Claim. If n is a positive integer, then $n^{2}+1$ is not a per fect square.

$$
\text { Pf. } \operatorname{ts} n^{2}<n^{2}+1<n^{2}+2 n+1=(n+1)^{2}
$$

and since there are no squares blu n^{2} and $(n+1)^{2}$, we are done.
3. What if we charge $n^{2}+1$ to $n^{2}+13$?

A! FALSE! Consider $n=6$.
Q: What if we change $n^{2}+1$ to $1141_{n}^{2}+1$?
A: True for $n<10^{24}$. HOWEUER, if

$$
n=306933853227656571973972
$$

then $114 n^{2}+1$ is a perfect square.

Def: A statement is a sentence that is True or False.
A proposition is a claim that requires a proof.
Theorem: Strong proposition
Lemma. Weak proposition
Corollary i Follows immediately from propositi
Axiom: A given truth.
Show: $\operatorname{SIN}(3 \theta)=3 \operatorname{Sin} \theta-4 \operatorname{Sin}^{3} \theta$
For $\theta \in \mathbb{R}$
Pf: Recall: (1) $\operatorname{Sin}^{2} \theta+\operatorname{Cos}^{2} \theta=1$

$$
\begin{aligned}
& \text { (2) } \operatorname{Sin}(x \pm y)=\operatorname{Sin}_{x} \cos y \pm \operatorname{Sin}_{y} \cos x \\
& \text { (3) } \operatorname{Cos}(x \pm y)=\cos x \cos y \mp \operatorname{Sin} x \operatorname{Sin}
\end{aligned}
$$

$$
\begin{aligned}
& L H S=\operatorname{SN}(3 \theta)=\operatorname{SN}(2 \theta+\theta) \\
& \begin{array}{c}
\text { He }(2) \text { int } \\
x=2 \theta \\
y
\end{array}=\theta \text {. } \quad=\operatorname{Sin}(2 \theta) \cos \theta+\operatorname{SN\theta } \cos (2 \theta) \\
& \begin{array}{l}
x=2 \theta=y \\
U_{s} e^{2}(3) \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x=y=\theta \text {. } \\
& =(2 \sin \theta \cos \theta) \cos \theta+\sin \theta\left(\cos ^{2} \theta-\sin ^{2} \theta\right. \\
& =3 \sin \theta \cos ^{2} \theta-\sin ^{3} \theta \\
& =3 \$ \sin \theta\left(1-\sin ^{2} \theta\right)-\sin ^{3} \theta \\
& =3 \operatorname{SN} \theta-4 \operatorname{SN}^{3} \theta=\text { RHS }
\end{aligned}
$$

Find the flaw in the following arguments:
(i) For $a, b \in \mathbb{R}$,

$$
\begin{aligned}
a & =b \\
a^{2} & =a b \\
a^{2}-b^{2} & =a b-b^{2} \\
(a-b)(a+b) & =b(a-b) \\
a+b & =b \\
b+b & =b \\
2 b & =b \\
2 & =1
\end{aligned}
$$

(ii)

$$
\begin{aligned}
x & =\frac{\pi+3}{2} \\
2 x & =\pi+3 \\
2 x(\pi-3) & =(\pi+3)(\pi-3) \\
2 \pi x-6 x & =\pi^{2}-9 \\
9-6 x & =\pi^{2}-2 \pi x \\
9-6 x+x^{2} & =\pi^{2}-2 \pi x+x^{2} \\
(3-x)^{2} & \left.=(\pi-x)^{2}\right) \\
|3-x| & =|\pi-x| \\
3 & =\pi
\end{aligned} \quad \sqrt{a^{2}}=|a|
$$

(iii) For $x \in \mathbb{R}$,

$$
\begin{array}{rll}
(x-1)^{2} & \geq 0 & \\
x^{2}-2 x+1 \geq 0 & \\
x^{2}+1 \geq 2 x \\
x+\frac{1}{x} \geq 2
\end{array} \quad x \quad x \neq 0 \quad \text { forthisto work. }
$$

Q. Let $x, y \in R$. Prove that

$$
x^{4}+x^{2} y+y^{2} \geq 5 x^{2} y \operatorname{es} y^{2}
$$

Pf. Since $0 \leq\left(x^{2}-2 y\right)^{2}$, we have

$$
\begin{aligned}
0 & \leq x^{4}-4 x^{2} y+4 y^{2} \\
5 x^{2} y-3 y^{2} & \leq x^{4}-4 x^{2} y+4 y^{2}+5 x^{2} y-3 y^{2} \\
5 x^{2} y-3 y^{2} & \leq x^{4}+x^{2} y+y^{2}
\end{aligned}
$$

Alt. Pf:

$$
\begin{aligned}
\text { LIS }=x^{4}+x^{2} y+y^{2} & =x^{4}+x^{2} y+y+5 x^{2} y-5 x^{2} y+32 \\
& =x^{4}-4 x^{2} y+4 y^{2}+5 x^{2} y-3 y^{2} \\
& =\left(x^{2}-2 y\right)^{2}+5 x^{2} y-3 y^{2} \\
& \geq 5 x^{2} y-3 y^{2}=R H S .
\end{aligned}
$$

Theorem 0.1. Stewart's Theorem Let $A B C$ be a triangle with $A B=c$, $A C=b$ and $B C=a$.
If P is a point on $B C$ with $B P=m, P C=n$ and $A P=d$, then $d a d+$ man $=b m b+c n c$.

Proof. Proof A

$$
\begin{gathered}
c^{2}=m^{2}+d^{2}-2 m d \cos \theta \\
b^{2}=n^{2}+d^{2}-2 n d \cos \theta^{\prime} \\
b^{2}=n^{2}+d^{2}+2 n d \cos \theta \\
\frac{m^{2}-c^{2}+d^{2}}{-2 m d}=\frac{b^{2}-n^{2}-d^{2}}{2 n d} \\
n c^{2}-n m^{2}-n d^{2}=-m b^{2}+m n^{2}+m d^{2} \\
n c^{2}-m b^{2}=m n^{2}+m d^{2}+n m^{2}+n d^{2} \\
c n c+b m b=n m(n+m)+d^{2}(m+n) \\
c n c+b m b=m a n+d a d
\end{gathered}
$$

Theorem 0.2. Stewart's Theorem Let $A B C$ be a triangle with $A B=c$, $A C=b$ and $B C=a$.
If P is a point on $B C$ with $B P=m, P C=n$ and $A P=d$, $t h e n d a d+\operatorname{man}=b m b+c n c$.

Proof. Proof B

The Cosine Law on $\triangle A P B$ tells us that

$$
c^{2}=m^{2}+d^{2}-2 m d \cos (\angle A P B)
$$

Subtracting c^{2} from both sides gives

$$
0=-c^{2}+m^{2}+d^{2}-2 m d \cos (\angle A P B)
$$

Adding $2 m d \cos \angle A P B$ to both sides gives

$$
2 m d \cos (\angle A P B)=-c^{2}+m^{2}+d^{2}
$$

Dividing both sides by $2 m d$ gives

$$
\cos (\angle A P B)=\frac{-c^{2}+m^{2}+d^{2}}{2 m d} \cdot h
$$

Now, the Cosine Law on $\triangle A P C$ tells us that

$$
b^{2}=n^{2}+d^{2}-2 n d \cos \angle A P C
$$

Since $\angle A P C$ and $\angle A P B$ are supplementary angles, then

$$
\cos \angle A P C=\cos (\pi-\angle A P B)=-\cos (\angle A P B)
$$

Substituting into our previous equation, we see that

$$
b^{2}=n^{2}+d^{2}+2 n d \cos \angle A P B
$$

Subtracting n^{2} from both sides gives

$$
b^{2}-n^{2}=d^{2}+2 n d \cos (\angle A P B)
$$

Then subtracting d^{2} from both sides gives

$$
b^{2}-n^{2}-d^{2}=2 n d \cos (\angle A P B)
$$

Dividing both sides by $2 n d$ gives

$$
\frac{b^{2}-n^{2}-d^{2}}{2 n d}=\cos (\angle A P B)
$$

Now we have two expressions for $\cos (\angle A P B)$ and equate them to yield

$$
\frac{-c^{2}+m^{2}+d^{2}}{2 m d}=\frac{b^{2}-n^{2}-d^{2}}{2 n d}
$$

Multiplying both sides by $2 m n d$ shows us that

$$
n\left(-c^{2}+m^{2}+d^{2}\right)=m\left(b^{2}-n^{2}-d^{2}\right)
$$

Next we distribute to get

$$
-n c^{2}+n m^{2}+n d^{2}=m b^{2}-m n^{2}-m d^{2} .
$$

Adding $n c^{2}+m n^{2}+m d^{2}$ to both sides gives

$$
n m^{2}+m n^{2}+n d^{2}+m d^{2}=m b^{2}+n c^{2} .
$$

Factoring twice gives:

$$
n m(m+n)+d^{2}(m+n)=m b^{2}+n c^{2} .
$$

Since P lies on $B C$, then $a=m+n$ so we substitute to yield

$$
n m a+d^{2} a=m b^{2}+n c^{2}
$$

Finally, we can rewrite this as $b m b+c n c=d a d+m a n .$.

Theorem 0.3. Stewart's Theorem Let $A B C$ be a triangle with $A B=c$, $A C=b$ and $B C=a$.
If P is a point on $B C$ with $B P=m, P C=n$ and $A P=d$, then $d a d+\operatorname{man}=b m b+c n c$.

Proof. Proof C

Using the Cosine Law for supplementary angles $\angle A P B$ and $\angle A P C$, and then clearing denominators and simplifying gives $d a d+\operatorname{man}=b m b+c n c$ as required.

Theorem 0.4. Stewart's Theorem Let $A B C$ be a triangle with $A B=c$, $A C=b$ and $B C=a$.
If P is a point on $B C$ with $B P=m, P C=n$ and $A P=d$, $t h e n d a d+m a n=b m b+c n c$.

Proof. Proof D
The Cosine Law on $\triangle A P B$ tells us that

$$
c^{2}=m^{2}+d^{2}-2 m d \cos \angle A P B
$$

Similarly, the Cosine Law on $\triangle A P C$ tells us that

$$
b^{2}=n^{2}+d^{2}-2 n d \cos \angle A P C .
$$

Since $\angle A P C$ and $\angle A P B$ are supplementary angles, we have

$$
b^{2}=n^{2}+d^{2}+2 n d \cos \angle A P B .
$$

Equating expressions for $\cos \angle A P B$ yields

$$
\frac{-c^{2}+m^{2}+d^{2}}{2 m d}=\frac{b^{2}-n^{2}-d^{2}}{2 n d} .
$$

Clearing the denominator and rearranging gives

$$
n m^{2}+m n^{2}+n d^{2}+m d^{2}=m b^{2}+n c^{2} .
$$

Factoring yields

$$
m n(m+n)+d^{2}(m+n)=m b^{2}+n c^{2} .
$$

Substituting $a=(m+n)$ gives $d a d+m a n=b m b+c n c$ as required.

Thraguot the lecture, let $A, B, C b e$ statements.
Defin: $7 A$ is NOT A.

Define:

$$
\begin{aligned}
& A \wedge B \text { is } A N D B . \\
& A \vee B \text { is } A \text { or } B .
\end{aligned}
$$

A	B	$A \wedge B$	$A \cup B$
T	T	T	T
T	F	F	T
F	F	F	T
F	F	F	F

Which of the following are true?

- π is irrational and $3>2$
TRUE
- 10 is even and $1=2$
FALSE
- 7 is larger than 6 or 15 is a multiple of 3 TRUE
- $5 \leq 6$
TRUE
- 24 is a perfect square or the vertex of parabola $x^{2}+2 x+3$ is $(1,1)$ FALSE.
- 2.3 is not an integer
- 20% of 50 is not 10
TRUE.
- 7 is odd or 1 is positive and $2 \neq 2$
FALSE.

last buret is true.

Def'n: The symbol \equiv in logic means logically equivalent, that is, in a truth table, the LHS \& RHIS are equal.
Ex: Show $7(7 A) \equiv A$.

A	$\neg A$	$\neg(\neg A)$
T	F	T
F	T	F

Since first \& last columnsere equal, $A \equiv 7(7 A)$.

Theorem: (De Morgan's Law)

$$
\begin{aligned}
& \neg(A \vee B) \equiv \neg A \wedge \neg B \\
& \neg(A \wedge B) \equiv \neg A \vee \neg B
\end{aligned}
$$

$P f_{:}^{\prime}$

Since $1(A \cup B)$ has the same truth as. $\therefore A \cap \neg B$, we have $\neg(A \cup B) \leqq \neg A \wedge \neg B$

Ex: $A \wedge(B \cup C) \equiv(A \wedge B) \cup(A \wedge C)=$

Implication $(A \Rightarrow B)$

Defin:	A	B	$A \Rightarrow B$
	T	T	T
	F	F	F
	F	T	T
	F	F	T

In $A=B$, A is called the hypothesis B is called the conclusion.
nt ta
$\mid \mathbb{| B |}$ To prove $A \Rightarrow B$, we assume A is True and show B is true.

To use $A \Rightarrow B$, we prove A is true and use B as true

In the following, identify the hypothesis, the conclusion and state whether the statement is true or false.

- If $\sqrt{2}$ is rational then $2<3$

- If $(1+1=2)$ then $5 \cdot 2=11$
- If C is a circle, then the area of C is $\pi r^{2} \quad$ TRUE.
- If 5 is even then 5 is odd

- If $4-3=2$ then $1+1=3 \quad$ TRUE.

Proposition: $\quad A \Rightarrow B \equiv \neg A \vee B$

Pf: | A | B | $A=D$ | $\neg A$ | $\neg A \vee B$ |
| :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | T |
| T | F | F | F | F |
| F | T | T | T | T |
| F | F | T | T | T |
| equal | | | | |

Divisibility.
tire) zählen
Pefri: Let $m, n \in \mathbb{Z}$. We say that m divides n and write $m \mid n$ if (and only if) there exists a $k \in \mathbb{Z}$ such that

$$
\begin{aligned}
& m k=n . \\
& \text { Ex: } 316,212,7149 ; 5510,010 .
\end{aligned}
$$

Q1. I enjoy trying to discover and write MATH 135 proofs.
A) Strongly disagree CODE
B) Disagree
C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q2. When I have difficulties with MATH 135 proofs, I know I can handle them.
A) Strongly disagree
B) Disagree
C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q3. Suppose A, B and C are all true statements.
The compound statement $(\neg A) \vee(B \wedge \neg C)$ is
A) True
$F \vee(T \wedge \neq)$
B) False
\leftarrow
$F \vee F$

Q4. In class, I would prefer the use of
A) Document Camera
B) Blackboard

Divisibility: Let $m, n \in \mathbb{Z}$. Then $m 1 n$ if (ondonly if) there exists a $k \in \mathbb{Z}$ such that $m K=n$
E_{x}

$$
\begin{array}{ll}
5 / 15 & \because 5 \cdot 3=15 \\
-710 & \because(-7 \cdot 0=0 \\
010 & \because 0 \cdot 0=0 \\
31-27 & \because 3 \cdot(-9)=-27
\end{array}
$$

If m does not divide n, we write min
Ex: 5×7 since there no integer satisfying $5 k=7$.
(VB) $\pi \mid 3 \pi$ deesn't make sense since in the def' of "| $m, n \in \mathbb{Z}$.

Q: (Direct Prof) $\left.n \in \mathbb{Z} \wedge 14\right|_{n} \Rightarrow 7 \mid n$ "thepenids
Solni Let $n \in \mathbb{Z}$ and suppose $14 n$. Then \exists $k \in \mathbb{Z}$ sot. $14 k=n$. Then $(7 \cdot 2) k=n$. By associativity, $7(2 k)=n$. Since $2 k \in \mathbb{Z}$, $71 n$
Q. Let $x \in \mathbb{Z}$. Suppose $2^{2 x}$ is an odd integer. Show that $2^{-2 x}$ is odd.

Pf: Recall: An integer n is....
(i) Even if 2 ln .
(i.) Odd if $2 \mid(n-1)$

First, note $x \geq 0$ for $2^{2 x}$ to be an integer. If $x \geqslant 1$ then $2^{2 x}=2 \cdot\left(\frac{\left(2^{2 x-1},\right.}{\varepsilon \geq 1}\right.$, so 2$) 2^{2 x}$ and thus, 2^{2+} is not odd.
$\therefore x=0$. Hence $2^{2 x}=1$ and $2^{-2 x}=1$ isodd:
Deft: An integer p is said to be prime if (and any if) $p>1$ andits only positive divisor are 1 and p.
Ex: Show p \& $p+1$ are prime only when $p=2$.
Prop: Boches by Divisibility (BBD)

$$
a|b \wedge b \neq 0 \Rightarrow| a|\leq|b|
$$

Pf: Let $a, b \in \mathbb{Z}$ sit: $a l b$ and $b \neq 0$ Then $\exists k \in \mathbb{Z}$ st. $a k=b$. Since $b \neq 0$ we tho that $k \neq O$. Thus $a=\frac{b}{k}$. Also $|a|=\left|\frac{b}{k}\right| \leq|b|$ (At: $|a| \leq|a||k|=|b|) \quad$ since $\hat{i k \mid}$

Propi Transitivity of Divisibility If $a l b$ a $b / c \Rightarrow a \mid c$.

Pf: $\exists \mathrm{kel}$ sit. $\quad a k=b ; \quad \exists l \in \mathbb{s}$ st, $b l=c$ $\Rightarrow(a k) l=c \Rightarrow a\left(\frac{k l}{\in l}\right)=c$ soalc

Prop: Divisibility of Integer Combinations. (DIC), Let $a, b, c \in \mathbb{Z}$. If alb rale then forony $x, y \in$. weave $a(b x+c y)$

Divisibility of Integer Combinations (DIC)
If $a \mid b$ and $a \mid c$ then for all integers x, y we have $a \mid(b x+c y)$
PEi. Since alb, $\exists k \in \mathbb{Z}$ st. $a k=b$.
Since $a l c, \exists l \in \mathbb{Z}$ s.t. $a l=c$.
Then,

$$
\begin{aligned}
a x+c y & =a k x+a l y \\
& =a(k x+l y)
\end{aligned}
$$

Since $k_{x}+l y \in \mathbb{Z}$, by defin al $\left(b_{x}+c y\right)$.
Ex: Prove that if $m \in \mathbb{Z}$ aral $141 m$ then $71135 m+693$
Pf: Suppose $n \in \mathbb{Z}$ and 141 m . Since $7 / 44(7 \cdot 2=14)$ by transitivity, 71 m . As $71693 \quad(7.99=693)$ what by DIC

$$
\begin{align*}
& 71{ }^{b-x}(135)+693(1) \\
= & 71135 m+693
\end{align*}
$$

obverse
Def'n: Let A, B be statements. The converse of $A \Rightarrow B$ is $B \Rightarrow A$
Er: If $p, p+l$ ore prime, then $p=2$ onvesei if $p=2$ then $p, p+l a r e$ prime.

$$
(B B D) \quad a|b \wedge b \neq 0 \Rightarrow| a|\leq|b|
$$

Converse: $|a| \leq|b| \Rightarrow a \mid b \wedge b \neq 0$
NB: the converse is false!
If and only if (iff)
Defin: $A \Leftrightarrow B$, AiffB, AifandonlyifB

A	B	$A \Leftrightarrow B$
T	T	T
T	F	F
F	T	F
F	F	T

Ex: Show

$$
A \Leftrightarrow B
$$

$$
\equiv A=B \wedge B=A .
$$

Evil: In $\triangle A B C, \quad b=c \cdot \cos A$ iff $\ll=\frac{\pi}{2}$

Pf: Suppose $b=c \cdot \cos A$. By the cosindaw,

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
a^{2} & =b^{2}+c^{2}-2 b \cdot b \\
a^{2} & =c^{2}-b^{2} \\
a^{2}+b^{2} & =c^{2} .
\end{aligned}
$$

U sing the cosine law again.

