ π

3
k1 : k1 ∈ {0, 1, 2, 3, 4, 5}}

Therefore, z = reiθ ∈ {2ei(π/6+πk/3) : k ∈ {0, 1, 2, 3, 4, 5}}.

Instructor’s Comments: In all likelihood, the 50 minute mark is somewhere
above. Carry through to lecture 39 as needed.
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Lecture 39

Theorem: Complex nth Roots Theorem (CNRT) Any nonzero complex number has
exactly n ∈ N distinct nth roots. The roots lie on a circle of radius |z| centred at the
origin and spaced out evenly by angles of 2π/n. Concretely, if a = reiθ, then solutions to
zn = a are given by z = n

√
rei(θ+2πk)/n for k ∈ {0, 1, ..., n− 1}.

Proof: The proof is like the example yesterday and is left as additional reading. �

Definition: An nth root of unity is a complex number z such that zn = 1. These are
sometimes denoted by ζn.

Example: −1 is a second root of unity (and a fourth root of unity and a sixth root of
unity etc.)

Instructor’s Comments: This is the 10 minute mark; though likely the
previous lecture spilled over to this lecture.
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Handout or Document Camera or Class Exercise

Find all eighth roots of unity in standard form.

Solution: We want to solve z8 = 1. We know that {±1,±i} are solutions. We can draw
to find the rest:

For another example, look at z3 = 1:

2



Example: Solve z5 = −16z.

Instructor’s Comments: Get students to guess the total number of solu-
tions. Also get them to find a solution by inspection. The answer is surprising!

Solution: This is a tricky problem. One could convert to polar coordinates but I prefer
to reason as follows. If I can’t solve the equation as written, maybe I can simplify by
taking lengths on both sides.

|z5| = |z|5 = | − 16z| = 16|z| = 16|z|

This gives |z|5 = 16|z|. Hence |z|5 − 16|z| = 0 giving |z|(|z|4 − 16) = 0. This gives either
|z| = 0 which translates to z = 0 or |z|4 = 16 which gives |z| = 2. So assuming that
z 6= 0, we multiply the original equation by z to yield

z6 = −16zz = −16|z|2 = −64

but this question we solved before! Therefore,

z ∈ {0,±2i,±
√

3± i}

Thus, there are seven solutions!

Instructor’s Comments: This is the 40 minute mark; if you spilled over
from the previous lecture, this is the 50 minute mark. Otherwise do the next
problem (which is one we did before)

Example: Solve z6 + 2z3 − 3 = 0.

Proof: From before, we factored this to (z3− 1)(z3 + 3) = 0 and thus z3 = 1 or z3 = −3.
From CNRT, we see that the solutions to z3 = 1 = cos(0) + i sin(0) are given by

z ∈ {ei·0, ei·2π/3, ei·4π/3}

and solutions to z3 = −3 = 3(cos(π) + i sin(π)) are given by

z ∈ { 3
√

3ei·π/3,
3
√

3ei·π,
3
√

3ei·5π/3}

This completes the question. �
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Lecture 40

Handout or Document Camera or Class Exercise

What is the value of

∣∣∣∣
(
−
√

3 + i
)5∣∣∣∣ ?

A) 16i

B) 27

C) 32

D) −45

E) 64

Solution:

Instructor’s Comments: Emphasize there are lots of ways to get the solu-
tion.

∣∣∣∣
(
−
√

3 + i
)5∣∣∣∣ =

∣∣∣∣
(
−
√

3− i
)5∣∣∣∣

=
∣∣∣
(
−
√

3− i
)∣∣∣

5

PM

=

√
(−
√

3)2 + (−1)2
5

=
√

4
5

= 32

Instructor’s Comments: This is the 7-10 minute mark depending on how
many ways you find the above answer
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Polynomials For us, a field will mean to include Q,R,C,Zp where p is a prime
number. A ring will include the aforementioned fields as well as Z and Zm for any m ∈ N.

Definition: A polynomial in x over a ring R is an expression of the form

anx
n + an−1x

n−1 + ...+ a1x+ a0

where a0, a1, ...an ∈ R and n ≥ 0 is an integer. Denote the set (actually a ring) of all
polynomials over R by R[x].