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos (2 c) \\
& c^{2}=c^{2}-2 a b \cos (<c) \\
& 0=-2 a b \cos (<c)
\end{aligned}
$$

Thus $\cos (<c)=0$. Since $0<$ angle $c<\pi$, we have $\angle C=\frac{\pi}{2}$.
Suppose now that $<c=\frac{\pi}{2}$.

Then, $\cos (A)=\frac{b}{c}$. Hence $c \cdot \cos A=b$

Prove the following. Suppose $x, y \geq 0$. Show that $x=y$ if and only if $\frac{x+y}{2}=\sqrt{x y}$.

Suppose

$$
\begin{aligned}
& \frac{x+y}{2}=\sqrt{x y} \\
& x+y=2 \sqrt{x y} \\
& x^{2}+2 x y+y^{2}=4 x y \\
& x^{2}-2 x y+y^{2}=0 \\
& (x-y)^{2}=0 .
\end{aligned}
$$

Thus, $x-y=0=0 x=y$.

Suppose $x=y$.

$$
\begin{aligned}
\text { LHS } & =\frac{x+y}{2} \\
& =\frac{y+y}{2} \\
& =\frac{2 y}{2} \\
& =y .
\end{aligned}
$$

RHO $=\sqrt{x y}$

$$
=\sqrt{y^{2}}
$$

$$
=y \quad(\because y \geq 0)
$$

$\angle H S=$ RHS . 园

Set.
Defni A set is a collection of elements.
Es: $\mathbb{Z}, N, \mathbb{R}, \mathbb{Q}$ (setof rational number) $\{5, A\}, \quad S=\{1,2, \Delta, \otimes\}$.
$x \in S$ ins $x \in S \quad x$ notion S.
$\}, \phi$ empty set
$N B$: $\{\phi\}$ is NOT the same as the empty set. This is a set that contains the emptyset

8 sets.
$\}$ is different from $\{\phi\}$.

$$
\mathbb{Q}=\{a / b \in \mathbb{R}: a, b \in \mathbb{Z} \text { and } b \neq 0\}
$$

In the above example, \mathbb{R} is called the "universe [of discourse]".

Ex: In set notation, write the set of positive integers less than 1000 and which are multiples of \bar{f}

$$
\begin{aligned}
\text { Soln: } & \{n \in \mathbb{N}: n<1000 \hat{1} \quad \hat{1}\} \\
& \{7 K: H \in \mathbb{N} \text { ad } k \leq 142\} \\
& \text { I such that , sit. t. }^{\{ }
\end{aligned}
$$

Describe the following sets using set-builder notation:

1. Set of even numbers between 5 and 14 (inclusive).

$$
\{6,8,10,12,4\} \text { or }\left\{n \in \mathbb{N}_{1}: 5 \leq n \leq 14 \wedge 2 \ln \right\}
$$

2. All odd perfect squares.

$$
\left\{(2 k+1)^{2}: k \in \mathbb{Z}\right\}
$$

3. Sets of three integers which are the side lengths of a (non-trivial) triangle.

$$
\begin{aligned}
\{(a, b, c): a, b, c \in \mathbb{N} a<b+c & \wedge b<a+c \\
& \wedge c<a+b\}
\end{aligned}
$$

4. All points on a circle of radius 8 centred at the origin.

$$
\left\{(x, y): x, y \in \mathbb{R} \wedge x^{2}+y^{2}=8^{2}\right\}
$$

Set Operations
Let S, T be sets. Define:

$$
\text { SUI }=\{x i x \in S \vee x \in T\} \quad \text { (union) }
$$

$S \cap T=\{x: x \in S \wedge x \in T\} \quad$ (intersection)
\bar{S} or S^{c} (with respect to Universe U)
$=\{x \in U: x \notin S\}=U-S \quad$ (compleat)
$S-T=\{x: x \in S, x \not x \notin T\} \quad$ (set dittecace)
$S \times T=\{(x, y): x \in S \wedge y \in T\}$, (Carson Product).
Ex: $\quad(1,2) \in \mathbb{Z} \times \mathbb{Z} \quad, \quad(2,1) \in \mathbb{Z} \times \mathbb{Z}$
BuT $(1,2) \neq(2,1)$
MB] $\mathbb{Z}+\mathbb{Z}$ and $\{(n, n)$ in $\mathbb{Z}\}$ are DIFFERENT sets!
Ex: $\mathbb{Z}=\{n \in \mathbb{Z}: 2 \ln \} \cup\{2 k \in \mathbb{G D D}: k \in \mathbb{Z}\}$
) $\varnothing=\{n \in \mathbb{Z}: 21 m\} \cap\{2 k+1: k \in \mathbb{Z}\}$

Def: $S \subseteq T: S$ is a subset of T. ie Every elementot S is in T
$S \nsubseteq T$: Proper/ Strict subset $S \supseteq T$ is contains T
TSS ie Every element of T is in S.
$S \geq T$: Proper/Strict containment.
Scontairs TAND $S \neq T$.
Devin: $S=T$ means $S \leq T$ and $T S S$
$E_{x}: \quad\{1,2\}=\{2,1\}$.
Ex: Prove $\{n \in \mathbb{N}: 4 \mid n+1\} \leq\{2 k+1: k \in Z\}$
Pf: Let $m \in\{n \in N: 4 \mid n+1\}$. Then $41 \mathrm{~m}+1$. Thus,
$\exists l \in \mathbb{Z}$ s.t. $4 l=m+1$. Now, $m=2(2 l)-1$

$$
\begin{aligned}
& =2(2 l)-2+2-1 \\
& =2(2 l-1)+1
\end{aligned}
$$

Thus, $m \in\{2 k+1 i k \in \mathbb{Z}\}$

Ex: Show $S=T$ iff $S \cap T=S U T$.
Pf: Suppose $S=T$. Then I claim $S \cap T=S$ Now, $\operatorname{Sin} T \subseteq S$ since if $x \in S \cap T$, than by doth $x \in S$. Similarly, if $x \in S$, then $x \in T$ (Since $S=T$) and this $x \in S \cap T$

Claim 2: $-S U T=S$
" 2 " is clear
" \subseteq " Let $x \in$ SUT then either $x \in S$ and we aredore OR $X \in T$ and Slice $S=T, x \in S$
Thus, $S \cap T=S=S U T$
For the converse, suppose $S \cap T=S U T$. Claim 3: $S \subseteq T \quad-\quad$ Claim 4: $T \subseteq S$.

Quantufied statements.
(11) For every natural number $n, 2 n^{2}+11 n+15$ is composite.
(2) There is an integer K such that $6=31$ \forall for all symbol.
(1) $\forall n \in \mathbb{N}, 2 n^{2}+11 n+15$ is composite.

$\forall x \in S, P(x)$: for all x in S, statement $P(x)$ hods $x \in S \Rightarrow P(x)$

Pot 11 . Let n be an arbitrary natural number. Then factoring gives $\quad 2 n^{2}+1 n+15=(2 n+5)(n+3)$ Since $2 n+5>1$ ad $n+3>1$, where $2 n^{2}+11 n+158$ composite.
$\exists K \in \psi_{s} \cdot t, \quad \sigma=3 \pi$
Pfof (2) Since $3 \cdot 2=6, k=2$ sutisfies the statement
E-: $S \subseteq T \equiv \forall x \in S, x \in T$.

Prove there is an $x \in \mathbb{R}$ such that $\frac{x^{2}+3 x-3}{2 x+3}=1$.
When $x=2$, note $\frac{2^{2}+3(2)-3}{2(2)+3}=\frac{7}{7}=1$.

$$
\begin{aligned}
\frac{x^{2}+3 x-3}{2 x+3}=1 \Leftrightarrow & x^{2}+3 x-3=2 x+3<x \\
& \left(\text { PROVIDED } x \neq-\frac{3}{2}\right)
\end{aligned}
$$

Note: Vacuously true statement (s)

$$
\forall x \in \varnothing, P(x)
$$

Ex: Let $a, b, c \in \mathbb{Z}$. If $\forall x \in \mathbb{Z}$, $a \mid(b x+c)$ then al (bic).

䧀: Assure $\forall x \in \mathbb{Z}, a(b x+c)$, For example, when $x=1, \quad a \mid(b(1)+c)$. Thus $a l(b+c)$.
Qi. $\exists m \in \mathbb{Z}$ s.t. $\frac{m-7}{2 m+4}=5$.
A! When $m=-3$, note $\frac{m-7}{2 m+4}=\frac{-3-7}{2(-3)+4}=\frac{-10}{-2}=5$

Show that for each $x \in \mathbb{R}, x^{2}+4 x+7>0$.
Let $x \in \mathbb{R}$ be arbitrary. Then

$$
\begin{aligned}
x^{2}+4 x+7 & =x^{2}+4 x+4-4+7 \\
& =(x+2)^{2}+3 \\
& >0
\end{aligned}
$$

Sometimes \forall and \exists are hidden! If you encounter a statement with quantifiers, take a moment to make sure you understand what the question is saying/asking.
Examples:

1. $2 n^{2}+11 n+15$ is never prime when n is a natural number. $\forall n \in \mathbb{N}, 2 n^{2}+11 n+15$ is not prime.
2. If n is a natural number, then $2 n^{2}+11 n+15$ is composite. $\quad \forall n \in \mathbb{N}, \quad 2 n^{2}+1 l_{n}+1 S$ is Composite.
3. $\frac{m-7}{2 m+4}=5$ for some integer m. $\exists m$ sit. $\frac{m-7}{2 m+4}=5$.
4. $\frac{m-7}{2 m+4}=5$ has an integer solution. 4 .

Domain is Important!
Let $P(x)$ be the statement $x^{2}=2$.
Let $S=\{-\sqrt{2}, \sqrt{2}\}$.
Which of the following are true?
$\exists x \in \mathbb{Z}, P(x)$ FALSE $\quad \forall x \in \mathbb{Z}, P(x)$ FALSE.
$\exists x \in \mathbb{R}, P(x)$ true $\quad \forall x \in \mathbb{R}, P(x)$ False:
$\exists x \in S, P(x)$ true $\quad \forall x \in S, P(x)$ TrUe.

Q1. I enjoy trying to discover and write MATH 135 proofs.
A) Strongly disagree
B) Disagree
C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q2. When I have difficulties with MATH 135 proofs, I know I can handle them.
A) Strongly disagree
B) Disagree
C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q3. Consider the following statement.

$$
\{2 k: k \in \mathbb{N}\} \supseteq\{n \in \mathbb{Z}: 8 \mid(n+4)\}
$$

A well written and correct direct proof of this statement could begin with
A) We will show that the statement is true in both directions.
B) Assume that $8 \mid(n+4)$ where n is an integer. (CORRECT)
C) Let $m \in\{n \in \mathbb{Z}: 8 \mid(n+4)\}$.
D) Let $m \in\{2 k: k \in \mathbb{N}\}$.
E) Assume that $8 \mid(2 k+4)$.

Notes:

1. A single counter example proves that $(\forall x \in S, P(x))$ is false.

Claim: Every positive even integer is composite. This claim is false since 2 is even but 2 is prime.
2. A single example does not prove that $(\forall x \in S, P(x))$ is true.

Claim: Every even integer at least 4 is composite.
This is true but we cannot prove it by saying " 6 is an even integer and is composite." We must show this is true for an arbitrary even integer x. (Idea: $2 \mid x$ so there exists a $k \in \mathbb{N}$ such that $2 k=x$ and $k \neq 1$.)
3. A single example does show that $(\exists x \in S, P(x))$ is true.

Claim: Some even integer is prime.
This claim is true since 2 is even and 2 is prime.
4. What about showing that $(\exists x \in S, P(x))$ is false? Idea: $(\exists x \in S, P(x))$ is false $\equiv \forall x \in S, \neg P(x)$ is true. This idea is central for proof by contradiction which we will see later.

Negating Quantifiers.
Negate the following.
11. Everybody in this room was born before 2010.
Negation. Somebody in this room wee Na born before 2010.
2]. Someone in this com was born before 1990 (1987).

Egest: Everyone in this room was born after 1990.
3. $\forall x \in \mathbb{R},|x|<5$

Negate: $\exists x \in \mathbb{R},|x| \geqslant 5 \equiv 7(\forall x \in \mathbb{R},|x|<5)$
$4 . \exists x \in \mathbb{R} \quad|x| \leqslant 5$
$\forall x \in \mathbb{R}, \quad|x|>5$.
$\sqrt{\text { (B) Aproof that a statement is false is }}$ called a disproof.

Let $a, b c c \in \mathbb{Z}$.
Q'. Pave or disprove: If albe then albvale Sola: This is false! A exantor example is given y $a=\frac{4}{5}, b=2, c=3$. The $a(b c$. But $6+2 a+6+3$.

Fix: Include that a must be prime. Proffison ereecie.

Which of the following are true？
1．$\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x^{3}-y^{3}=1 \quad$ FALSE $\binom{$ chore $x=0}{y=0}$
2．$\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x^{3}-y^{3}=1 \quad$ TRUE $\quad(x=1, y=0)$
3．$\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x^{3}-y^{3}=1$
4．$\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x^{3}-y^{3}=1$
（3）TRUE：Pf：Let $x \in R$ be arbitrary．Then choose $y=\sqrt[3]{x^{3}-1}$ ．Then

$$
x^{3}-y^{3}=x^{3}-\left(\sqrt[3]{x^{3}-1}\right)^{3}=x^{3}-\left(x^{3}-1\right)=1
$$

4 FALSE．Ideai Negate and show the negation is true．

$$
\begin{aligned}
& 7\left(\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x^{3}-y^{3}=1\right) \\
& \forall x \in \mathbb{R}, \exists y \in \mathbb{R} x^{3}-y^{3} \neq 1
\end{aligned}
$$

Let $x \in R$ bearbitrarg．Take $y=x$ ．Then

$$
x^{3}-y^{3}=x^{3}-x^{3}=0 \neq 1
$$

Notation Cheat Sheet

1. + Addition
2. - Subtraction
3. \times, \cdot Multiplication
4. \div,/ Division
5. \mathbb{N} Natural Numbers
6. \mathbb{Z} Integers (Zählen)
7. \mathbb{Q} Rational Numbers (Quoziente)
8. \mathbb{R} Real Numbers
9. \neg Not, Negation
10. \vee Or
11. \wedge And
12. Divides
13. \Rightarrow Implies (If... Then)
14. \Leftrightarrow, (iff) If and Only If
15. $\in \operatorname{In}$
16. \notin Not In
17. $\}, \emptyset$ Empty Set
18. \cap Intersection (Of Sets)
19. U Union (Of Sets)
20. \subset Subset
21. \subseteq Subset Or Equal
22. \subsetneq Proper/Strict Subset (Subset Not Equal)
23. \supset Contains
24. \supseteq Contains Or Equal
25. \supsetneq Properly/Strictly Contains (Contains Not Equal)
26. \forall For All
27. \exists There Exists

List all elements of the set:

$$
\begin{aligned}
\{n \in \mathbb{Z}: n> & 1 \wedge((m \in \mathbb{Z} \wedge m>0 \wedge m \mid n) \Rightarrow(m=1 \vee m=n))\} \\
& \cap\{n \in \mathbb{Z}: n \mid 42\}
\end{aligned}
$$

List all elements of the set: if m is a positive then $m=1$ or $m=n$.

$$
S=\{n \in \mathbb{Z}: n>1 \wedge((m \in \mathbb{Z} \wedge m>, 0 \wedge m \mid n) \Rightarrow(m=1 \vee m=n))\}
$$

Setofal Primes!

Thus, $S=\{2,3,79\}$.

Rewrite the following using as few English words as possible.

1. No multiple of 15 plus any multiple of 6 equals 100 .
2. Whenever three divides both the sum and difference of two integers, it also divides each of these integers.

$$
\begin{aligned}
& \text { 1. } \forall m, n \in \mathbb{Z},(15 m+G n+100) \\
& \text { 2. } \left.\forall m_{1} n \in \mathbb{Z}((31(m+n) \wedge 31(m-n))=\nabla 31 m \wedge 3)_{n}\right)
\end{aligned}
$$

Write the following statements in (mostly) plain English.

1. $\forall m \in \mathbb{Z},\left((\exists k \in \mathbb{Z}, m:=2 k) \Rightarrow\left(\exists \ell \in \mathbb{Z}, 7 m^{2}+4=2 \ell\right)\right)$
2. $n \in \mathbb{Z} \Rightarrow(\exists m \in \mathbb{Z}, m>n)$
3. If m is on even integer, then

$$
7 m^{2}+4 \text { is even. }
$$

2. For every integer, there exists a greater integer.

There is no greatest integer.

Contra Positive.
Moral: Direct proofs are not always easy to find.
Eg: $7 x_{n} \Rightarrow \mid 4 x_{n} \equiv 141 n \Rightarrow 71 n$
Contrapositive Def in:
The contrapositive of $H \Rightarrow C C$ is $\neg C \Rightarrow \neg \rightarrow$
Note: $\quad H \Rightarrow C \equiv \neg C \Rightarrow \neg \rightarrow H$.

$$
\begin{aligned}
H \Rightarrow C \equiv 7 H \vee C & \equiv C V \neg H \\
& \equiv \neg(\neg C) \vee \neg H \\
& \equiv \neg C=\square \neg H .
\end{aligned}
$$

H	C	$H=C$	$\neg C$	$\neg H$
T	T	T	F	F
T	F	F	T	F
F	T	T	F	T
F	F	T	T	T

Ex: Let $x \in \mathbb{R}$. Prove $x^{3}-5 x^{2}+3 x \neq 15 \Rightarrow x \neq 5$.
Pf: We prove the contrapositive. Let $x=5$. The

$$
\begin{aligned}
x^{3}-5 x^{2}+3 x & =(5)^{3}-5(5)^{2}+3(5) \\
& =5^{3}-5^{3}+15 \\
& =15
\end{aligned}
$$

Irrationals.
Ex: Suppose $a, b \in \mathbb{R}$ end $a b \in \mathbb{R}-\mathbb{Q}$. Show either $a \in \mathbb{R}-\mathbb{Q}$ or $b \in \mathbb{R}-\mathbb{Q}$.

PE: Proceed by contra Positive. Suppose. a is rational and b is rational. Then, $\exists K, l, m, n \in \mathbb{Z}$ s.t. $a=\frac{k}{e}$ ad $b=\frac{m}{n}$ with $l, n \neq 0$. Then

$$
a b=\frac{K \mathrm{~km}}{\ln } \in \mathbb{Q} .
$$

Announcements

1. Office hour Thus day moved to 12-1:30.
2. Away Friday -Tuesday Office hours covered by Share Bauman (M:9:30-10:30 \& Tu 2;-3:30).
3. A3 posted. Make sure by thursday you have the link!
4. Clicker Thursday!

Prove that if $x \in \mathbb{R}$ such that $x^{3}+7 x^{2}<9$, then $x<1.1$.
PF: We prove the contrapositive. Suppose $x \geq 1.1 \geq 1$. Then since $x>0$,

$$
\begin{aligned}
x^{3}+7 x^{2} & \geq(0.1)^{3}+7(1.1)^{2} \\
& \text { FKachis } \Delta . \\
& =\left(\frac{11}{10}\right)^{3}+7\left(\frac{11}{10}\right)^{2} \\
& 121 \\
& =\frac{1331}{1000}+7\left(\frac{121}{101}\right) \\
& =\frac{1331}{1000}+\frac{8470}{1000} \\
& =\frac{9801}{1000} \geqslant 9 .
\end{aligned}
$$

Types of Implications.
Let A, B, C be statements.

1. $A \wedge B \Rightarrow C \quad$ (Seen: D IC. Trans. $B B D$) 2. $A=D^{\wedge} \subset$
$E_{x}:$ Let S, T, U be sets. If(SUT) $\subseteq U$ then $s \leq U$ and $T \leq U$.
Pf: Suppose SUT $\leq U$. If $x \in S$, Then $x \in$ SUT $\subseteq U$ so $x \in U$, Muss By symmetry (similarly) $T \leq U$.
2. $A \cup B \Rightarrow C$

$$
\begin{aligned}
& E_{x}: * \\
&:=1 \vee y=2 \Rightarrow x^{2} y+y-2 x^{2}+4 x \\
&-2 x y=2 .
\end{aligned}
$$

PE: $1 f x=1$, the $L H S=y+y-2+4-2 x y=2=R$.
If $y=2$, then LHS $=2 x^{2}+2-2 x^{2}+4 x-4 x=2=8$
4. $A \Rightarrow B \cup C$. (Elimination).

Ex: If $x^{2}-7 x+12 \geq 0$ then $x \leq 3 v x \geq 4$
Pf: Suppose $x^{2}-7 x+12 \geq 0$ and $x>3$.
Then, $0 \leq x^{2}-7 x+12=(x-3)(x-4)$.
$\therefore x-4 \geq 0$ hence $x \geq 4$.

How many years has it been since the Toronto Maple Leafs have won the Stanley Cup?
A) -3
B) 48 .
C) 1008000
D) 150

Proof By Contradiction.
Let S be a statement. Then Sa ᄀS is false.
Ex: There is no largest integer.
Pf: Assume towards a contradiction that M_{0} is the largest integer.
Then since $M_{0}<M_{0}+1$ ard $M_{0}+1 \in \mathbb{Z}$, we have entradicted the daf'n of M_{0}^{\prime}.
Thus, no largest integer exists.
Well Ordering Principle: (Axiom)
Every subset of the natural numbers that is nonempty contains a least element.

Example: Let $n \in \mathbb{Z}$ such that n^{2} is even. Show that n is even.

Direct Proof: As n^{2} is even, there exists a $k \in \mathbb{Z}$ such that

$$
n \cdot n=n^{2}=2 k .
$$

Since the product of two integers is even if and only if at least one of the integers is even, we conclude that n is even.

Proof By Contradiction: Suppose that n^{2} is even. Assume towards a contradiction that n is odd. Then there exists a $k \in \mathbb{Z}$ such that $n=2 k+1$. Now,

$$
n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1
$$

Hence, n^{2} is odd, a contradiction since we assumed in the statement that n^{2} is even. Thus n is even.

Example: Prove that $\sqrt{2}$ is irrational.
Proof: Assume towards a contradiction that $\sqrt{2}=\frac{a}{b} \in \mathbb{Q}$ with $a, b \neq 0$ and $a, b \in \mathbb{N}$ (Think: Why is it okay to use \mathbb{N} instead of \mathbb{Z} ?).

Proof 1 (Well Ordering Principle): Let

$$
S=\{n \in \mathbb{N}: n \sqrt{2} \in \mathbb{N}\}
$$

Since $b \in S$, we have that S is nonempty. By the Well Ordering Principle, there must be a least element of S, say k. Now, notice that

$$
k(\sqrt{2}-1)=k \sqrt{2}-k \in \mathbb{N}
$$

(positive since $\sqrt{2}>\sqrt{1}=1$). Further,

$$
k(\sqrt{2}-1) \sqrt{2}=2 k-k \sqrt{2} \in \mathbb{N}
$$

and so $k(\sqrt{2}-1) \in S$. However, $k(\sqrt{2}-1)<k$ which contradicts the definition of k. Thus, $\sqrt{2}$ is not rational.

Proof 2 (Infinite Descent): Isolating from $\sqrt{2}=\frac{a}{b}$, we see that $2 b^{2}=a^{2}$. Thus a^{2} is even hence a is even. Write $a=2 k$ for some integer k. Then $2 b^{2}=a^{2}=(2 k)^{2}=4 k^{2}$. Hence $b^{2}=2 k^{2}$ and so b is even. Write $b=2 \ell$ for some integer ℓ. Then repeating the same argument shows that k is even. So $a=2 k=4 m$ for some integer m. Since we can repeat this argument indefinitely and no integer has infinitely many factors of 2 , we will (eventually) reach a contradiction. Thus, $\sqrt{2}$ is not rational.

Proof 3 (Simplified proof 2): Assume further that a and b share no common factor (otherwise simplify the fraction first). Then $2 b^{2}=a^{2}$. Hence a is even. Write $a=2 k$ for some integer k. Then $2 b^{2}=a^{2}=(2 k)^{2}=4 k^{2}$ and canceling a 2 shows that $b^{2}=2 k^{2}$. Thus b^{2} is even and hence b is even. However, then a and b share a common factor, a contradiction.

Q1. I enjoy trying to discover and write MATH 135 proofs.
A) Strongly disagree
B) Disagree
C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q2. When I have difficulties with MATH 135 proofs, I know I can handle them.
A) Strongly disagree
B) Disagree
C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q3. Let $n \in \mathbb{Z}$. Consider the following implication.

The contrapositive of this implication is
A) If $n=1$, then $(\forall x \in \mathbb{R}, x \leq 0 \vee x+1>n)$.
B) If $n=1$, then $(\exists x \in \mathbb{R}, x>0 \wedge x+1 \leq n)$.
©. If $n \neq 1$, then $(\exists x \in \mathbb{R}, x \geq 0 \wedge x+1<n)$.
D. If $n \neq 1$, then $(\forall x \in \mathbb{R}, x \leq 0 \vee x+1>n)$.
E) None of the above.

Injections \& Surjection.
Deft: Let S\&T be sets. A function $f: S \rightarrow T$ is said to be (i) Injective (or aneto one or 1:1) if $\forall x, y \in S \quad f(x)=f(y) \Rightarrow x=y$. Ex: S 111 11
Not
ort

(ii) Surjective (or onto) iff $\forall y \in T \quad \exists x \in S$ s.t. $f(x)=y$.
Ex: Prove $f: \mathbb{R} \xrightarrow{d^{+0}} \mathbb{R}^{L^{-*}+(x)}$ is not infective

$$
x \stackrel{r}{\text { maps to }}^{x^{2}}
$$

䢒
Note that

$$
f(-1)=(-1)^{2}=1=(1)^{2}=f(1) \text { BUT }
$$ $-1 \neq 1$. Thus, $f_{\text {is not 1:1. }}$.

Ex: Prove that $\begin{aligned} & f: \mathbb{R} \rightarrow \mathbb{R} \text { is } 1: 1 \text {. } \\ & x \rightarrow 2 x^{3} x\end{aligned}$

$$
x \leftrightarrow 2 x^{3}+1
$$

PF: Let $x, y \in R$ s.t. $f(x)=f(y)$. Then

$$
\begin{gathered}
2 x^{3}+1=2 y^{3}+1 \\
x^{3}=y^{3} \\
\sqrt[3]{x^{3}}=\sqrt[3]{y^{3}}
\end{gathered}
$$

$x=4$. Thus, fisingective
Ex: Prove that $f: \mathbb{R} \rightarrow(-\infty, 1)$ is onto

$$
x \mid>1-e^{-x}
$$

Need to show every $y \in(-\infty, 1)$ has some $x \in \mathbb{R}$ with $f(x)=y$.
IF: Take $x=-\ln (1-y)$ for any $y \in(-\infty, 1)$.
Then

$$
\begin{aligned}
f(x) & =1-e^{-x}=1-e^{-(-\ln (1-y))} \\
& =1-e^{\ln (1-y)}=1-(1-y) \\
& =y . \quad \therefore \text { bis onto }
\end{aligned}
$$

Unique ness: \exists ! "There exists a unique.
To prove uniqueness, either
(i) Assume $\exists x, y \in S$ s.t. $P(x) \wedge P(y)$ is true and show $x=y$. statement (ii) Show $\exists x \in S$ s.t. $P(x)$ is true. Then use contradiction to show that if $\exists x, y \in S$ distinct s.t. $P(x) \wedge P(y)$ is true, then derive a contradiction.
Ex: Suppose $x \in \mathbb{R}-\mathbb{Z}$ and $m \in \mathbb{Z}$ s.t. $x<m<x+1$. Show m is unique.

Pf: Assume towards a contradiction that $\exists m, n \in \mathbb{Z}$ distinct s.t.

$$
x<m<x+1 \text { and } x<n<x+1 \text {. }
$$

Now, $\quad \begin{aligned} & \stackrel{f}{n}_{n}^{n} m_{x+1}^{m} \\ & O<m-n<1 \quad B U T\end{aligned}$ $m-n \in \mathbb{Z}$. \#. Thus, mis unique. B.
Division Algorithm (Grade schod

$$
\begin{array}{ll}
a 1=7\left(\frac{q}{7}\right)+2 & \quad \text { in ins } \\
-35=6(-6)+1
\end{array} \quad
$$

The: Let $a \in \mathbb{Z}, b \in \mathbb{N}$. Then \exists ! $q, r \in \mathbb{Z}$ s.t. $a=b q+r$ where $0 \leq n<b$.

Pf'. Existace: Use Well Ordering Principle on $S=\left\{a-b_{q}: a-b_{q} \geq 0 \wedge q \in Z!\right.$

Division Algorithm Let $a \in \mathbb{Z}$ and $b \in \mathbb{N}$. Then $\exists!q, r, \in$ \mathbb{Z} such that $a=q b+r$ where $0 \leq r<b$.

Proof of the division algorithm(UNQQENESS):
Suppose that $a=q_{1} b+r_{1}$ with $0 \leq r_{1}<b$. Also, suppose that $a=q_{2} b+r_{2}$ with $0 \leq r_{2}<b$ and $r_{1} \neq r_{2}$. Without WLOC loss of generality, we can assume $r_{1}<r_{2}$.
(if $r_{1} \neq r_{2}$ then one is bigger!.)
Then $0<r_{2}-r_{1}<b$ and $\left(q_{1}-q_{2}\right) b=r_{2}-r_{1}$. (Take
 difference of $a^{\prime} s$).
Hence $b \mid\left(r_{2}-r_{1}\right)$. By Bounds By Divisibility, $b \leq r_{2}-r_{1}$ which contradicts the fact that $r_{2}-r_{1}<b$. $\mathbb{F} \boldsymbol{r}_{\boldsymbol{n}}|\vec{b}|$ $\because b \in \mathbb{N}$.

Therefore, the assumption that $r_{1} \neq r_{2}$ is false and in fact $r_{1}=r_{2}$. But then $\left(q_{1}-q_{2}\right) b=r_{2}-r_{1}$ implies $q_{1}=q_{2}$.

$$
=0 .
$$

$$
\begin{aligned}
f(\mathbb{Z}) & =\{y \in \mathbb{Z}: f(x)=y \text { for some } x \in \mathbb{Z}\} \\
& =\{f(x): x \in \mathbb{Z}\}
\end{aligned}
$$

$$
\begin{array}{ll}
f: \mathbb{Z} \rightarrow \mathbb{Z} \\
f(n)=\max \{1001, n\}=\left\{\begin{array}{ll}
1001 & n \leqslant 1001 \\
n & n \geqslant 1001
\end{array}, \begin{array}{ll}
& n \geqslant 100
\end{array}\right)
\end{array}
$$

$0 c+2 n d .15$
is f injective?
is f surjective?

$$
\begin{aligned}
& \forall m, n \in \mathbb{Z}, m \neq n \Rightarrow f(m) \neq f(n) \\
& \forall m, n \in \mathbb{Z}, f(m)=f(n)=m=n
\end{aligned}
$$

No!

$$
\begin{gathered}
f(1)=f(2)=1001 \\
1 \neq 2,1,2 \in \mathbb{Z}
\end{gathered}
$$

$\forall y \in \mathbb{Z}, \quad \exists x \in \mathbb{Z}$, s.t $f(x)=y$
NO I. Egg. $1000 \in \mathbb{Z}$
But $f(n) \neq 1000$ For coy $n \in \mathbb{Z}$
Let $n \in \mathbb{Z}$, either $n \geqslant 1001$ oR $n \leqslant 1001$: If $n \leqslant 1001$, then $f(n)=1001 \neq 1000$.
If $n \geqslant 1001$, Then $f(n)=n \geqslant 1001>1000$.
E.g

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R} \\
& f(x)=x^{2} \\
& f(-1)=f(1)=1 \quad \because-1 \neq 1,-1,1 \in \mathbb{R} .
\end{aligned}
$$

not infective
not surgective: $\quad-1 \neq f(x)=x^{2}$ for any $x \in \mathbb{R}$.

$$
x^{2} \geq 0>-1
$$

continued: Let $x_{1}, x_{2} \in R \geqslant 0$. suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$
so $\quad x_{1}^{2}=x_{2}$

$$
\begin{aligned}
& x_{1}^{2}-x_{2}^{2}=0 \\
& \left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}+x_{2}=0^{6} \text { or } x_{1}-x_{2}=0 \\
& x_{1}=-x_{2} \text { or } x_{1}=x_{2}
\end{aligned}
$$

$\because x_{2} \geqslant 0, \quad x_{1}<0$, not part of domain

$$
\therefore \quad x_{1}=x_{2} .
$$

3. Show that if $r \in R-\mathbb{Q}$ then $\frac{1}{r} \in \mathbb{R}-\mathbb{Q}$
prove by contrapositive

$$
\frac{1}{r} \in Q \Rightarrow r \in Q
$$

Suppose $\frac{1}{r}$ is rational.
Then $\exists a, b \in \mathbb{Z}, a, b \neq 0$ such that $\frac{1}{r}=\frac{a}{b}$.
Then $\frac{r}{1}=\frac{b}{a} \in \mathbb{Q}$

Let $x \in \mathbb{R}$, show that $x^{2}-x>0 \Longleftrightarrow \Longrightarrow \Phi[0,1]$.
2.

$$
\begin{aligned}
& P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P \\
& Q \Rightarrow P \equiv \neg P \Rightarrow \neg Q \\
& x^{2}-x \leqslant 0 \Leftrightarrow P \Rightarrow x \in[0,1]
\end{aligned}
$$

5. Contrapositive:

IF alc then either a ib or $a \times b+c$.

$$
\begin{aligned}
& \equiv P \Rightarrow(Q \cup R) \\
& (P \wedge \neg Q) \Rightarrow R
\end{aligned}
$$

suppose $a \mid c$, suppose also $a \mid b+c$
We want to conclude that $a \mid b$.
Since arc, and $a l b+c, \quad a l(b+c-c)=b$
By divisibility of integer combination.

$$
P \Rightarrow(Q \wedge R) \equiv(P \wedge \neg Q) \Rightarrow R
$$

5. prove by contradiction:
suppose $a+b$ and $a l b+c$
Want: $a \not \subset c$
assume towards contradiction, $a \mid c$. $a \mid b+c$ \& $a \mid c$, so $a \mid b+c-c=b$ contradiction.
6. Show that the sum of the first n odd positive integer equals n^{2},

$$
\begin{gathered}
1+2+3 \cdots+100 \\
1+3+5 \cdots+2 n-1 \\
2 n-1+2 n-3+2 n-5 \cdots+1 \\
2 n 2 n \cdots 2 n \\
2 n \cdots \cdot n_{b_{m}}=2 n^{2}
\end{gathered}
$$

sum k product notation

$$
\begin{aligned}
& \sum_{1 \leq i \leq n}=\sum_{i=1}^{n} x_{i}=x_{1}+x_{2} \ldots+x_{n} \\
& \sum_{S}=\operatorname{sim} \text { of elements of } S \\
& \sum_{x \in \phi}^{\sum}=0, \text { convention } \quad \prod_{x \in \phi} x=1 \\
& 2 k \\
& \sum_{j=k}^{2} \frac{1}{j}=\frac{1}{k}+\frac{1}{k+1}+\cdots \frac{1}{2 k} \\
& \sum_{j=2}^{j}=0 \rightarrow \pi / j=1 \\
& p_{j=2}^{\pi / \pi e}\left(1-\frac{1}{p^{2}}\right)=\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{J^{2}}\right)
\end{aligned}
$$

Factorial:

$$
n!=\prod_{j=1}^{n} j \quad n \in \mathbb{N} \cup\{0\}
$$

$$
01=1
$$

$$
1!=1
$$

$$
(n+1)!=(n+1) n!
$$

$$
2!=2 \times 1
$$

$$
3!=3 \times 2 \times 1
$$

Challenge: Find $n \in \mathbb{N}$ s.t. $(1!+2!\cdots+n!) \mid(n+1)!$
principle of mathe matical induction (form 1)
Recall sum E product notation from Friday:

$$
\begin{aligned}
& \sum_{i=1}^{n} i^{3}=1^{3}+2^{3}+\cdots+n^{3} \\
& \text { sn } \\
& \prod_{j=n} \frac{1}{j-1}=\frac{1}{n=1} \cdot \frac{1}{n+1-1} \cdots \frac{1}{2 n-1} \ldots+c
\end{aligned}
$$

"Factorial" $0!=1, n!=n k(n-1)!=n(n-1) \ldots 2(1)$

$$
\{n \geqslant 1\}
$$

A sequence $P(1), P(2) \ldots$ are true if
(i) $\Rightarrow P(1)$ is true
(ii) L For any $k \in \mathbb{N}$, if $D(K)$ is true, then $p(k+1)$ is true.
(P)
is true by (i)
$\left(P_{1}\right) \Rightarrow P(2)$ is true by (il) $\omega /(k=1)$
$\therefore P(z)$

$$
P(2) \Longrightarrow P(3)
$$

$\therefore P(3)$
is true
by (ii) w/ $(k=2)$
is true.
In practice, induction argument proceeds as follows:
1 base case: verify $P(1)$ is true
2.. Inductive hypothes k; Let $k \in \mathbb{N}$ be $A R$ Bitrary, Assume $P(K)$ is tine
3. ind conclusion deduce $P(k+1)$ is true
\therefore by pom $1 \quad P(n)$ holds $\forall n \in \mathbb{N}$.