Instructor’s Comments: We will predominately use fields in the above
definition. Some of the theorems we do will only work in the case of fields.
For simplicity I will state all the theorems with fields to match the textbook
though in many cases, a ring is all you need.

Example:

(i) (2π + i)z3 −
√

7z + 55
4
i ∈ C[z].

(ii) [5]x2 + [3]x+ [1] ∈ Z7[x]. We usually write this as 5x2 + 3x+ 1 ∈ Z7[x].

(iii) x2 + 1
x

is not a polynomial.

(iv) x+
√
x is not a polynomial.

(v) 1 + x+ x2 + ... is not a polynomial.

Definition:

(i) The coefficient of anx
n is an

(ii) A term of a polynomial is any aix
i

(iii) The degree of a polynomial is n provided anx
n is the term with the largest exponent

on x and nonzero coefficient.

(iv) 0 is the zero polynomial (all coefficients are 0). The degree of the zero polynomial
is undefined (some books say it is negative infinity for reasons we will see later)

(v) A root of a polynomial p(x) ∈ R[x] is a value a ∈ R such that p(a) = 0.

(vi) If the degree of a polynomial is

• 1, then the polynomial is linear.

• 2, then the polynomial is quadratic.

• 3, then the polynomial is cubic.

(vii) C[x] are the complex polynomials, R[x] are the real polynomials, Q[x] are the ra-
tional polynomials, Z[x] are the integral polynomials.

(viii) Let

f(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0 and g(x) = bnx
n + bn−1x

n−1 + ...+ b1x+ b0

be polynomials over R[x]. Then f(x) = g(x) if and only if ai = bi for all i ∈
{0, 1, ..., n}.

2



(ix) x is an indeterminate (or a variable). It has no meaning on it’s own but can be
replaced by a value whenever it makes sense to do so.

(x) Operations on polynomials: Addition, Subtraction, Multiplication (See next page)

Instructor’s Comments: This is probably the 25-30 minute mark. The lecture
is a bit dry but we need to be on the same page.
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Handout or Document Camera or Class Exercise

Simplify (x5 + x2 + 1)(x+ 1) + (x3 + x+ 1) in Z2[x]

Solution:

(x5 + x2 + 1)(x+ 1) + (x3 + x+ 1) = x6 + x5 + x3 + x2 + x+ 1 + x3 + x+ 1

= x6 + x5 + 2x3 + x2 + 2x+ 2

= x6 + x5 + x2

4



Example: Prove that (ax+ b)(x2 + x+ 1) over R is the zero polynomial if and only if
a = b = 0.

Proof: Expanding gives

(ax+ b)(x2 + x+ 1) = ax3 + (a+ b)x2 + (a+ b)x+ b.

This is the zero polynomial if and only if a = 0, a + b = 0 and b = 0 which holds if and
only if a = b = 0. �

Instructor’s Comments: This is the 40 minute mark

Theorem: (Division Algorithm for Polynomials (DAP)) Let F be a field. If f(x), g(x) ∈
F[x] and g(x) 6= 0 then there exists unique polynomials q(x) and r(x) in F[x] such that

f(x) = q(x)g(x) + r(x)

with r(x) = 0 or deg(r(x)) < deg(g(x)).

Proof: Exercise (or extra reading). �

Note:

(i) q(x) is the quotient.

(ii) r(x) is the remainder.

(iii) If r(x) = 0, then g(x) divides f(x) and we write g(x) | f(x). Otherwise, g(x) - f(x).
In this case, we say that g(x) is a factor of f(x). If a polynomial has no nonconstant
polynomial factor of smaller degree, we say that the polynomial is irreducible.

Instructor’s Comments: Note here that we’re generalizing the definition
of |. This reduces to the definition we had for integers.

Example: Show over R that
(x− 1) - (x2 + 1)

Proof: By DAP, there exists q(x) and r(x) polynomials over R such that

x2 + 1 = (x− 1)q(x) + r(x)

To show that r(x) 6= 0, it suffices to show that r(a) 6= 0 for some a ∈ F. Take x = 1.
Then

(1)2 + 1 = (1− 1)q(1) + r(1)

giving 2 = r(1). Therefore, r(x) 6= 0 hence (x− 1) - x2 + 1. �

Instructor’s Comments: My guess is that you will need to push this to the
next lecture which is fine.

Long Division

Let’s divide

f(z) = iz3 + (i+ 3)z2 + (5i+ 3)z + (2i− 2)

by g(z) = z + (i+ 1).
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Lecture 41

Handout or Document Camera or Class Exercise

Compute the quotient and the remainder when

x4 + 2x3 + 2x2 + 2x + 1

is divided by g(x) = 2x2 + 3x + 4 in Z5[x].

Solution:

1



Instructor’s Comments: This is the 10 minute mark

Proposition: Let f(x), g(x) ∈ F[x] be nonzero polynomials. If f(x) | g(x) and g(x) |
f(x), then f(x) = cg(x) for some c ∈ F.

Proof: By definition, there exists q(x) and q̂(x) in F[x] such that

f(x) = g(x)q(x)

g(x) = f(x)q̂(x)

Substituting the second equation into the first gives:

f(x) = f(x)q̂(x)q(x) =⇒ f(x)(1− q̂(x)q(x)) = 0

As f(x) 6= 0, we see that 1 = q̂(x)q(x). In fact, q̂(x) and q(x) are nonzero. Now, note
that deg(1) = 0 and thus

0 = deg(q̂(x)q(x)) = deg(q̂(x)) + deg(q(x))

(the last equality is an exercise - it holds in generality for nonzero polynomials). Therefore,
deg(q(x)) = 0 = deg(q̂(x)). Therefore, q(x) = c ∈ F. Thus, substituting this into
f(x) = g(x)q(x) gives f(x) = cg(x) completing the proof. �

Instructor’s Comments: This is the 25 minute mark

Theorem: (Remainder Theorem (RT)) Suppose that f(x) ∈ F[x] and that c ∈ F. Then,
the remainder when f(x) is divided by x− c is f(c).

Proof: By the Division Algorithm for Polynomials, there exists unique q(x) and r(x) in
F[x] such that

f(x) = (x− c)q(x) + r(x)

with r(x) = 0 or deg(r(x)) < deg(x − c) = 1. Therefore, deg(r(x)) = 0. In either
case, r(x) = k for some k ∈ F. Plug in x = c into the above equation to see that
f(c) = r(c) = k. Hence r(x) = f(c). �

Example: Find the remainder when f(z) = z2 + 1 is divided by

(i) z − 1

(ii) z + 1

(iii) z + i + 1

Solution:

(i) By the Remainder Theorem, the remainder is f(1) = (1)2 + 1 = 2.

(ii) Note that z + 1 = z− (−1). By the Remainder Theorem, the remainder is f(−1) =
(−1)2 + 1 = 2.

Note: z2 + 1 = (z − 1)(z + 1) + 2

(iii) Note that z + i + 1 = z − (−i − 1). By the Remainder Theorem, the remainder is
f(−i− 1) = (−i− 1)2 + 1 = −1 + 2i + 1 + 1 = 2i + 1.

2



Handout or Document Camera or Class Exercise

In Z7[x], what is the remainder when 4x3 + 2x + 5 is divided by x + 6?

Solution: Since x+6 = x−1 in Z7, we see by the Remainder Theorem that the remainder
is

4(1)3 + 2(1) + 5 = 11 ≡ 4 (mod 7)

3



Instructor’s Comments: Ideally this is the 40 minute mark.

Theorem: (Factor Theorem (FT)) Suppose that f(x) ∈ F[x] and c ∈ F. Then the
polynomial x− c is a factor of f(x) if and only if f(c) = 0, that is, c is a root of f(x).

Proof: Note that x − c is a factor of f(x) if and only if r(x) = 0 via the Division
Algorithm for Polynomials (DAP) which holds if and only if r(x) = f(c) = 0 via the
Remainder Theorem (RT). �

4



Handout or Document Camera or Class Exercise

Prove that there does not exist a real linear factor of

f(x) = x8 + x3 + 1.

Solution: By the factor theorem, it suffices to show that f(x) has no real roots. We will
show that f(x) > 0 for all x ∈ R.