1. $\forall n \in \mathbb{N}, \sum_{i=1}^{n} i=\frac{1}{2} n(n+1)$
2. Hue \mathbb{N},

$$
\sum_{j=1}^{n} j^{2}=\frac{1}{6} n(n+1)(2 n+1) \cdots(P(n))
$$

Base case:
For $n=1$, Have

$$
\sum_{j=1}^{1} j^{2}=1^{2}=1=\frac{1}{6}(1)(1+1)(2(1)+1) \quad \therefore \text { Poi) }
$$

IH: Let $\%$ be arbatrary
Assume $P(x)$ holds I.E.

$$
\sum_{j=1}^{c} j^{2}=\frac{1}{6} k(k+1)(2 k+1) \ldots(1+1)
$$

ind conclusion:
we wont to show $P(k+1)$ holds, ie -

$$
\sum_{j=1}^{k+1} j^{2}=\frac{1}{6}(k+1)(k+2)(2 k+3) k
$$

Now,

$$
\begin{aligned}
\sum_{j=1}^{w, i} j^{2} & =\sum_{j=1}^{k} j^{2}+(k+1)^{2} \\
& =\frac{1}{6} k(k+1)(2 k+1)+(k+1)^{2} \\
& =(k+1)\left[\frac{1}{6} k(2 k+1)+(k+1)\right] \\
& =\frac{1}{6}(k+1)[k(2 k+1)+b(k+1)] \\
& =\frac{1}{6}(k+1)\left[2 k^{2}+k+6 k+6\right] \\
& =\frac{1}{6}(k+1)(k+2)(2 k+3) \downarrow
\end{aligned}
$$

By inductive hypothesis
principle of mathematical induction
ittence $P(k+1)$. holds
By pom $1 \quad p(n)$ holds $\forall n \in \mathbb{N}$
$3 \forall n \in \mathbb{N}$

$$
\prod_{j=2}^{n \in \mathbb{N}}\left(1-\frac{1}{j^{2}}\right)=\frac{n+1}{2 n} \quad(P(n))
$$

Base case, For $n=1$, have

$$
\prod_{j=2}^{1}\left(1-\frac{1}{j^{2}}\right)=1=\frac{1+1}{2 \times 1}
$$

so p(1) holds.
IH Let $k \in \mathbb{N}$ be Arbitrary, assume $p(k)$ holds. IE

$$
\begin{equation*}
\prod_{j=2}^{k}\left(1-\frac{1}{j^{2}}\right)=\frac{k+1}{2 k} \tag{IH}
\end{equation*}
$$

Induction conclusion: wart to show $p(k+1)$ holds. I. E

$$
\prod_{j=2}^{k+1}\left(1-\frac{1}{j}\right)=\frac{k+2}{2(k+1)}
$$

Non

$$
\begin{aligned}
\frac{k+1}{\prod 1}\left(1-\frac{1}{j^{2}}\right) & =\left[\prod_{j=2}^{k}\left(1-\frac{1}{j^{2}}\right)\right] \cdot\left[1-\frac{1}{(k+1)^{2}}\right] \quad \begin{array}{l}
\text { wow th } \\
\text { to be same } \\
\text { the }
\end{array} \\
& =\left(\frac{11 \pm+1}{2 k} \times\left[1-\frac{1}{(k+)^{2}}\right] \quad\right. \text { BU EH }
\end{aligned}
$$

$$
\frac{k+i}{2(k+1)}
$$

\therefore Hence $P(x+1)$ holds.
4. $\forall n \in \mathbb{N}, n \geqslant 4$,

$$
n!>2^{n}
$$

$P(n)$
Base case: For $n=4$,

$$
\begin{array}{ll}
4! & =24 \\
2^{4}=16 & 24>16
\end{array}
$$

$\therefore P(4)$ holds
IH Let $k \in \mathbb{N}, k \geqslant 4$. Assume $P(k)$ holds.

$$
I . E, k!>2^{k} \cdots(I H)
$$

Ind Conc we want to show $P(k+1)$ holds, IE.
Now,

$$
\left.\begin{array}{rl}
(k+1)! & =(k+1) k! \\
V & d \\
2^{k} & \\
b & \geqslant c \\
a b \geqslant a c
\end{array}\right]
$$

Since $k+1 \geqslant 2$

$$
\therefore(k+1)!>2^{k+1}
$$

(In fart, $k+1 \geqslant 5$)

POMI "Take 2"
A sequence $P(1), \ldots$ of statement are all tine if
(i) $P(1) \cap P(2)$ is true.
(ii) For $k \in \mathbb{N}$, if $P(k) \& P(k+1)$ are true, then $P(k+2)$ is true.
6. Let $a_{1}=2, a_{n-1}=3$, $\quad a_{n+2}=3 a_{n+1}-2 a_{n} \quad \forall n \in \mathbb{N}$ prove: $a_{n}=2^{n-1}+1 \quad(P(n))$
$\forall n \in \mathbb{N}$
Base cases: For $n=1$

$$
a_{1}=2=2^{1-1}+1
$$

For © $n=2$

$$
a_{2}=3=2^{2-1}+1
$$

So $P(1)^{k} \odot P(2)$ hold.
IH: Let $k \in \mathbb{N}$. Assume $P(k) \& P(k+1)$ hold.

$$
\text { I.E. } a_{k}=2^{k-1}+1 \text { \& } a_{k+1}=2^{k}+1 \ldots \text { (IN) }
$$

Ind Condusion we want to show $P(k+2)$ holds, IE.

$$
a_{k+2}=2^{k+1}+1
$$

Now,

$$
\begin{aligned}
a_{k+2} & =30_{k+1}-2 a_{k} \quad \text { by definition } \\
& =3\left(a^{B}+1\right)-2\left(2^{k-1}+1\right) \quad B_{4}(I H) \\
& =3 \times 2^{k}+3-2 \times 2^{k-1}-2 \\
& =3 \times 2^{k}-2 \cdot 2^{k-1}-1+1 \\
& =2^{k}(3-1)+1 \quad 2 \cdot 2^{k-1}=2^{k} \\
& =2^{k} \cdot 2+1 \\
& =2^{k+1}+1
\end{aligned}
$$

Ex: Prove $P(n): 612 n^{3}+3 n^{2}+n \quad \forall n \in \mathbb{N}$. Base Case: $n=1$

$$
2 n^{3}+3 n^{2}+n=2+3+1=6 \text { and } 616 \Omega .
$$

Induction Hypo thesis (IH):
Assume $P(k)$ is true for some $k \in \mathbb{N}$.
ie. $\exists l \in \mathbb{Z}$ s.t. $6 l=2 k^{3}+3 k^{2}+k$.
Inductive Step: Prove $P(k+1)$ is true.

$$
\begin{aligned}
& 2(k+1)^{3}+3(k+1)^{2}+(k+1) \\
&=2 k^{3}+6 k^{2}+6 k+2+3 k^{2}+6 k+3+k+1 \\
&=2 k^{3}+3 k^{2}+k+6 k^{2}+12 k+6 \\
&=14 \\
&=6 l+6 k^{2}+12 k+6 \\
&\left.\in \mathbb{Z}+k^{2}+2 k+1\right) \therefore 612(k+1)^{3}+3(k+1)^{2}+1(k+1) \\
& \therefore 9(k+1) \text { istre }
\end{aligned}
$$

So, by $P O M I, P(n)$ is true $\operatorname{tn}_{n} \in \mathbb{N}_{\text {, }}$

Let $\left\{x_{n}\right\}$ be a sequence defined by $x_{1}=4, x_{2}=68$ and

$$
x_{m}=2 x_{m-1}+15 x_{m-2} \quad \text { for all } m \geq 3
$$

Prove that $x_{n}=2(-3)^{n}+10 \cdot 5^{n-1}$ for $n \geq 1$.
Solution: We proceed by induction.
Base Case: For $n=1$, we have

$$
x_{1}=4=2(-3)^{1}+10 \cdot 5^{0}=2(-3)^{n}+10 \cdot 5^{n-1}
$$

Inductive Hypothesis: Assume that

$$
x_{k}=2(-3)^{k}+10 \cdot 5^{k-1}
$$

is true for some $k \in \mathbb{N}$.
Inductive Step: Now, for $k+1$,

$$
\begin{aligned}
x_{k+1} & =2 x_{k}+15 x_{k-1} \\
& =2\left(2(-3)^{k}+10 \cdot 5^{k-1}\right)+15 x_{k-1} \\
& =4(-3)^{k}+20 \cdot 5^{k-1}+15 x_{k-1} \\
& =\ldots ?
\end{aligned}
$$

Principle of Strong Induction. Let $P(n)$ be a statement. If
(i) $P(1), P(2), \ldots, P(b)$ are true for some $b \in \mathbb{N}$
(ii) $P(1) \wedge P(2) \wedge \ldots A(k)$ true $\Rightarrow P(k+1)$ is true $\forall k \in \mathbb{N}$
Then $P(n)$ is true $\forall n \in N$.
Q: Let $\left\{x_{-}\right\}$be a sequence $s . t$.
$x_{1}=4, x_{2}=68$ and

$$
x_{m}=2 x_{m-1}+15 x_{m-2} \quad \forall m \geq 3 .
$$

$$
\text { Prove } P^{P N}: x_{n}=2(-3)^{n}+10 \cdot 5^{n-1} \quad \forall n \geq 1 \text {. }
$$

Pf: Base Cases.

$$
\begin{aligned}
& n=1 \quad x_{1}=4=2(-3)^{1}+10 \cdot 5^{1-1}=2(-3)^{n}+10 \cdot 5^{n} \\
& n=2 \quad x_{2}=68 \quad \& \quad 2(-3)^{2}+10 \cdot 5^{2-1}=18+50=68 .
\end{aligned}
$$

IH: $P(i)$ is true for ell $i \in\{1,2, \ldots k\}$ forsome $k \in N(k \geq 2)$.

Istep: for $K \in N$ with $K \geq 2$,

$$
\begin{aligned}
x_{k+1} & =2 x_{k}+15 x_{k-1} \quad(\because k+1 \geq 3) \\
& =2\left(2(-3)^{k}+10 \cdot 5^{k-1}\right)+15\left(2(-3)^{k-1}+10 \cdot 5^{k-2}\right. \\
& =4(-3)^{k}+20 \cdot 5^{k-1}+30(-3)^{k-1}+150 \cdot 5^{k-1} \\
& =(-3)^{k-1}(-12+30)+5^{k-2}(100+150) \\
& =(-3)^{k-1}(18)+5^{k-2}(250) \\
& =(-3)^{k-1}\left(2 \cdot(-3)^{2}\right)+5^{k-2}\left(5^{2} \cdot 10\right) \\
& =2 \cdot(-3)^{k+1}+10 \cdot 5^{k}
\end{aligned}
$$

Thus $P(k+1)$ is true.
Hence $P(n)$ is true $\forall n \in \mathbb{N}$ by POSI. N

Suppose $x_{1}=3, x_{2}=5$ and

$$
x_{m}=3 x_{m-1}+2 x_{m-2} \quad \forall m \geqslant 3 .
$$

Prove $x_{n}<4^{n}$. $\forall n \in \mathbb{N}$.
Pf: Let $P(n)$ be the given statement. we prove $P(n)$ by strong induction.
Base cases:

$$
n=1 \quad x_{1}=3<4 \quad n=2 \quad x_{2}=5<16=4
$$

IH: Assume $P(i)$ is the oral $i \in\{!2, \ldots k\}$ for some $k \in \mathbb{N}(k \geq 2)$.
I. Step: for $k \geq 2$,

$$
\begin{aligned}
x_{k+1} & =3 x_{k}+2 x_{k-1} \\
I H & <3 \cdot 4^{k}+2 \cdot 4^{k-1} \\
& =4^{k-1}(3 \cdot 4+2)
\end{aligned}
$$

$$
\begin{aligned}
& =4^{k-1}(14) \\
& <4^{k-1} \cdot 16 \\
& =4^{k+1} .
\end{aligned}
$$

$\therefore P(k+1)$ is true. Thus, $P(n)$ is true $\forall n \in N .1$
$\mathbb{2}$
Fibonacci Sequence
Define a sequence

$$
f_{1}=1 \quad f_{2}=1 \quad \text { and }
$$

$$
f_{n}=f_{n-1}+f_{n-2} \quad \forall n \geq 3 .
$$

SQ $f_{3}=2, \quad f_{4}=3, f_{5}=5, \ldots$
Tool-Lateralus

Fibonacci sequence: $f_{1}=1, f_{2}=1$ and $f_{n}=f_{n-1}+f_{n-2}$ for all $n \geq 3$.

1. Prove that $\sum_{r=1}^{n} f_{r}^{2}=f_{n} f_{n+1}$ for all $n \in \mathbb{N}$.

$$
L=f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}
$$

PE: Use Pour
Base Case : $n=14182 \sum_{r=1}^{n} f_{r}^{2}=\sum_{r=1}^{1} f_{r}^{2}=f_{1}^{2}=1^{2}=1$

$$
\begin{aligned}
& \text { RMS }=f_{n} f_{n+1}=f_{1} f_{2}=1 \cdot 1= \\
& 4+1 S=R+1 S .
\end{aligned}
$$

IHI: Assume $\sum_{r=1}^{k} f_{r}^{2}=f_{k} f_{k+1}$ forsome $k \in i k$.
InStep. : WANT $\sum_{r=1}^{k_{+1}} f_{r}^{2}=f_{k+1} f_{k+2}$.

$$
\begin{aligned}
\sum_{r=1}^{k+1} f_{r}^{2}=\sum_{r=1}^{k} f_{r}^{2}+f_{k+1}^{2}=f_{k} f_{k+1}+f_{k+1}^{2} & =f_{k+1}\left(f_{k}+f_{k+1}\right. \\
& =f_{k+1} f_{k+2}
\end{aligned}
$$

$$
\text { Thus, } \sum_{r=1}^{k_{+1}} f_{r}^{2}=f_{k+1} f_{k+2} \text {. }
$$

Hence $\sum_{i=1}^{n} f_{r}^{2}=f_{n} f_{n+1}$ foal $n \in \mathbb{N}$ by ${ }^{P O}$
2. Prove that $f_{n}<\left(\frac{7}{4}\right)^{n}$ for all $n \in \mathbb{N}$ Exercise (see video).

Closed Form: "Easy to put into a calculator" Ex: Find a closed form expression for

$$
P_{n}=\prod_{r=2}\left(1-\frac{1}{r^{2}}\right) \quad(n \geq 2)
$$

and prove true by induction.
Whew: $n=2 \quad P_{2}=\frac{2}{\prod_{r \rightarrow 2}}\left(1-\frac{1}{r^{2}}\right)=\left(1-\frac{1}{2^{2}}\right)=1-\frac{1}{4}=\frac{3}{4}$
$\infty=3 P_{3}=\prod_{i \rightarrow 2}^{3}\left(1-\frac{1}{x^{2}}\right)=\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)=\frac{3}{4} \cdot \frac{8}{9}=\frac{2}{3}=\frac{2}{6}$
$n=4 P_{4}=\prod_{i=2}^{\frac{4}{n}}\left(1-\frac{1}{r^{2}}\right)=\frac{\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right)}{\left.\frac{15}{15}\right)}$
$=\frac{2}{3} \cdot \frac{15}{16}=\frac{5}{8}$
Claim: $\quad n=5 \quad P_{5}=\frac{6}{10}$. Claim: $P_{n}=\frac{n+1}{2 n}$

Q1. I enjoy trying to discover and write MATH 135 proofs.
A) Strongly disagree
B) Disagree

CODE

 $B C$C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q2. When I have difficulties with MATH 135 proofs, I know I can handle them.
A) Strongly disagree
B) Disagree
C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q3. A statement $P(n)$ is proved true for all $n \in \mathbb{N}$ by induction.

In this proof, for some natural number k, we might:
A) Prove $P(1)$. Prove $P(k)$. Prove $P(k+1)$.
B) Assume $P(1)$. Prove $P(k)$. Prove $P(k+1)$.
C) Prove $P(1)$. Assume $P(k)$. Prove $P(k+1)$.
D) Prove $P(1)$. Assume $P(k)$. Assume $P(k+1)$.
E) Assume $P(1)$. Prove $P(k)$. Assume $P(k+1)$.

Find a closed form expression for $\prod_{r=2}^{n}\left(1-\frac{1}{r^{2}}\right)$.
Solution: Last class, we hypothesized that the product above is equal to $\frac{n+1}{2 n}$. Let $P(n)$ be the statement that

$$
\prod_{r=2}^{n}\left(1-\frac{1}{r^{2}}\right)=\frac{n+1}{2 n}
$$

We prove $P(n)$ is true for all values of $n=2 b$ induction.
Base Case: $n=2$

$$
\prod_{r=2}^{2}\left(1-\frac{1}{r_{2}}\right)=1-\frac{1}{2^{2}}=\frac{3}{4}=\frac{2+1}{2(2)}
$$

IN: $P(k)$ is the for some $k \geq 2$, $k \in \mathbb{N}$.

$$
\prod_{r=2}^{\pi}\left(1-\frac{1}{r^{2}}\right)=\frac{k+1}{2 k}
$$

IStep: LUANT $\prod_{r=2}^{k+1}\left(1-\frac{1}{r^{2}}\right)=\frac{(k+1)+1}{2(k+1)}$

$$
\begin{aligned}
\prod_{r=2}^{k+1}\left(1-\frac{1}{r^{2}}\right) & =\prod_{r=2}^{r=2}\left(1-\frac{1}{r^{2}}\right) \cdot\left(1-\frac{1}{(k+1)^{2}}\right) \\
I H & \frac{k+1}{2 k} \cdot \frac{(k+1)^{2}-1}{(k+1)^{2}} \\
& =\frac{k^{2}+2 k+1+1}{9 K(k+1)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x(k+2)}{2 k(k+1)} \\
& =\frac{k+2}{2(k+1)}=R+1 s .
\end{aligned}
$$

$\therefore P(k+1)$ is true.
$\therefore P(n)$ is true $\forall n \in \mathbb{N}$ $B_{n} \geq 2$ by POMI.