Case 1: Suppose that |x| ≥ 1. Then x8 + x3 ≥ 0 and hence f(x) = x8 + x3 + 1 > 0.

Case 2: Suppose that |x| < 1. Then |x3| < 1 and so x3 + 1 > 0 and hence f(x) =
x8 + x3 + 1 > 0.

Instructor’s Comments: Note here that −1 < x3 < 1 and x8 ≥ 0. This is the
50 minute mark.
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Lecture 42

Handout or Document Camera or Class Exercise

Prove that a polynomial over any field F of degree n ≥ 1 has at most n roots.

Instructor’s Comments: If you try this by contradiction, you will find your-
self using some sort of “ dot dot dot” type argument which ideally we’d like
to avoid. Try to steer students to the induction solution.

Solution: Let P (n) be the statement that all polynomials over F of degree n have at
most n roots. We prove this by induction on n.

Base Case: If n = 1, let ax+ b ∈ F[x] , with a 6= 0. Solving for a root gives x = −a−1b
which exists since a is a nonzero element in a field and hence has a multiplicative inverse.

Induction Hypothesis: Assume that P (k) is true for some k ∈ N.

Instructor’s Comments: It’s always a good idea to emphasize the for some
statement above.

Inductive step: Let p(x) ∈ F[x] be a degree k + 1 polynomial. Either p(x) has no root
in which case we are done or p(x) has a root, say c ∈ F. By the Factor Theorem, x−c is a
factor of p(x). Write p(x) = (x−c)q(x) for some q(x) ∈ F[x] of degree k. By the inductive
hypothesis, q(x) has at most k roots. Thus, p(x) has at most k + 1 roots. Therefore, by
the Principle of Mathematical Induction, P (n) is true for all natural numbers n. �

Instructor’s Comments: This could be the 15 minute mark

1



Definition: Let F be a field. We say a polynomial of positive degree in F[x] is reducible
in F[x] if and only if it can be written as the product of two polynomials in F[x] of positive
degree. Otherwise, we say that the polynomial is irreducible in F[x]. For example, x2 + 1
is irreducible in R[x] but reducible in C[x].
Example: Factor f(x) = x4−2x3+3x2−4x+2 into a product of irreducible polynomials
over Z7.

Proof: Note that f(1) = 0 and thus, by the Factor Theorem, x− 1 is a factor. By long
division, we have that

f(x) = (x− 1)(x3 − x2 + 2x− 2)

Now, the sum of the coefficients of the cubic is still 0 hence x − 1 is another factor of
f(x)! By a second application of long division, we see that

f(x) = (x− 1)2(x2 + 2)

Instructor’s Comments: Emphasize to students they should do the long
division.

Now, the Factor Theorem says that if x2 + 2 could be factored, it must have a root
since the factors must be linear. Checking the 7 possible roots gives

(0)2 + 2 ≡ 2 (mod 7)

(1)2 + 2 ≡ 3 (mod 7)

(2)2 + 2 ≡ 6 (mod 7)

(3)2 + 2 ≡ 4 (mod 7)

(4)2 + 2 ≡ 4 (mod 7)

(5)2 + 2 ≡ 6 (mod 7)

(6)2 + 2 ≡ 2 (mod 7)

Therefore, x2 + 2 has no root in Z7 and the above form was completely factorized. �

Instructor’s Comments: This is the 20 minute mark. You want to empha-
size that even though the factor theorem shows that 1 is a root, it doesn’t say
with what multiplicity. Thus you need to do the long division in order to find
any additional factors (or use the gcd of the polynomial and it’s derivative
but we won’t be talking about this)

Definition: The multiplicity of a root c ∈ F of f(x) ∈ F[x] is the largest k ∈ N such
that (x− c)k is a factor of f(x).

Instructor’s Comments: Note we can take N above because we require that
c is a root of the polynomial.

Example: The multiplicity of 1 in the last example was 2.

Note: x4 + 2x2 + 1 = (x2 + 1)2 over R[x] but does not split into linear factors over R.

Theorem: (Fundamental Theorem of Algebra (FTA)) Every non-constant complex
polynomial has a complex root.

Instructor’s Comments: The proof will not be done in Math 135

2



Note:

(i) Roots need not be distinct.

(ii) x2 + 1 over R shows that this does not happen over all fields.

Example: Solve x3 − x2 + x− 1 = 0 over C.

Solution: Note that x − 1 is a factor (sum of coefficients is 0). Thus, either do long
division or note that

x3 − x2 + x− 1 = x2(x− 1) + (x− 1) = (x− 1)(x2 + 1) = (x− 1)(x− i)(x + i).

Instructor’s Comments: This is the 30 minute mark

3



Handout or Document Camera or Class Exercise

Factor iz3 + (3− i)z2 + (−3− 2i)z − 6 as a product of linear factors. Hint: There is
an easy to find integer root!

Solution: By testing roots, notice that z = −1 and z = 2 are roots!

Instructor’s Comments: Note that you could look at the real part of this
polynomial when you plug in a real root r and get 3r2 − 3r − 6 which has the
two roots −1 and 2.

Hence (z + 1)(z − 2) = z2 − z − 2 is a factor. Performing the long division yields

and therefore, f(x) = (z + 1)(z − 2)(iz + 3).

Instructor’s Comments: Alternatively, you could note that since the con-
stant term of the polynomial is −6, the last linear factor must have +3 as its
constant term and since the leading coefficient is iz3, the leading coefficient
must be i.

4



Instructor’s Comments: This is the 40 minute mark.

Theorem: (Complex Polynomials of Degree n Have n Roots (CPN)) A complex poly-
nomial f(z) of degree n ≥ 1 can be written as

f(z) = c(z − c1)(z − c2)...(z − cn)

for some c ∈ C where c1, c2, ..., cn ∈ C are the (not necessarily distinct) roots of f(z).

Example: The polynomial 2z7 + z5 + iz + 7 can be written as

2(z − z1)(z − z2)...(z − z7)

for some roots z1, z2, ..., z7 ∈ C.

Note: The factorization depends on the field! For example, factoring z5− z4− z3 + z2−
2z + 2...

(i) ... over C, (z − i)(z + i)(z −
√

2)(z +
√

2)(z − 1)

(ii) ... over R, (z2 + 1)(z −
√

2)(z +
√

2)(z − 1)

(iii) ... over Q, (z2 + 1)(z2 − 2)(z − 1)

Instructor’s Comments: If you’re getting close, it might be best to stop here
and continue this on the next lecture.

Proof: (of CPN) We prove the given statement by induction on n.

Base Case: When n = 1, take az+ b ∈ C[z] where a 6= 0 and rewrite this as a(z− −b
a

).

Inductive Hypothesis: Assume all polynomials over C of degree k can be written in
the given form for some k ∈ N.

Inductive Step: Take f(z) ∈ C[z] of degree k + 1. By the Fundamental Theorem of
Algebra and the Factor Theorem there is a factor z − ck+1 of f(z) for some ck+1 ∈ C.
Write

f(z) = (z − ck+1)g(z)

where g(z) has degree k. By the inductive hypothesis, write

g(z) = c(z − c1)...(z − ck)

for c1, c2, ...ck ∈ C. Combine to get

f(z) = c
k+1∏

i=1

(z − ci).

Therefore, by the Principle of Mathematical Induction, the given statement is true for all
n ∈ N. �

Instructor’s Comments: This is the 50 minute mark
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Lecture 43

Theorem: Rational Roots Theorem (RRT) If f(x) = anx
n + ... + a1x + a0 ∈ Z[x] and

r = s
t
∈ Q is a root of f(x) over Q in lowest terms, then s | a0 and t | an.

Proof: Plug r into f(x):
0 = an( s

t
)n + ... + a1(

s
t
) + a0.

Multiply by tn

0 = ans
n + an−1s

n−1t + ... + a1st
n−1 + a0t

n.