Examine the following induction "proofs". Find the mistake
Question: For all $n \in \mathbb{N}, n>n+1$.
Proof: Let $P(n)$ be the statement: $n>n+1$. Assume that $P(k)$ is true for some integer $k \geq 1$. That is, $k>k+1$ for some integer $k \geq 1$. We must show that $P(k+1)$ is true, that is, $k+1>k+2$. But this follows immediately by adding one to both sides of $k>k+1$. Since the result is true for $n=k+1$, it holds for all n by the Principle of Mathematical Induction.

NO BASE CASE.

Question: All horses have the same colour. (Cohen 1961).

Proof:

Base Case: If there is only one horse, there is only one colour
Inductive hypothesis and step: Assume the inducton hypothesis that within any set of n horses for any $n \in$ \mathbb{N}, there is only one colour. Now look at any set of $n+1$ horses. Number them: $1,2,3, \ldots, n, n+1$. Consider the sets $\{1,2,3, \ldots, n\}$ and $\{2,3,4, \ldots, n+1\}$. Each is a set of only n horses, therefore by the induction hypothesis, there is only one colour. But the two sets overlap, so there must be only one coloramong all $n+1$ horses. FALSE when $n=1$!

Fundamental Theorem of Arithmetic Every integer $n>1$ con be factored uniquely "as a product of primes up to reordering.
Pf: Existence
Assume focurds a contradiction that not every number con be factored intoprime Let n be the smallest such number (Well ordering Principle). Either nisprime \# OR $n=a b$ with $1<a, b<n$. However, since $a, b<n$, $a \& b c a n$ becuritten as a product of primes. Thus, $n=a b$ is a product of primes, contradicting the $d_{e} f^{\prime}$? of n.

Uniqueness
Assume towards a contradiction that $\exists n>1, n \in \mathbb{N}$ s.t.

$$
n=p_{1} p_{2} \cdots p_{k}=q_{1} q_{2} \cdots q_{m}
$$

$B_{y} d_{f} f^{\prime} n p_{1} \ln =q_{1} \cdots q_{m}$. Thus, $p_{1} q_{j}$ for some $1 \leq j \leq m$. Thus $p_{1}=q_{j} \cdot \mid U L O G$ assume $j=1$. So $p_{1}=q_{1}$, Cotherwise rearing. Then, $p_{2} \ldots p_{r}=q_{2} \cdots q_{m}$. Take n to be minimal (well ordering Principle) As $p_{2} \cdots p_{k}<n$ and $q_{2} \cdots q_{m}<n$,

Thus, $K=m$ and $p_{i}=q_{j}$ in some order Thus, $p_{2} \cdots p_{K}=q_{2} \cdots q_{k}$ lupto reordering)

$$
p_{1} p_{2} \cdots p_{k}=p_{1} q_{2} \cdots q_{k}=q_{1} q_{2} \cdots q_{k} .
$$

This contradicts the existence of n.

Q: Exactly $m n^{-1}$ breaks are always needed to break a $m \times n$ chocolate rectangle into unit squares.
Pf: Fix $m \in \mathbb{N}$. Useinductiononn.
Base lase $n=1$ \square

Theorem (Euclid) There exists infinitely many primes.
Pf:. Assume towards a contradiction that \exists finitely many primes

$$
p_{1}, p_{2}, \ldots p_{n} .
$$

Consider $N=\prod_{i=1}^{n} P_{i}+1$. By FTArithmetic, N can be witter as a product of primes. In particular. \exists a prime p / N. So $p=p_{i}$ for some $1 \leq i \leq n$. As p| NA $p \mid \prod_{i=1}^{n} p i$, we conduce位by $D K,\left.p\right|^{*} N-\sum_{i=1}^{i=1} P_{i}=1$ \#.

Gap in FT Anithmetr
Need'. pl $\prod_{i=1}^{k} n_{i}$ for $n_{1}, n_{2}, \ldots, n_{k} \in \mathbb{Z}$ then $p \mid n_{i}$ for some $\mid \leq i \leq k$.
To prove this, need Euclid's Lemma p is a prime a plab $\rightarrow v$ fla $v p l b$.
To prove this we need Bézout's Lemma and gods.
//GCD (Greatest Common Divisor)
Divisors of 84 .

$$
\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 7, \pm 12, \pm 14, \pm 21, \pm 28, \pm 42, \pm 8
$$

Divisors of 120 :

$$
\begin{aligned}
& \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6 \pm 8, \pm 10, \pm 12, \pm 15, \pm 20, \pm 24 . \\
& \pm 30, \pm 40, \pm 60, \pm 120 .
\end{aligned}
$$

So the greatest common divisor of 84 and 120 is 12 .

Def'n: The greatest common divisor of integers a and b with $a \neq 0$ or $b \neq 0$ is an integer $d>0$ such that
(i) Ila adlb
(ii) If cha 1 alb than $c \leqslant d$.

We write $d=\operatorname{gcd}(a, b)$.
Notes!

$$
\operatorname{gcd}(a, a)=|a|=\operatorname{gcd}(a, 0)
$$

- Define $\operatorname{gcd}(0,0)=0$. Note

$$
\operatorname{gcd}(a, b)=0 \Leftrightarrow a=b=0
$$

- Ex: $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)$

So $d l 3 a+b \wedge d l a$. Then

$$
\text { DIE } \Rightarrow d \mid(3 a+b)-3 a=b
$$

Since e is the maximal divisor of a and $b, d \leq e$.
So ela and ell. Then DIT $\Rightarrow e \mid 3 a+b$. Since d Is maximal, $e \leq d$.

Hence $d=e$.

Claim: $\operatorname{gcd}(a, b)$ exists.
Pf'. Suppose $a \neq 0$ or $b \neq 0$.
Clearly $11 a$ and lb.
So a divisor exists.
There is a greatest common divisor Since $\operatorname{gcd}(a, b) \mid a$ and $\operatorname{gcd}(a, b) \mid b$ So $\operatorname{gcd}(a, b) \leq \min \{|a|,|b|\}$ by $B B D$. Thus, $\quad \mid \leq \operatorname{gcd}(a, b \mid \leq \min \{|a|,|b|\} \cdot a$
Claim: $\operatorname{gcd}(a, b)$ is unique.
pf'. Suppose d and e are both the greatest common divisor of a and b. Then da $\wedge d / b$ so since eismaximal $d \leq e$. Similarly $e \leq d$. Hence $d=e \cdot B$
$b^{\text {Let }} a, b \in \mathbb{N}$.
Clii: If $n=a b$ then $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$

Pf: Suppose $n=a b$ and $a>\sqrt{n}$.

$$
\begin{aligned}
a b & >b \sqrt{n} \\
n & >b \sqrt{n} \\
\sqrt{n} & >b \quad \Rightarrow b \leq \sqrt{n}
\end{aligned}
$$

GCD with Remainder (GCDwR)
If $a, b, q, r \in \mathbb{Z}$ and $a=b q+r$ then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$
Ex: $\operatorname{gcd}(72,40)=8$
Now, $72=40(1)+32$
So GCDWR says $\operatorname{gcd}(72,40)=\operatorname{gac} \mid 40,3$.
Again: $40=32(1)+8$ so

$$
\operatorname{gcd}(40,32)=\operatorname{gcd}(32,8)
$$

Pfof GCDWR:
If $a=b=0$, then $r=a-b q=0$
So $\operatorname{gcd}(a, b)=0=\operatorname{gcd}(b, r)$
If $a \neq 0$ or $b \neq 0 \ldots$
(Continued from last class...)
GCDWR
If $a, b, q, r \in \mathbb{Z}$ and $a=b q+r$ then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
Proof: If $a=b=0$, then since $r=a-b q, r=0$. Hence $\operatorname{gcd}(a, b)=0=\operatorname{gcd}(b, r)$. Thus, assume that $a \neq 0$ or $b \neq 0$.
Let $d=\operatorname{gcd}(a, b)$ and $e=\operatorname{gcd}(b, r)$
Since $a=b q+r$ and $d l a$ and $d \mid b$ By $D / C \quad d l a-b q=r$. Thus, $d \leq e^{(1)}$ since e is the largest divisor of b \&r. Now, elba and eld so by DIC $e l b q+r=a$. Thus $e \leq d^{(2)}$ since d is the largest common divisor of a \&b. By (1) and (2) $d=e$.

Prove that $\operatorname{gcd}(3 a+b, a)=\operatorname{gcd}(a, b)$ using GCDWR.

$$
\begin{gathered}
" a " \quad " q " " b " n= \\
3 a+b=(3) a+b \\
\operatorname{GCD} \sim R \Rightarrow \quad \operatorname{gcd}(" a=" b=)=\operatorname{gcd}(" b ; " r) \\
\operatorname{gcd}(3 a+b, a)=\operatorname{gcd}(a, b)
\end{gathered}
$$

Euclidean Algorithm
Idea: Compute GODs quickly by using GCO CR \& Division Algorithm.
Ex: Compute $\operatorname{gcd}(1239,735)$
$\left(D_{1}\right)$

$$
\begin{align*}
1239 & =735(1)+504 \tag{1}\\
735 & =504(1)+231 \tag{2}\\
504 & =231(2)+42 \tag{3}\\
231 & =42(5)+21 \tag{4}\\
42 & =21(2)+0
\end{align*}
$$

Thus, by GCDWR,
$\operatorname{gcd}(1239,735)=\operatorname{gcd}(735,504)$

$$
\begin{aligned}
& =\operatorname{gcd}(504,231)=\operatorname{gcd}(231,42) \\
& =\operatorname{gcd}(42,21)=\operatorname{gcd}(21,0)=21
\end{aligned}
$$

NB: This process stops "remainders form a sequence of non-negative decreasing integer. Q:. What is the runtime of Euclidean Algin?

Back Substitution
Q: Do there exist integers x, y

$$
\text { s.t. } \begin{aligned}
&a x+b y=g c d(a, b) ? . ~ A i Y E S) \\
& 21=231+42(-5) \quad\left(b_{y}(-1)\right) \\
&=231+(504+231(-2))(-5) \\
&=231(11)+504(-5) \\
&=(735+504(-1))(11)+504(-5) \\
&=735(11)+504(-16) \\
&=735(11)+(1239+735(-1))(-16 \\
&=735(27)+1239(-16) .
\end{aligned}
$$

Use the Euclidean Algorithm to compute $\operatorname{gcd}(120,84)$ and then use back substitution to find integers x and y such that $\operatorname{gcd}(120,84)=120 x+84 y$.

$$
\begin{array}{rlrl}
120 & =84(1)+36 & & \text { ByE.A. \& } \\
84 & =36(2)+12 & G C D W R . \\
36 & =12(3)+0 & \operatorname{gcd}(120,84)=12 . \\
12 & =84+36(-2) \\
& =84+(120+84(-1))(-2) \\
& =84(3)+120(-2) \\
84(3+120) & +120(-2 m 84) \quad \begin{array}{l}
84 \cdot 3=252 \\
\left.120 \cdot(-2)=\frac{-240}{12}\right)
\end{array}
\end{array}
$$

Bézout's Lemma (GCDCTinthenotes) Let $a, b \in \mathbb{Z}$ then
(i) $\mid f d=\operatorname{gcd}(a, b)$ then $\exists x, y \in \mathbb{Z}$ s.t. $a x+b y=d$.
(ii) If $d>0, d|a, d| b$ and $\exists x, y \in \mathbb{Z}$ s.t. $a x+b y=d$ then $d=\operatorname{gcd}(a, b)$

Pf: (i) Painful. Use Back Substitution (ii) Let $e=\operatorname{gcd}(a, b)$. Since dla $\wedge d(b$ by maximality, $d \leq e$. Now, el eel so byDle, e $\mid a x+b y=d$. So by BAD, $|e| \leq|d|$ and $\because e, d>0 \quad e \leq d$. Thus, $d=e$.

Q1. I enjoy trying to discover and write MATH 135 proofs.

CODE

A) Strongly disagree
B) Disagree
C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q2. When I have difficulties with MATH 135 proofs, I know I can handle them.
A) Strongly disagree
B) Disagree
C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q3. Which of the following statements is false?
A) $\forall a \in \mathbb{Z}, \forall b \in \mathbb{Z},(\operatorname{gcd}(a, b) \leq b \wedge \operatorname{gcd}(a, b) \leq a)$
B) $\forall a \in \mathbb{Z}, \forall b \in \mathbb{Z},(\operatorname{gcd}(a, b) \neq 0 \Longrightarrow(a \neq 0) \vee(b \neq 0))$
C) $\forall a \in \mathbb{Z}, \forall b \in \mathbb{Z},(\operatorname{gcd}(a, b)|a \wedge \operatorname{gcd}(a, b)| b)$
D) $\forall a \in \mathbb{Z}, \forall b \in \mathbb{Z},(((c \mid a) \wedge(c \mid b)) \Longrightarrow c \leq \operatorname{gcd}(a, b))$
E) $\forall a \in \mathbb{Z}, \forall b \in \mathbb{Z}, \operatorname{gcd}(a, b) \geq 0$
A is false $a=-12 \quad b=0 \quad \operatorname{gad}(-12,0)=12>0^{-12}$.
B True $\operatorname{gad}(a, b)=0 \Leftrightarrow a>b=0$.
C True

1) is false $a=b=0$ ard $c=10$
Bis true.

Recall:
Let $a, b \in \mathbb{Z}$.

1. (Bezout's Lemma/Identity) If $d=\operatorname{gcd}(a, b)$ then $\exists x, y \in$ \mathbb{Z} such that $a x+b y=d$.
2. (GCDCT - GCD Characterization Theorem) If $d>0$, $d|a, d| b$ and $\exists x, y \in \mathbb{Z}$ such that $a x+b y=d$, then $d=\operatorname{gcd}(a, b)$.

Ex: $6>0,6130,6142$ and

$$
\begin{array}{r}
30(3)+42(-2)=6 \\
\operatorname{GCDCT} \Rightarrow \operatorname{gcd}(30,42)=6
\end{array}
$$

Q: Prove if $a, b, x, y \in \mathbb{Z}$ are $s . t . \operatorname{gcd}(a, b) \neq 1$ and $a x+b y=\operatorname{gcd}(a, b)$ then $\operatorname{gcd}(x, y)=1$
Pf: Since $\operatorname{gcd}(a, b) \mid a$ and $\operatorname{gcd}(a, b) \mid b$ we divide by $\operatorname{gcd}(a, b) \neq 0$ to see that

$$
\left(\frac{a^{x}}{\operatorname{gcd}(a, b)}\right){ }^{" a}{ }^{\prime \prime}+\left(\frac{b^{n} y=}{\operatorname{gcd}(a, b)}\right) y=1
$$

Since $1|x, 1| y, 1>0, \operatorname{GCDCT}=\nabla \operatorname{gcd}(x, y)=1$.

Euclid's Lemma (PAD Primes and Divisibility) If pis a prime and plab then pla or pleb.
Pf: Suppose p is prime, plab and pta. Since pta, $\operatorname{gcd}(p, a)=1$. By Bézout's Lemma, $\exists x, y \in \mathbb{Z} s . t$.
plabio

$$
\begin{gathered}
p x+a y=1 \\
p b x+a b y=b \\
p b x+k_{y}=b \\
p(b x+k y)=b \\
\in \mathbb{Z} .
\end{gathered}
$$

$$
\begin{array}{ll}
\text { plabio } & \text { Pbxtaby }=b \\
\text { F } k \in \mathbb{Z} \text { st. } & p^{b x+} k \boldsymbol{p}_{y}=b
\end{array}
$$

$$
\begin{array}{ll}
a b=p k . & p\left(b_{x+k y}\right)=b=p \quad p l b
\end{array}
$$

Prove or disprove the following:

1. If $n \in \mathbb{N}$ then $\operatorname{gcd}(n, n+1)=1$.
2. Let $a, b, c \in \mathbb{Z}$. If $\exists x, y \in \mathbb{Z}$ such that $a x^{2}+b y^{2}=c$ then $\operatorname{gcd}(a, b) \mid c$.
3. Let $a, b, c \in \mathbb{Z}$. If $\operatorname{gcd}(a, b) \mid c$ then $\exists x, y \in \mathbb{Z}$ such that $a x^{2}+b y^{2}=c$.

$$
\begin{aligned}
& \text { 1. } n+1=n(1)+1 \quad \text { TRUE } \\
& G C D W R=v \operatorname{gcd}(n+1, n)=\operatorname{gcd}(n, 1)=1
\end{aligned}
$$

2. $\operatorname{gcd}(a, b) l a \quad$ TRUE

$$
\operatorname{gcd}(a, b) \mid b
$$

$$
D K=D \quad g c d(a, b) \mid a x^{2}+b y^{2}=c
$$

Def'n: For $x \in \mathbb{R}$, define the floor function $\lfloor x\rfloor$ to be the greatest integer less then or equal to x.

$$
\begin{gathered}
\text { Ex: }\lfloor 2.5\rfloor=2=\lfloor 2\rfloor \\
\lfloor\pi\rfloor=3 \quad\lfloor 0\rfloor=0 \\
\lfloor-2.5\rfloor=-3
\end{gathered}
$$

Find $\operatorname{gcd}(56,35)$

$$
\begin{aligned}
& \text { i] } \quad 56(1)+35(0)=56 \\
& \text { [2] } \quad 56(0)+35(1)=35 \\
& {[3]=[(1-2[2] \quad 56(1)+35(-1)=21} \\
& q_{1}=\left[\begin{array}{l}
-\frac{56}{35} \\
3
\end{array}\right)=1 \\
& {[4]=[2]-2[3] \quad 56(-1)+35(2)=14} \\
& q_{2}=\frac{35}{21}=1 \\
& {[5]=[3] \varepsilon_{3}[4] 56(2)+35(-3)=7 \quad q_{3}-141} \\
& {[6]:[4]-q_{4}{ }^{[5]} \quad 56(-5)+35(8)=0 \text {. }} \\
& \therefore \operatorname{gcd}(56,35)=7=56(2)+35(-3) \text {. }
\end{aligned}
$$

Ex: Find $x, y \in \mathbb{Z}$ s.t.

$$
506 x+391 y=\operatorname{gcd}(506,391)
$$

	x	y	r	q
$[1]$	1	0	506	0
2$]$	0	1	391	0
$[3]=[1]-[2]$	1	-1	115	$\left\lfloor\frac{506}{391}\right]=1$

$\left[-47=[2]-3[3] \quad-3 \quad 4 \quad 46 \quad\left[\frac{391}{115}\right\rfloor=3\right.$
$3]:[3]-2[4] \quad 7 \quad-9 \quad 23 \quad\left\lfloor\frac{115}{46}\right\rfloor=2$
$[6]=[4]-[5] \quad-17 \quad 22 \quad 0 \quad\left[\frac{46}{23}\right]=2$

$$
\therefore 506(7)+391(-9)=23=\operatorname{gcd}(506,391)
$$

This is called the Extended Euclidean Algorithm (EEA).