Rearranging gives

a0t
n = −s(ansn−1 + an−1s

n−2t + ... + a1t
n−1)

and hence s | a0tn. Since gcd(s, t) = 1, we see that gcd(s, tn) = 1 (following from GCDPF)
and hence s | a0 by Coprimeness and Divisibility. Similarly, t | an. �

Example: Find the roots of

2x3 + x2 − 6x− 3 ∈ R[x]

Solution: By the Rational Roots Theorem, if r is a root, then writing r = s
t
, we have

that s | −3 and t | 2. This gives the following possibilities for r:

±1,±3,±3

2
,±1

2

Trying each of these possibilities one by one shows that r = −1
2

is a root since

2(−1
2

)3 + (−1
2

)2 − 6(−1
2

)− 3 = −1
4

+ 1
4

+ 3− 3 = 0

Hence (x+ 1
2
) or (2x+ 1) is a factor. By long division (or grouping and factoring), we see

that
2x3 + x2 − 6x− 3 = (2x + 1)(x2 − 3) = (2x + 1)(x−

√
3)(x +

√
3)

Hence all real roots are given by −1
2
,±
√

3. �

Instructor’s Comments: This is the 15 minute mark.

1



Handout or Document Camera or Class Exercise

Factor x3 − 32
15
x2 + 1

5
x + 2

15
as a product of irreducible polynomials over R.

Solution: The above polynomial is equal to

1
15

(15x3 − 32x2 + 3x + 2) = f(x)

By the Rational Roots Theorem, possible roots are

±1,±1
3
,±1

5
,± 1

15
,±2,±2

3
,±2

5
,± 2

15
,

Note that x = 2 is a root. Hence by the Factor Theorem, x − 2 is a factor. By long
division:

we have that f(x) = 1
15

(x− 2)(15x2− 2x− 1) = 1
15

(x− 2)(5x+ 1)(3x− 1) completing the
question. �

Instructor’s Comments: This is the 30 minute mark

2



Example: Prove that
√

7 is irrational.

Proof: Assume towards a contradiction that
√

7 = x ∈ Q. Square both sides gives

7 = x2 =⇒ 0 = x2 − 7

Therefore, as a polynomial, x2 − 7 has a rational root. By the Rational Root Theorem,
the only possible rational roots are given by ±1,±7. By inspection, none of these are
roots:

(±1)2 − 7 = −6 6= 0 (±7)2 − 7 = 42 6= 0

Hence, x cannot be rational. �

Instructor’s Comments: This is the 35 minute mark
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Handout or Document Camera or Class Exercise

Prove that
√

5 +
√

3 is irrational.

Solution: Assume towards a contradiction that
√

5 +
√

3 = x ∈ Q. Squaring gives

5 + 2
√

15 + 3 = x2 =⇒ 2
√

15 = x2 − 8

Squaring again gives

60 = x4 − 16x2 + 64 =⇒ 0 = x4 − 16x2 + 4

By the Rational Roots Theorem, the only possible roots are

±1,±2,±4

A quick check shows that none of these work. �

Instructor’s Comments: This is the 45 minute mark
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Theorem: (Conjugate Roots Theorem (CJRT)) If c ∈ C is a root of a polynomial
p(x) ∈ R[x] (over C) then c is a root of p(x).

Proof: Write p(x) = anx
n + ... + a1x + a0 ∈ R[x] with p(c) = 0. Then:

p(c) = an(c)n + ... + a1c + a0

= an(c)n + ... + a1c + a0 Since coefficients are real and PCJ.

= an(c)n + ... + a1c + a0 By PCJ

= p(c)

= 0

Instructor’s Comments: This is the 50 minute mark.
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Lecture 44

Handout or Document Camera or Class Exercise

How many of the following statements are true?

• Every complex cubic polynomial has a complex root.

• When x3 + 6x− 7 is divided by a quadratic polynomial ax2 + bx + c in R[x],
then the remainder has degree 1.

• If f(x), g(x) ∈ Q[x], then f(x)g(x) ∈ Q[x].

• Every non-constant polynomial in Z5[x] has a root in Z5.

A) 0

B) 1

C) 2

D) 3

E) 4

Solution: The first statement is true by the Fundamental Theorem of Algebra. The
second is false since x − 1 is a factor of the cubic polynomial and so there must be a
quadratic factor as well. The third is true since Q[x] forms a ring. The last is false since
say f(x) = x(x− 1)(x− 2)(x− 3)(x− 4) + 1 has no roots over Z5[x]. Hence the answer
is 2.