Use the Extended Euclidean Algorithm to find integers x and y such that $408 x+170 y=\operatorname{gcd}(408,170)$.

x	y	r	q
1	0	408	0
0	1	170	0
1	-2	68	2
-2	5	34	$\left\lfloor\frac{170}{68}\right\rfloor=2$
5	-12	0	$\frac{68}{34}=2$

$$
\therefore 408(-2)+170(5)=34=\operatorname{ged}(408,170)
$$

Quick Notes'.

- Bézout's Lemma is EEA intextbook.
- With gel (a, b) what if
- $b>a$? Swap a \&b. Works
since $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)$.
- What if $a<0$ or $b<0$?

Soln: Make it positive. Works since

$$
\begin{aligned}
\operatorname{gcd}(a, b) & =\operatorname{gcd}(-a, b)=\operatorname{gcd}(a,-b) \\
& =\operatorname{gcd}(-a,-b) .
\end{aligned}
$$

Use the Extended Euclidean Algorithm to find integers x and y such that $399 x-2145 y=\operatorname{gcd}(399,-2145)$.
Find $\tilde{x}, \tilde{y} \in \mathbb{Z}$ s.t.

$$
2145 \tilde{x}+399 \tilde{y}=\operatorname{gcd}
$$

$$
\begin{array}{cccc}
\tilde{x} & \tilde{y} & r & q \\
1 & 0 & 2145 & 0 \\
0 & 1 & 399 & 0 \\
1 & -5 & 150 & 5 \\
-2 & 11 & 99 & 2 \\
3 & -16 & 51 & 1 \\
-5 & 27 & 48 & 1 \\
8 & -43 & 3 & 1 \\
-5-16(8) & 27-(16)(-43) & 0 & 16 \\
\therefore \quad 2145(8)+399(-43)=3=\operatorname{gal}(2145,399) \\
\therefore \quad-2145(-8)+399(-43)=3=\operatorname{gcd}(399,-2145
\end{array}
$$

GCD Chracterization Therem GCDCT Ifd is poatre commonduise of the integer aond b, and $\exists x_{2} y \in \geq$ st $a x+b y=d$ then $d=\operatorname{gcd}(a, b)$
ex. $(b b, c, c \in \mathbb{Z}$ Prae. if $\operatorname{gcd}(a, b, c)=1$, then $\operatorname{gcd}(a, c), \operatorname{gcd}(b, c)=1$. By IfleEEA, $\exists x, y \in \mathbb{Z} \quad s+a(x)+(y)=1$.
Since $11 a$ and $1 / c$ and $a(b x)+c(y)=1$, byGOCT whee $b x, y \in \mathbb{Z}$.
thues, $\operatorname{gcd}(a, c)=1$
\qquad
$-\quad$ Since $1 / b$ and $1(c$ and $b(a x)+c(y)=1$ chere ax, $y \in z$
ex.2. Fate convere and prex doppuve. Ip $\operatorname{gcd}(a, c)=\operatorname{gcd}(b, c)=1$ then $\operatorname{gcd}(a, b, c)=1$ relatively prome then a, b, c are painuise prome. aid the.
Prout: If $\operatorname{gcd}(a, c)=1$ then by $\epsilon \in A$ thae exist $x, y \in \mathbb{Z}$ s.t. $a x+c y=1$. Likp wie, if $\operatorname{gcd}(b, 0)=1$ then by EEA, $\exists k, m \in z$ s.t. bletcon=1 mutping ther guve: $\quad(x+c y)(b x+c m)=1$

Snce 1 $a b$ cad $1 / c$ and $a b\left(a+b k+a x c m+c y b k+c^{2} y m=1\right.$ $\operatorname{gcd}(a, b, c)=1$

$$
a b(x k+c(a x m+y p k+c y m)=1 \text { ahoe } x k, a+m+y b k+c y m \in z
$$

Oberotion: EEA is weecul with ged in the hy patters, $\epsilon C D C T$ isuefal with $\sigma e 0$ in the endusion.
forportion: GGCDof One (GCDOO))
Let $a, b \in E$. Then $\operatorname{ged}(a, b)=1$ iff $\exists x, y \in \mathbb{Z}$ with $a x+b y=1$

Poo of GCDOO.

1. $(\Rightarrow$) Suppose $G C D(a, b)=1$. Then by E EA $\triangle x, y \in \mathbb{Z}$ rit $a+f(a)=d$ c $=1$.
$(\leftrightharpoons$ Indore $\exists x, y \in \mathbb{Z} \quad$.$t$ ax $\quad b y=1$
Since $1 \mid a$ and $1 / b$, by GeDCT, $\operatorname{gcd}(a, b)=1$.
Division by the $G C D(D B G C D)$
Let $a, b \in \mathbb{Z} \cdot \mid$ fgcd $(a, b)=d$ and $d \neq 0$, then $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right) y 1$
ex. Let $a=91$ and $b=70$. Thengcd $(a, b)=7$ and $6 y b 6 \in 0, \operatorname{gcd}\left(\frac{a}{d} ; \frac{b}{d}\right)$

$$
=\operatorname{gcd}\left(\frac{91}{7}, \frac{10}{7}\right)=\operatorname{gcd}(13,10)=1
$$

Pf: Suppose $\operatorname{ged}(a, b)=d \neq 0$ Then by EEA, $\beth x, y \in \mathbb{Z}$ st $a x+b y=d$
Axing by dawes $\frac{a}{d} \times \frac{b}{d} y=1$

By $G O O$, $\sin a \frac{9}{d}(x)+\frac{b}{d}(y)=1$, , foe $x, y \in \mathbb{Z}$
thees $\operatorname{ged}\left(\frac{q}{d, b}\right)^{-1}=1$
Def'n: Capone: Two integer and c are copse ifged $(a, c)=1$
Papontur: Coprmenes and Dowsibility (CAD)
If $a, b, c \in \mathbb{Z}$ and $c / a b$ and $g c d(a, c)=1$ then c / b af $(A D)$. Let $a=14, \quad b=30, c=15$ Then clabsine 151420 and $g(d(a, c) \neq 1$ $=\operatorname{gcd}(14,15)=1$. The by $C A D, \quad c 1 b$ or 15130 .
Prof of AAP Suppose $\operatorname{gcd}(a, c)=1$ and dab. Since ged la, $e l=1$ the by $E \in A \quad \exists x, y \in Z$ st. $a x+c y=1$. Mut tiling ${ }^{2}$ by b gives $a b x+c b y=b$ Sine dab, $\exists k \in \mathbb{Z}$ rit. $a b=c k$. Cubsficuting into $*$ goer
\qquad
(DFPF)
Let $n>1$ be on integer and deN If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$ where $\alpha_{i} \in \mathbb{Z}$ are each ≥ 1, the dis a positive divisor of n of a prime factor ization of dis given by

$$
d=p_{1}^{d_{1}} p_{2}^{\delta_{2}} \cdots p_{k}^{\delta_{k}}
$$

where $\delta_{i} \in \mathbb{Z}, 0 \leq \delta_{i} \leq \alpha_{i}$ for $1 \leq i \leq K$.
Ex: Divisors (positive) of $63=3^{2} \cdot 7$

$$
\begin{aligned}
& 3^{0} \cdot 7^{0}, 3^{0} \cdot 7^{1}, 3^{1} \cdot 7^{\circ}, 3^{1} \cdot 7^{1}, 3^{2} \cdot 7^{0}{ }^{\circ} \\
& 1,7,3,21,9,63 .
\end{aligned}
$$

Pf is extra reading.
positive
How many multiples of 12 are $\hat{\text { d }}_{\text {divisors }}$ of 2940? What are they?

$$
\begin{array}{rlr}
12 \begin{array}{rl}
2940 & 2940
\end{array}=12.245 \\
\frac{24}{54} & 245 & =5.49 \\
\frac{48}{60} & & =5.7 ?
\end{array}
$$

Total number is $\left(L_{1}+1\right)\left(2^{2}+1\right)=6$ Multiples are:

$$
12,12 \cdot 5,12 \cdot 7,12 \cdot 5 \cdot 7,12 \cdot 7^{2}, 12 \cdot 5 \cdot 7^{2}
$$

Q: Prove $a^{2} \mid b^{2}$ iff $a \mid b$.
Pf: Assume alb. Then $\exists K \in \mathbb{Z}$ st. $a k=b$. Now, $a^{2} k^{2}=b^{2}$ andhence a^{2} / b^{2} by def n.
Now, assume $a^{2} \mid b^{2}$. Write (E ter:
with $0 \leq \alpha_{i}, \beta_{i}$ integers. Since $a^{2} \mid b^{2}, \prod_{i=1}^{k} p_{i}^{2 \alpha_{i}^{\prime}} \prod_{i=1}^{i_{k}} p_{i}^{2 \beta_{i}}$. DFPF implies $2 \alpha_{i} \leq 2 \beta_{i}^{i=1} \Rightarrow \alpha_{i} \leq \beta_{i}$ for $1 \leq i \leq k$. DFPF again implies

$$
a=\prod_{i=1}^{k} p_{i}^{\alpha_{i}} \mid \prod_{i=1}^{k} p_{i}^{\beta_{i}}=b .
$$

GCDPF
Ex:

$$
\begin{aligned}
& \operatorname{gcd}\left(2^{5} \cdot 3^{0} \cdot 5^{4}, 2^{4} \cdot 3^{1} \cdot 5^{4}\right) \\
& =2^{\min \{4,5\}} \cdot 3^{\min \{0,13} \cdot 5^{\min \{4,4\}} \\
& =2^{4} \cdot 5^{4}=10000
\end{aligned}
$$

Statement. If

$$
a=\prod_{i=1}^{11} p_{i}^{\alpha_{i}} \text { and } b=\prod_{i=1}^{l} p_{i}^{\beta_{i}}
$$

where $0 \leq \alpha_{i}, \beta_{i}$ are integers and p_{i} are disthict p limes. Then

$$
\operatorname{gcd}(a, b)=\prod_{i=1}^{l} p_{i}^{m_{i}}
$$

where $m_{i}=\min \left\{\alpha_{i}, \beta_{i}\right\}$ for $1 \leq i \leq \frac{*}{}$ Pf is extra reading.

Let $\operatorname{lcm}(a, b)$ represent the least common multiple of $a \& b$.
Ex:. Write a formal deft for $\operatorname{lcm}(a, b)$
2. Show

$$
\operatorname{lcm}(a, b)=\prod_{i=1}^{l} p_{i} e_{i}
$$

where $e_{i}=\max \left\{\alpha_{i}, \beta_{i}\right\}$
3. Prove $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}^{\prime}(a, b)=a b$

Linear Diophantine Equations.
Common DE: $x^{2}+y^{2}=z^{2}$ (NoT Linear)
Py thagerlen triples

$$
\begin{gathered}
a x=b \\
\left.\begin{array}{c}
a x+b y=c=\operatorname{gcd}(a, b) \\
56 x+249 y=31 \\
2 x+4 y=3
\end{array}\right\} \text { Linear. }
\end{gathered}
$$

DFPF (Divisars from Prime Factorization)
Solving GCD Problems.

$$
\left\{\begin{array}{l}
\text { 'Bézout's lemma (EEA) } \\
\cdot G C D C T \\
\cdot G C D W R
\end{array}\right.
$$

- Definition
- GCDPF

Q1. I enjoy trying to discover and write MATH 135 proofs.
A) Strongly disagree
B) Disagree
C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q2. When I have difficulties with MATH 135 proofs, I know I can handle them.
A) Strongly disagree
B) Disagree
C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q3. Let $a, b, x, y \in \mathbb{Z}$.

Which one of the following statements is true?
A) If $a x+b y=6$, then $\operatorname{gcd}(a, b)=6$.
B) If $\operatorname{gcd}(a, b)=6$, then $a x+b y=6$.
Q. If $a=12 b+18$, then $\operatorname{gcd}(a, b)=6$.
D) If $a x+b y=1$, then $\operatorname{gcd}(6 a, 6 b)=6$.
E) If $\operatorname{gcd}(a, b)=3$ and $\operatorname{gcd}(x, y)=2$, then $\operatorname{gcd}(a x, b y)=6$.

Linear Diophantine Equations ${ }^{120273}$ Want to solve

$$
a x+b y=c
$$

$*$ where $a, b, c \in \mathbb{Z}$.
Catch: $x, y \in \mathbb{Z}$.
Ex: Solve $143 x+25^{3} y=11$
Solve using EEA!

$$
\begin{array}{cccc}
x & y & r & \\
0 & 1 & 253 & \therefore 143(-7)+253(4) \\
1 & 0 & 143 & =11 \\
-1 & 1 & 110 & \\
2 & -1 & 33 & \\
-7 & 4 & 11 & \\
23 & -13 & 0 &
\end{array}
$$

Questions a bout LIEs.

- Is there a solution?
- Whatisit?
- Is there more than one?

Q: Solve the LDE

$$
143 x+253 y=155
$$

Assume towards a contradiction that $\exists x_{0}, y_{0} \in \mathbb{Z}$ s.t.

$$
143 t_{0}+253 y_{0}=155
$$

By before, $11|143 \mathrm{f} \cdot 11| 253$ Hack by DIC $143 x_{0}+253 y_{0}$ is dinsible by $\|$. BuI $\| X 155=1433,+253$, \#. Hence the original LOE has no integer solutions.

What a bout

$$
\begin{aligned}
& 143 x+253 y=154 \\
& 154=11.14 \\
& 143(-7)+253(4)=11
\end{aligned}
$$

Multiply by 14

$$
\begin{aligned}
& 143(-7.14)+253(4.14)=154 \\
& 143(-98)+253(56)=154 .
\end{aligned}
$$

$\angle D E T 1$
Let $d=\operatorname{gcd}(a, b)$. The $L D E$ $a_{1}+b_{y}=c$ has a solution if d / c.
Pf: \Rightarrow Assume $a x+b y=c$ has an integer solution, say $x_{0}, y_{0} \in \mathbb{Z}$. Since d la and dIb, by DIC da $+b y_{0}=c$.
$\&$ Assume dlc. Then $\exists k \in \mathbb{Z}$ s.t. $d K=c$. By Bézout's Lemma $\exists u, v \in \mathbb{Z}$ s.t.

$$
\begin{aligned}
& \quad a u+b v=g c a(a, b)=d . \\
& \left(M v \left(t b_{y} \quad a(u k)+b(v k)=d k=c\right.\right. \\
& k \quad \therefore a \text { solution is } x=u k \\
& y=v k
\end{aligned}
$$

Ex: $20 x+35 y=5$ (solve the LDE. Simplify: $4 x+7 y=1$ Asolution is $x=2 \quad y=-1$ Lookat $x_{2}=2+7(2) y_{2}=-1-4(2)$

$$
\begin{aligned}
4 x_{2}+7 y_{2} & =4(2+7)+7(-1-4) \\
& =4 \cdot 2+4 \cdot 7 \cdot+7(-1)-7 \cdot 41 \\
& =4 x+7 y \\
& =1
\end{aligned}
$$

LDET2
Let $d=\operatorname{gcd}(a, b)$ where $a \neq 0$ and $b \neq 0$. If $(x, y)=\left(x_{0}, y_{0}\right)$ is a solution to the LDE

$$
a x+b y=c
$$

Then all solutions are given by

$$
x=x_{0}+\frac{b}{d} n \quad y=y_{0}-\frac{a}{d} n
$$

for all $n \in \mathbb{Z}$. (Alternatively:

$$
\left\{\left(x_{0}+\frac{b}{d} n, y_{0}^{-a} d_{d} n\right): n \in \mathbb{Z}\right\} .
$$

PF: Note the above are actually solutions to the $L D E$.

Now, let (x, y) be another solution to the LDE. Thus

$$
\begin{aligned}
& a x+b y=c \\
& a x_{0}+b y_{0}=c \\
& a\left(x-x_{0}\right)+b\left(y-y_{0}\right)=0
\end{aligned}
$$

$$
\begin{align*}
& a\left(x-x_{0}\right)=-b\left(y-y_{0}\right) \\
& \frac{a}{d}\left(x-x_{0}\right)=\frac{-b}{d}\left(y-y_{0}\right) \tag{1}
\end{align*}
$$

Now, since $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{c}\right)=1(b y D B G C D)$

$$
\frac{b}{d}\left(-\frac{b}{d}\left(y-y_{0}\right)=\frac{a}{d}\left(x-x_{0}\right)\right.
$$

we use CAD to see that $\left.\frac{b}{d} \right\rvert\, x-x_{0}$ Thus, $\exists n \in \mathbb{Z}$ sit. $x-x_{0}=\frac{b}{d} n$ and thus $x=x_{0}+\frac{b}{d} n$. Pluginto (1):

$$
\begin{gathered}
\frac{a}{c}\left(\frac{b}{d} n\right)=-\frac{b}{d}\left(y-y_{0}\right) \\
-\frac{a}{c} n=y^{-}-y_{0} \\
\Rightarrow \quad y=y_{0}-\frac{a}{d} n .
\end{gathered}
$$

Q: Alice has a lot of mail to send. She wishes to spend exactly 100 dollars buying 49 cent \& 53-cent stamps. In how many ways can she do this?

Sola: Let x be the number of 49 cent stamps. Let y be the number of 53 cent stamps. Note $x, y \in \mathbb{Z}$ and $x, y \geq 0$. WANT to solve

$$
\left.\begin{array}{ccc}
0.49 x+0.53 y & =100 \\
49 x+53 y & =10000 \\
x \quad y & r & q \\
0 & 1 & 53 \\
1 & 0 & 49
\end{array}\right) 0
$$

Thus, by $\angle D E T 2$

$$
\begin{aligned}
& x=130000-53 n \quad \forall n \in \mathbb{Z} \\
& y=-120000+49 n
\end{aligned}
$$

Since $x \geq 0$, we have

$$
\begin{array}{r}
130000-53 n \geq 0 \\
2452+\frac{44}{53}=\frac{130000}{53} \geq n
\end{array}
$$

Since $y \geq 0$, we have

$$
\begin{aligned}
& -120000+49 n \geq 0 \\
\Rightarrow \quad & n \geq \frac{120000}{49}=2448+\frac{48}{49}
\end{aligned}
$$

Since $n \in \mathbb{Z}$,

$$
2449 \leq n \leq 2452
$$

Thus, there are 4 possible solutions."

Find all non-negative integer solutions to $15 x-24 y=9$ where $x \leq 20$ and $y \leq 20$.
$\div 3$

$$
5 x-8 y=3
$$

Note $x_{0}=-1$ \& $y_{0}=-1$ is a solution.
Since $\operatorname{ged}(5,-8)=1$, by $H D E T 2$.

$$
\begin{aligned}
& x=-1-(-8) n=-1+8 n \\
& y=-1+5 n=-1+5 n
\end{aligned} \quad \forall n \in \mathbb{Z}
$$

is the solution set. By the statement

$$
\begin{array}{lll}
0 \leq x \leq 20 & \& & 0 \leq 4 \leq 20 \\
0 \leq-1+8 n \leq 20 & \& & 0 \leq-1+5 n \leq 20 \\
1 \leq 8 n \leq 21 & \& & 1 \leq 5 n \leq 21 \\
\Rightarrow n=1,2 & & \Rightarrow n=1,2,34
\end{array}
$$

Thus, $n=1,2$ gives the only solutions of

$$
(7,4) \&(15,9)
$$

Congruences.
Idea: Simplify problems
in Divisibility.
Q: Is 156723 divisible by 11 ? What angle do you get after a 1240° rotation?
What time is it 40 hours fromnow
Idea: We only core about the above answers up to multiples of 11, 360, and 24.
Deft: Let $m \in \mathbb{N}$. We say that two integers a, b are congruent modulo if $m(a-b)$ and wewrite

$$
\begin{aligned}
& a \equiv b \bmod n \\
& \text { or } \quad a \equiv b(\bmod m)
\end{aligned}
$$

If $m \nmid a-b$ we write $a \neq b$ mod.

Ex: $7 \equiv 4 \bmod 3 \quad 7 \not \equiv 4 \bmod 4$

$$
\begin{array}{rl}
4 \equiv 7 \bmod 3 & 2 \equiv 2 \bmod 3 \\
10 \equiv 15 \bmod 5 & \& \\
15 \equiv 30 \bmod 5 \\
\& & 10 \equiv 30 \bmod 5 .
\end{array}
$$

Quick! For $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$, define what it means for a to be congruent to b modulo n.

We say that a is congruent to b modulo n and write $a \equiv b$ $(\bmod n)$ if and only if $n \mid(a-b)$. This is equivalent to saying there exists an integer k such that $a-b=k n$ or $a=b+k n$.

Congruence is an Equivalence Relation (CER)

Let $n \in \mathbb{N}$. Let $a, b, c \in \mathbb{Z}$. Then

1. (Reflexivity) $a \equiv a(\bmod n)$.
2. $($ Symmetry $) a \equiv b(\bmod n) \Rightarrow b \equiv a(\bmod n)$.
3. (Transitivity) $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n) \Rightarrow$ $a \equiv c(\bmod n)$.

Proofs:

1. Since $n \mid 0=(a-a)$, we have that $a \equiv a(\bmod n)$.
2. Since $n \mid(a-b)$, there exists an integer k such that $n k=(a-b)$. This implies that $n(-k)=b-a$ and hence $n \mid(b-a)$ giving $b \equiv a(\bmod n)$.
3. Since $n \mid(a-b)$ and $n \mid(b-c)$, by Divisibility of Integer Combinations, $n \mid((a-b)+(b-c))$. Thus $n \mid(a-c)$ and hence $a \equiv c(\bmod n)$

Without a calculutor, is $167 \equiv 2015$ mod
Sol'n: $2015 \equiv 3 \bmod 4 \quad \because: 412012=2015-3$

$$
167 \equiv 3 \bmod 4 \quad \because 41164=167-3
$$

By symmetry $3 \equiv 2015 \mathrm{rod} 4$
By trassivity $167 \equiv 2015 \bmod 4$.
Alt Sol'n: Does $412015-167=1848$

Properties of Congruence (PC) Let $a, a^{\prime}, b, b^{\prime} \in \mathbb{Z}$. If $a \equiv a^{\prime}(\bmod m)$ and $b \equiv b^{\prime}(\bmod m)$, then

1. $a+b \equiv a^{\prime}+b^{\prime}(\bmod m)$
2. $a-b \equiv a^{\prime}-b^{\prime}(\bmod m)$
3. $a b \equiv a^{\prime} b^{\prime}(\bmod m)$

Proofs:

1. Since $m \mid\left(a-a^{\prime}\right)$ and $n \mid\left(b-b^{\prime}\right)$, we have by Divisibility of Integer Combinations $m \mid\left(a-a^{\prime}+\left(b-b^{\prime}\right)\right)$. Hence $m \mid\left(a+b-\left(a^{\prime}+b^{\prime}\right)\right.$ and so $a+b \equiv a^{\prime}+b^{\prime}$ $(\bmod m)$.
2. Since $m \mid\left(a-a^{\prime}\right)$ and $n \mid\left(b-b^{\prime}\right)$, we have by Divisibility of Integer Combinations $m \mid\left(a-a^{\prime}-\left(b-b^{\prime}\right)\right)$. Hence $m \mid\left(a-b-\left(a^{\prime}-b^{\prime}\right)\right.$ and so $a-b \equiv a^{\prime}-b^{\prime}$ $(\bmod m)$.
3. Since $m \mid\left(a-a^{\prime}\right)$ and $n \mid\left(b-b^{\prime}\right)$, we have by Divisibility of Integer Combinations $m \mid\left(\left(a-a^{\prime}\right) b+\left(b-b^{\prime}\right) a^{\prime}\right)$. Hence $m \mid a b-a^{\prime} b^{\prime}$ and so $a b \equiv a^{\prime} b^{\prime}(\bmod m)$.

Corollary If $a \equiv b(\bmod m)$ then $a^{k} \equiv b^{k}(\bmod m)$ for $k \in \mathbb{N}$.
Example: Since $2 \equiv 6 \bmod 4$, we have that $2^{2} \equiv 6^{2} \bmod 4$, that is, $4 \equiv 36 \bmod 4$.

Is $5^{9}+62^{2000}-14$ divisible by 7 ?
Sol: Reduce mod 7. By (PC)

$$
\begin{aligned}
5^{9}+62^{2000}-14 & \equiv(-2)^{9}+(-1)^{2000}-0 \bmod 7 \\
& \equiv-2^{9}+1 \bmod 7 \\
& \equiv-\left(2^{3}\right)^{3}+1 \bmod 7 \\
& \equiv-(8)^{3}+1 \bmod 7 \\
& \equiv-(1)^{3}+1 \operatorname{med} 7 \\
& \equiv 0 \quad \bmod 7
\end{aligned}
$$

\therefore the number is divisible by 7 .

Divisibility Rules
A positive integer n is divisible by (a) 2^{k} if the last k digits are divisible by 2^{k}.
(b) 3 (o ra) iff the sum of the digits is divisible by 3 (or 9) (c) 5^{k} iff the last K digits are divisible by 5^{k}.
(d) 7 (orllor13) iff the alternating sum of triples of digits is divisible by 7 (or 11 or 13)
$E \therefore n=123456333$

$$
\begin{gathered}
333-456+123=0 \\
\because m, 71,1310 \quad(d)=7,11,13 \ln .
\end{gathered}
$$

Proof of (b)
Let $n \in \mathbb{N}$. Write

$$
n=d_{0}+10 d_{1}+10^{2} d_{2}+\ldots+10^{k} d_{k}
$$

where $d_{i} \in\{0,1, \ldots 9\}$

$$
\left(E_{x}: 213=3+10(1)+100(21)\right.
$$

So: $9 \ln \Leftrightarrow n \equiv 0 \bmod 9$

$$
\begin{array}{ll}
& \Leftrightarrow 0 \equiv d_{0}+10 d_{1}+10^{2} d_{2}+\cdots+10_{k}^{k} d_{k} \\
\text { By } P C & \quad 1
\end{array} 10 \equiv d_{0}+d_{1}+d_{2}+\cdots+d_{k} \bmod 9 .
$$

Thus, $91 n \Leftrightarrow 9$ divides the sum of the digits of n. (1)
"Random" Examples
$3 \equiv 24 \bmod 7$ ard $1 \equiv 8 \bmod 7$
$3 \equiv 27 \bmod 6$ and $1 \not \equiv 9 \bmod 6$
Proposition (Congruences \& Division-CD)
Let $a, b, c \in \mathbb{Z} \& n \in \mathbb{N}$
If $a c \equiv b c \bmod n$ and $\operatorname{gcd}(c, n)=1$ then $a \equiv b$ moon
Pf: By assumption, n lac -bc
so $n \mid c(a-b)$. Since $\operatorname{gcd}(c, n)=1$,
by (AD, $n \mid a-b$. Hence $a \equiv b \bmod n$.

What is the remainder when $77^{100}(999)-6^{83}$ is divided by

$$
\begin{aligned}
77 & =19(4)+1 \\
999 & =249(4)+3
\end{aligned}
$$

By CISR, $77 \equiv 1 \bmod 4$

$$
9 q 9 \equiv 3 \bmod 4
$$

Thus, by $P C$
77^{100}

$$
\begin{aligned}
& (999)-6^{83} \\
& \equiv(1)^{100}(3)-2^{83} \bmod 4 \\
& \equiv 3-2^{2} \cdot 2^{81} \quad \bmod 4 \\
& \equiv 3-4 \cdot 2^{81} \\
& \bmod 4 \\
& \equiv 3-0 \cdot 2^{81} \\
& \equiv 3
\end{aligned} \bmod 44 .
$$

By CISR, 3 is the remainder when $77^{100}(999)-6^{83}$ is divided by 4 .

Proposition (Congruent iff Same Remainder $(S S R)$. Let $a, b \in \mathbb{Z}$, The $a \equiv b \bmod n \Leftrightarrow a$ \& b have the same remainder. after division by n.
Pf:. By the Division Algorithm, write

$$
\begin{aligned}
& a=n q_{a}+r_{a} \\
& b=n q_{b}+r_{b}
\end{aligned}
$$

where $0 \leq r_{a}, r_{b}<n$. Subtracting

$$
\begin{equation*}
a-b=n\left(q_{a}-q_{b}\right)+r_{a}-r_{b} \tag{1}
\end{equation*}
$$

\Rightarrow Assume $a \equiv b \operatorname{modn}$ ie. $n l a-b$.
Since $n \mid n\left(q_{a}-q_{b}\right)$ by DK,

$$
n \mid r_{a}-r_{b}
$$

By our restriction

$$
-n+1 \leq r_{a}-r_{b} \leq n-1
$$

BUT only O is divisible by n in this range! Since $n l_{r_{a}-r_{b}, w e}$ must have that $r_{a}-r_{b}=0$. Hence

$$
r_{a}=r_{b} .
$$

\& Assume $r_{a}=r_{b}$ (By (1),

$$
\begin{aligned}
& a-b=n\left(q_{a}-q_{b}\right) \\
\Rightarrow & n \mid a-b \Rightarrow a \equiv b \bmod n .
\end{aligned}
$$

What is the last digit of $5^{32} 3^{10}+9^{22}$?

Homework: READ CHAPTER 26 !

Q1. I enjoy trying to discover and write MATH 135 proofs.
A) Strongly disagree
B) Disagree
C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q2. When I have difficulties with MATH 135 proofs, I know I can handle them.
A) Strongly disagree
B) Disagree
C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q3. Which of the following satisfies $x \equiv 40(\bmod 17)$?
(Do not use a calculator.)

$$
x \equiv 6 \bmod 17
$$

А) $x=173 \equiv 3$ mod $17{ }^{\text {B) } x=15^{5}+19^{3}-4} \equiv(-2)^{5}+2^{3}-4 \equiv-32+8-4 \equiv 2+4 \equiv 6 \operatorname{med} 17$
C) $x=5 \cdot 18^{100} \equiv 5(1)^{100} \equiv 5 \operatorname{med} 17$
D) $x=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13=6 \cdot 35 \cdot 13 \cdot(-6)(-4) \equiv 6 \cdot 1 \cdot 24 \equiv 6 \cdot 7$
E) $x=17^{0}+17^{1}+17^{2}+17^{3}+17^{4}+17^{5}+17^{6}$ 三

What is the last digit of $5^{32} 3^{10}+9^{22}$?
Sol'n: Reduce mod 10 .

$$
\begin{aligned}
5^{32} \cdot 3^{10}+9^{22} & \equiv\left(5^{2}\right)^{16}(9)^{5}+(-1)^{22} \bmod 10 \\
& \equiv 5^{16}(-1)^{5}+1 \quad \bmod 10 \\
& \equiv\left(5^{2}\right)^{8}(-1)+1 \quad \bmod 10 \\
& \equiv-5^{8}+1 \quad \bmod 10 \\
& \equiv-\left(5^{2}\right)^{4}+1 \quad \operatorname{mad} 10 \\
& \equiv-5^{4}+1 \quad \bmod 10 \\
& \equiv-5^{2}+1 \quad \bmod 10 \\
& \equiv-5+1 \quad \bmod 10 \\
& \equiv-4+10 \quad \operatorname{mad} 10 \\
& \equiv 6
\end{aligned}
$$

Linear Congruences.
Q: Solve $a x \equiv c \operatorname{modm}$ (for $a, c \in \mathbb{Z}, m \in \mathbb{W}$) for $x \in \mathbb{Z}$.
Compare to $a x=c$ (solnwhen ale).
Ex: $4 x \equiv 5 \bmod 8$
Solnn : By def n $\exists y^{\prime} \in \mathbb{Z}$ s.t.
$4 x-5=8 y^{\prime} \Leftrightarrow 7 y^{\prime} \in \mathbb{Z}$ st.
$4 x-8 y^{\prime}=5$
Let $y=-y^{\prime}$. Thus, the original question is equivalent to solving the LDE

$$
4 x+8 y=5
$$

Since $\operatorname{gcd}(4,8)=4 \neq 5$, by LDET1, this LOE has no sol'n.

$$
4 x \equiv 5 \bmod 8
$$

Sol'n 2: Try all numbers from 0 to 7 .

$$
\times 01234567
$$

$$
4 x_{\operatorname{mad} 8} 04040404
$$

Now, let $x \in \mathbb{Z}$. By the Dir Alg'm

$$
x=8 q+r
$$

for some $0 \leq r \leq 7$. ByCISR $4 x \equiv 5 \bmod 8 \Leftrightarrow 4 r \equiv 5 \bmod 8$ Above we tried all numbers from 0 to 7 and saw that there was no solution.
Soln 3! Assume towards a contradiction that $\exists x \in \mathbb{Z}$ st. $4 x \equiv 5$ mode. Multiply both sides by 2 to get (byrd)

$$
0 \equiv 0 x \equiv 8 x \equiv 10 \bmod 8
$$

Thus 8110 . BUT 8110 \#. So there are no integer solutions to $4 x \equiv 5 \bmod 8$.

Ex: $5 x \equiv 3 \bmod 7$
Solnl: $\begin{array}{llllllll}x & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 5 x \text { mool } 7 & 0 & 5 & 3 & 1 & 6 & 4 & 2\end{array}$
$x \equiv 2 \bmod 7$ gives the solutions.
Sol'n 2: Eq uivalent to solving the LDE

$$
5 x+7 y=3
$$

By LDETR $x=2+7 n \quad y=-1-5 n$ $\forall r \in \mathbb{Z}$ gives the solutions.
$E_{x}: 2 x \equiv 4 \bmod 6$

Soln | x | 0 | 1 | 2 | 3 | 4 |
| ---: | :--- | :--- | :--- | :--- | :--- |

$$
x \equiv 2,5 \bmod 6 \Leftrightarrow x \equiv 2 \bmod 3
$$

Summary': LCT1 (Linear Congruence Theorem 1)
Let $a, c \in \mathbb{Z}, m \in \mathbb{N}$ and $\operatorname{gcd}(a, m)=d$ Then $a x \equiv c$ mode has a solution

NB: Have d solutions modulo m. Have I solution modulo $\frac{\mathrm{m}}{\mathrm{d}}$.

Moreover, if $x=x_{0}$ is a solution, then $x \equiv x_{0} \bmod \frac{m}{d}$ forms the completesoln OR $x=x_{0}+\frac{m}{d} n$ forall $n \in \mathbb{Z}$ OR $x \equiv x_{0}, x_{0}+\frac{m}{d}, x_{0}+2 \frac{m}{d}, \ldots, x_{0}+(d-1) \frac{m}{d}$ Pf: Read p. 180.

Equivalent to solving the LDE

$$
\begin{aligned}
& 9 x+15 y=6 . \\
& 3 x+5 y=2 \\
& \text { By } L D \in T 2 \quad x=-1+5 n \quad \forall n \in \mathbb{Z} \\
& y=1-3 n \quad \\
& \therefore \text { Sold } \text { is } x \equiv-1 \operatorname{mods} \\
& \text { Or } x \equiv 4 \bmod 5 \\
& \text { OR } x \equiv 4,9,14 \bmod 15 .
\end{aligned}
$$

Ex: Show that there are no integer solutions to

$$
x^{2}+4 y=2
$$

Siln: Assume towards a contradiction that $\exists x, y \in \mathbb{Z}$ s.t.

$$
\begin{aligned}
& x^{2}+4 y=2 . \\
& \Leftrightarrow x^{2}-2=-4 y \\
& \Rightarrow 41 x^{2}-2 \text { so } x^{2}-2 \equiv 0 \bmod 4 \\
& \frac{x^{2} \equiv 2 \bmod 4}{x} 012 \quad 3 \\
& x \operatorname{limall} 4101 \quad \# \\
& \text { none equal 2. }
\end{aligned}
$$

$\therefore x^{2}-4 y=2$ has no integer solutions.
$\mathbb{Z}_{m}=\mathbb{Z} / m \mathbb{Z}$ integers modulo m.
The congruence/equivalence class modulo m of an integer a is the set of integers:

$$
[a]:=\{x \in \mathbb{Z}: x \equiv a \operatorname{modm}\}
$$

\uparrow "defined as"
Further, define

$$
\mathbb{Z}_{m}=\mathbb{Z} / m \mathbb{Z}:=\{[0],[1], \ldots,[m-1]\}
$$

We make \mathbb{Z}_{m} a "ring" by defining addition, subtraction and multiplication by

Issue: Well defined.
How do we know that this
addition didn't depend on our representation of $[a] \& b]$?
Ex: Does $[2][5]=[14][-13]$

$$
\begin{aligned}
& \text { in } \mathbb{Z}_{6} ? \\
& \text { Sod }^{\prime} n \cdot[2] \cdot[5]=[2-5]=[10]=[4] \mathbb{H}_{6}^{\text {in }} \\
& {[14][-13]=[14 \cdot(-13)]=[-182]=[-2]} \\
& \\
& \\
& =[4] \mathrm{V}
\end{aligned}
$$

The menbers $0,1, \ldots m-1$ are called representative menbers. "Adelition table for \mathbb{Z}_{4}

$[+]$	$[0]$	$[1]$	$[2]$	$[3]$
$[0]$	$[0]$	$[1]$	$[2]$	$[3]$
$[1]$	$[1]$	$[2]$	$[3]$	$[0]$

[1] [1] [2] [3] [0]
[2] [2] [3] [0] [1]
$[3][3][0][1][2]$.