1



Recall:

Theorem: (Conjugate Roots Theorem (CJRT)) If c ∈ C is a root of a polynomial
p(x) ∈ R[x] (over C) then c is a root of p(x).

Note: This is not true if the coefficients are not real, for example (x+ i)2 = x2 + 2ix− 1.

Example: Factor
f(z) = z5 − z4 − z3 + z2 − 2z + 2

over C as a product of irreducible elements of C[x] given that i is a root.

Proof: Note by CJRT that ±i are roots. By the Factor Theorem, we see that (z− i)(z+
i) = z2 + 1 is a factor. Note that z − 1 is also a factor since the sum of the coefficients is
0.Hence, (z2 + 1)(z − 1) = z3 − z2 + z − 1 is a factor. By long division,

we see that f(z) = (z3 − z2 + z − 1)(z2 − 2) = (z − i)(z + i)(z − 1)(z −
√

2)(z +
√

2) is a
full factorization. �

2



Factor f(z) = z4−5z3+16z2−9z−13 over C into a product of irreducible polynomials
given that 2− 3i is a root.

Factors are (using the Factor Theorem and CJRT)

(z − (2− 3i))(z − (2 + 3i)) = z2 − 4z + 13

After long division,
f(z) = (z2 − 4z + 13)(z2 − z − 1)

By the quadratic formula on the last quadratic,

z =
−(−1)±

√
(−1)2 − 4(1)(−1)

2(1)

=
1±
√

5

2

Hence, f(z) = (z − (2− 3i))(z − (2 + 3i))(z − (1 +
√

5)/2)(z − (1−
√

5)/2). �
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Theorem: (Real Quadratic Factors (RQF)) Let f(x) ∈ R[x]. If c ∈ C−R and f(c) = 0,
then there exists a g(x) ∈ R[x] such that g(x) is a real quadratic factor of f(x).

Proof: Let c ∈ C be a root of f(x) where Im(c) 6= 0. Then by the Factor Theorem,

f(x) = (x− c)q1(x) for some q1(x) ∈ C[x].

Now, by the Conjugate Roots Theorem, c is also a root of f(x). Hence

f(c) = (c− c)q1(c) = 0.

Since Im(c) 6= 0, then c 6= c, or c − c 6= 0 which in turn means q1(c) = 0. That is, c is a
root of q1(x) and so by using the Factor Theorem again, we get that

q1(x) = (x− c)q2(x) where q2(x) ∈ C[x].

We substitute to get

f(x) = (x− c)(x− c)q2(x) = g(x)q2(x)

where g(x) = (x− c)(x− c). By Properties of Conjugates and Properties of Modulus,

g(x) = x2 − (c + c)x + cc = x2 − 2Re(c)x + |c|2.

Since −2Re(c) ∈ R and |c|2 ∈ R, g(x) is a real quadratic polynomial. All that remains is
to show that q2(x) is in R[x]. From above, in C[x], we have that

f(x) = g(x)q2(x) + r2(x)

where r2(x) is the zero polynomial. Using the Division Algorithm for Polynomials (DAP)
in R[x], we get

f(x) = g(x)q(x) + r(x)

where q(x) is in R[x] and the remainder r(x) is the zero polynomial or deg r(x) < deg g(x).
Now, every real polynomial is a complex polynomial, so we can also view this as a state-
ment in C[x]. As for any field, DAP over C tells us that the quotient and remainder
are unique. Therefore r(x) = r2(x) is the zero polynomial and q(x) = q2(x) has real
coefficients.
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Handout or Document Camera or Class Exercise

Prove that a real polynomial of odd degree has a real root.

Solution: Assume towards a contradiction that p(x) is a real polynomial of odd degree
without a root. By the Factor Theorem, we know that if p(x) cannot have a real linear
factor. By Real Factors of Real Polynomials, we see that

p(x) = q1(x)...qk(x)

for some quadratic factors qi(x). Now, taking degrees shows that

deg(p(x)) = 2k

contradicting the fact that the degree was of p(x) is odd. Hence, the polynomial must
have a real root. �
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