Notes:

- We call [0] the additive identity of \mathbb{Z}_{m}.
We call [1] the multiplicative identity of \mathbb{Z}_{m}.

Solve the following equations in \mathbb{Z}_{14}. Express answers as $[x]$ where $0 \leq x<14$.
i) $[75]-[x]=[50]$
ii) $[10][x]=[1]$
iii) $[10][x]=[2]$
(i)

$$
\begin{aligned}
& [75]-\dot{[} x]+\dot{[} x]-[50]=[50]+[x]-[50] \\
& {[25]}
\end{aligned} \begin{aligned}
{[25] } & \Rightarrow[x]=[11] \\
& =\{\tilde{x} \in \mathbb{Z}: \bar{x} \equiv 25 \bmod \mid 41\} \\
& =\{\bar{x} \in \mathbb{Z}: \bar{x}=11 \bmod 14\} \\
& =[11] .
\end{aligned}
$$

Solve the following equations in \mathbb{Z}_{14}. Express answers as $[x]$ where $0 \leq x<14$.
ii) $[10][x]=[1]$
$\Leftrightarrow 10 x \equiv 1 \bmod 14$
iii) $[10][x]=[2]$

$$
\because \operatorname{gcal}(10,14)=2+1
$$

by LCT1, this has
no solutions
(iii) $[10][x]=[2] \Leftrightarrow 10 x \equiv 2 \bmod 14$

Since $l 0(3) \equiv 30 \equiv 2$ mall l
LCTI Says $x \equiv 3 \bmod \frac{14}{\operatorname{gcd}(10,14)}$
is the complete solution.
ie $\quad x \equiv 3 \bmod 7$
ie $\quad x \equiv 3,10 \operatorname{mad} 14$
ic $\quad[x]=[3] 0,[10]$ in \mathbb{Z} IL.

Solve the following equations in \mathbb{Z}_{14}. Express answers as $[x]$ where $0 \leq x<14$.
ii) $[10][x]=[1] \quad \Leftrightarrow 10 \times \equiv 1 \bmod / 4$
iii) $[10][x]=[2]$

$$
\because \operatorname{gcd}(10,14)=2+1
$$

by LCT 1, this has no solutions.
(iii) $[10] C x]=[2] \Leftrightarrow 10 x \equiv 2 \bmod 14$
\Leftrightarrow Solve the LDE

$$
\begin{aligned}
10 x+14 y & =2 \\
5 x+7 y & =1
\end{aligned}
$$

By $L D \in T 2$

$$
\begin{aligned}
& x=3+7 n \\
& y=-2-5 n \\
& \therefore x=3 \mathrm{mod} 7 \\
& \therefore x=3,10 \mathrm{mod} / 4 \\
& \therefore \quad[3] \&[10] \text { are our } \\
& \text { arelutions. }
\end{aligned}
$$

Inverses

- $[-a]$ is the additive inverse of $[a]$, that is.

$$
\begin{gathered}
{[a]+[-a]=[0] .} \\
\text { If } \exists b \in \mathbb{Z} \text { set. }[a][b]=[1]=[b][a]
\end{gathered}
$$

we call $[b]$ the multiplicative inverse of $[a]$ and write $[b]=[a]$ Ex: $[5][11]=[1]$ in \mathbb{Z}_{18}

$$
\therefore[5]^{-1}=[11] \&[11]^{-1}=[5]
$$

WARUING: Multiplicative inverses do 1007 always exist!

Ex: $\quad[9][x]=[1]$ ir \mathbb{Z}_{18}
$L H S$ is always $[0]$ or $[a]$.
So $[9]^{-1}$ does not exist in \mathbb{Z}_{18}.

Find the additive and multiplicative inverses of $[7]$ in \mathbb{Z}_{11}.
Give your answers in the form $[x]$ where $0 \leq x \leq 10$.
Sol'n: Additive inverse

$$
[-7]=[4]
$$

Multiplicative Inverse: Want to Solve

$$
\begin{aligned}
& {[7][x]=[1] } \\
& 7 x \equiv 1 \bmod 11 \\
& 7.3 \equiv 21 \equiv 10 \equiv-1 \bmod 11 \\
\therefore & 7(-3)=1 \bmod 11 \\
\therefore & {[x]=[-3]=[8] }
\end{aligned}
$$

Proposition: Let $a \in \mathbb{Z}, m \in \mathbb{N}$.
(a) $[a]^{-1}$ exists in \mathbb{Z}_{m} iffgcd $(a, m)=1$
(b) $[a]^{-1}$ is unique if it exists.

Pf: (a) $[a]^{-1}$ exists
$\Leftrightarrow[a][x]=11]$ is solvable in \mathbb{Z}_{m}
$\Leftrightarrow a x+m y=1$ is a solvable $\angle D E$
$\Leftrightarrow \operatorname{gcd}(a, m)=1 \quad(\operatorname{GCDOO})$
(b) Assume $[a]^{-1}$ exists. Suppose 7 $b \in \mathbb{Z}$ s.t. $[a][b]=[1]=[b][a]$.
Then $[a]^{-1}[a][b]=[a]^{-1}[1]$

$$
\begin{aligned}
{[1][b] } & =[a]^{-1} \\
{[b] } & =[a]^{-1}
\end{aligned}
$$

Solve $[15][x]+[7]=[12]$ in \mathbb{Z}_{10}.
Solution: This is equivalent to solving

$$
15 x+7 \equiv 12 \bmod 10
$$

Isolating for x gives

$$
15 x \equiv 5 \quad \bmod 10
$$

Since $15 \equiv 5 \bmod 10$, Properties of Congruences states that

$$
5 x \equiv 5 \bmod 10
$$

This clearly has the solution $x=1$. Hence, by Linear Congruence Theorem 1, we have that

$$
x \equiv 1 \quad \bmod \frac{10}{\operatorname{gcd}(5,10)}
$$

gives the complete set of solutions. Thus, $x \equiv 1 \bmod 2$ or $x \equiv 1,3,5,7,9 \bmod 10$. Since the original question is framed in terms of congruence classes, our answer should be as well and hence

$$
[x] \in\{[1],[3],[5],[7],[9]\} .
$$

For extra practice, see if you can phrase this argument using Linear Congruence Theorem 2.

Practice problem: Solve $[15][x]+[7]=[12]$ in \mathbb{Z}_{10}.
The following are equivalent (TFAE)

- $a \equiv b(\bmod m)$
- $m \mid(a-b)$
- $\exists k \in \mathbb{Z}, a-b=k m$
- $\exists k \in \mathbb{Z}, a=k m+b$
- a and b have the same remainder when divided by m
- $[a]=[b]$ in \mathbb{Z}_{m}.

Theorem (LCT 2). Let $a, c \in \mathbb{Z}$ and let $m \in \mathbb{N}$. Let $\operatorname{gcd}(a, m)=d$. The equation $[a][x]=[c]$ in \mathbb{Z}_{m} has a solution if and only if $d \mid c$. Moreover, if $[x]=\left[x_{0}\right]$ is one particular solution, then the complete solution is

$$
\left\{\left[x_{0}\right],\left[x_{0}+\frac{m}{d}\right],\left[x_{0}+2 \frac{m}{d}\right], \ldots,\left[x_{0}+(d-1) \frac{m}{d}\right]\right\}
$$

Fermat's Little Theorem ($F \ell T$) If p is a prime number and pta then $a^{p-1} \equiv 1 \bmod p$. Equivalently, $\left[a^{p-1}\right]=[1]$ in \mathbb{Z}_{p}.
Ex: $5^{6} \equiv 1 \bmod 7,4^{6} \equiv 1 \bmod 7,39^{6} \equiv 1 \bmod 7$
Note: ph is in the exponent! Note $6^{3} \neq 1 \bmod 7$
Note 2: $p-1$ is not necessarily the Smallest exponent s.t. $a^{k} \equiv 1 \operatorname{modp}$. Ex: $\sigma^{2} \equiv 1 \bmod 7$.

Lemma: Modulo p, the sets $S=\{a, 2 a, \ldots(p-1) a\} \quad \& T=\{1,2,-p-1\}$ Consist of the same elements provided $\operatorname{gcd}(a, p)=1$.
Pe: We show that S has $p-1$ distinct non zero elements modulo p. Let $1 \leq k, m \leq p-1$ beintegers. Nowif Ka
Since $\operatorname{gcd}(a, p)=1, \quad p \mid(k-m)$ by (A). Since $p<2-p \leq K-m \leq p-2<p$ and $p l k-m$, we see that $k-m=0$ ie $k=m$. Lastly, if $k a \equiv 0 \bmod p$ then $1 k a$. By Euclid's Lemma, pl ($\# 1 \leqslant k \leq p-1$ ard pisprime) or pla (\# since gad (arp) 1 Thus, S has $(p-1)$ distinct non zero elements modulo p.

Lemma proof recap.:
(1) Start with $K_{a, m a} \in S$
(2) Show $K a \equiv m a \bmod p \Leftrightarrow K=m$
(3) Show if $K_{a} \in S$ is s.t. $K_{a} \equiv 0 \operatorname{modp}$ then we have a contradiction.

Prof FlT:
Using the lemma, valid since pta $<=\rangle_{p-1} \operatorname{gcd}(a, p)=1$ (GCDPF), we have

$$
\prod_{k=1}^{\infty} k_{a} \equiv \prod_{k=1}^{p-1} k \bmod p
$$

product ofelets of s Product ofelets. of T.
Let $Q=\prod_{k=1}^{p-1} k=(1)(2) \cdots(p-1)$. Then

$$
Q_{a}{ }^{p-1} \equiv Q \bmod p
$$

Since $\operatorname{gcd}(Q, p)=1(\because Q$ is a product of terms less than a prime $p), Q^{-1}$ exists hence

$$
\begin{aligned}
Q^{-1} Q_{a^{p-1}} & \equiv Q^{-1} Q \text { med } \\
a^{p-1} & \equiv 1 \text { mod } .
\end{aligned}
$$

Recall (FlT): If pta then $a^{p-1} \equiv 1 \bmod p$ (for paprime)
By FlT $\quad 7^{10} \equiv 1 \bmod 11$

$$
\begin{aligned}
& \Rightarrow 7^{90} \equiv 1 \bmod 11 \\
& \Rightarrow 7^{92} \equiv 7^{2} \equiv 49 \equiv 5 \bmod 1 .
\end{aligned}
$$

Option 2:

$$
\begin{aligned}
7^{92} & \equiv 7^{9(10)+2} \bmod 11 \\
& \equiv\left(7^{10}\right)^{9} \cdot 7^{2} \bmod 11 \\
\text { FlT. } & \equiv 19 \cdot 7^{2} \bmod 11 \\
& \equiv 49 \quad \bmod 11 \\
& \equiv 5 \quad \bmod 11
\end{aligned}
$$

Corollary: If p is a prime and $a \in \mathbb{Z}$ then $a^{p} \equiv a \bmod p$ Pf: If plat then $a \equiv 0 \bmod p$ $\Rightarrow a^{p} \equiv 0 \equiv a \bmod p$.
If pta then by FlT:

$$
a^{p-1} \equiv 1 \text { mod } \Rightarrow a^{p} \equiv a \text { mods. }
$$

erollary: If pis a prime number and $[a] \neq[0]$ in \mathbb{Z}_{p}, then $\exists[b] \in \mathbb{Z}_{p}$ s.t. $[a][b]=[1]$.

Pf: Since $[a] \neq[0]$, pta. Hence by FlT $\quad a^{p-1} \equiv 1 \bmod p$

$$
a a^{p-2} \equiv 1 \bmod p
$$

Sensible since $p-2 \geq 0$. Thus, take $[b]=\left[a^{p-2}\right]$.

Cor ollary: If $r=s+k p$ then $a^{r} \equiv a^{s+1} \bmod$ (pisaprime, $a, r, s, k \in \mathbb{Z}$ Pf:

$$
\begin{aligned}
a^{r} & \equiv a^{s+k p} \bmod p \\
& \equiv a^{s}\left(a^{p}\right)^{k} \bmod p \\
& \equiv a^{s}(a)^{k} \bmod p \\
& \equiv a^{s+k} \bmod p .
\end{aligned}
$$

Prove that if $p \nmid a$ and $r \equiv s \bmod (p-1)$ then $a^{r} \equiv a^{s}$ $\bmod p$.
Since $r \equiv 5 \bmod (p-1)$

$$
\begin{aligned}
&(p-1) \mid r-s \\
& \exists k \in \mathbb{Z} \text { s.t. }(p-1) k=r-s \\
& \Rightarrow r=s+(p-1) k \\
& a^{r} \equiv a^{s+(p-1) k} \bmod p \\
&=a^{s}\left(a^{p-1}\right)^{k} \bmod p \\
&(F l T) \equiv a^{s}(1)^{k} \quad \bmod \\
& \because p+a \quad \equiv a^{s} \quad \bmod p
\end{aligned}
$$

Chinese Remainder Theorem (CRT)
Solve

$$
\begin{aligned}
& x \equiv 2 \bmod 7 \\
& x \equiv 7 \bmod 11
\end{aligned}
$$

Using the first condition, write

$$
x=2+7 k
$$

Plug into the second condition

$$
\begin{array}{r}
2+7 k \equiv 7 \bmod \| \\
7 k \equiv 5 \bmod 11
\end{array}
$$

Multiply both sides by 3
Used that $3 \cdot 7 \mathrm{~K} \equiv 15$ modll
ged $(7,11)=1$
to find $7^{\prime \prime}$
$21 k \equiv 4 \bmod 11$
$-k \equiv 4 \bmod 11$
$k \equiv-4 \equiv 7 \mathrm{mod} 11$
$\therefore K=7+11 l$ for some $l \in \mathbb{Z}$

Recall

$$
\begin{aligned}
x & =2+7 k \\
& =2+7(7+11 e)^{\text {vesian } 1} \\
& =51+77 l \\
\therefore x & \equiv 51 \bmod 77
\end{aligned}
$$

Chinese Remainder Theorem $(C R T)$
Solve: $\quad x \equiv 2 \bmod 7$

$$
x \equiv 7 \bmod 11
$$

Condition 1 says

$$
x=2+7 k \text { for some } k \in \mathbb{Z}
$$

Plug into condition 2:

$$
\begin{aligned}
2+7 k & \equiv 7 \bmod 11 \\
7 k & \equiv 5 \bmod 11
\end{aligned}
$$

This is equivalent to

$$
7 k+11 y=5
$$

$$
\begin{array}{cccc:c}
k & y & r & q & \therefore 7(-3)+11(2)=1 \\
0 & 1 & 11 & : & \therefore 7(-15)+11(1)=5 \\
1 & 0 & 7 & : & \therefore D E T 2: k=-15+11 n \\
-1 & 1 & 4 & 1 & \text { for } 11 \\
2 & -1 & 3 & 1 & \text { for all } n \in \mathbb{Z} \text { invested } \\
-3 & 2 & 1 & 1 & 1
\end{array}
$$

$$
\begin{aligned}
\therefore K \equiv-15 & \equiv 7 \bmod 11 \\
k=7 & +11 l \text { for some } l \in \mathbb{Z} . \\
\text { Recall: } x & =2+7 k \\
& =2+7(7+11 l) \\
& =51+77 l . \\
\therefore x & \equiv 51 \bmod 77 \text { is thesol'n. }
\end{aligned}
$$

Theorem (Chinese Remainder Theorem (CRT)). If $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$, then for any choice of integers a_{1} and a_{2}, there exists a solution to the simultaneous congruences

$$
\begin{aligned}
& n \equiv a_{1} \quad\left(\bmod m_{1}\right) \\
& n \equiv a_{2} \quad\left(\bmod m_{2}\right)
\end{aligned}
$$

Moreover, if $n=n_{0}$ is one integer solution, then the complete solution is $n \equiv n_{0}\left(\bmod m_{1} m_{2}\right)$.

Theorem (Generalized CRT (GCRT)). If $m_{1}, m_{2}, \ldots, m_{k}$ are integers and $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ whenever $i \neq j$, then for any choice of integers $a_{1}, a_{2}, \ldots, a_{k}$, there exists a solution to the simultaneous congruences

$$
\begin{array}{cc}
n \equiv a_{1} & \left(\bmod m_{1}\right) \\
n \equiv a_{2} & \left(\bmod m_{2}\right) \\
\vdots & \\
n \equiv a_{k} & \left(\bmod m_{k}\right)
\end{array}
$$

Moreover, if $n=n_{0}$ is one integer solution, then the complete solution is

$$
n \equiv n_{0} \quad\left(\bmod m_{1} m_{2} \ldots m_{k}\right)
$$

Q1. I enjoy trying to discover and write MATH 135 proofs.
A) Strongly disagree
B) Disagree
C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q2. When I have difficulties with MATH 135 proofs, I know I can handle them.
A) Strongly disagree
B) Disagree
C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q3. Which of the following is equal to $[53]^{242}+[5]^{-1}$ in \mathbb{Z}_{7} ?
(Do not use a calculator.)
A) $[5]$
$\bmod 7$
B) $[4]$
C) $[3]$
D) $[2]$
E) $[1]$

$$
\begin{aligned}
& \left.\begin{array}{rlrl}
(\because \ell T \\
(\because \operatorname{gcc}(4,7)=1)
\end{array}\right) \equiv 1^{40} \cdot 16 \bmod 7 \begin{array}{l}
5 \cdot 3 \\
5^{-1} \\
\equiv 3 \bmod 7
\end{array} \begin{array}{ll}
& \equiv 15 \\
& \equiv 1 \bmod 7
\end{array} \\
& \text { Sum: } 5 \bmod 7
\end{aligned}
$$

Theorem (Chinese Remainder Theorem (CRT)). If $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$, then for any choice of integers a_{1} and a_{2}, there exists a solution to the simultaneous congruences

$$
\begin{array}{ll}
n \equiv a_{1} & \left(\bmod m_{1}\right) \\
n \equiv a_{2} & \left(\bmod m_{2}\right)
\end{array}
$$

Moreover, if $n=n_{0}$ is one integer solution, then the complete solution is $n \equiv n_{0}\left(\bmod m_{1} m_{2}\right)$.

Theorem (Generalized CRT (GCRT)). If $m_{1}, m_{2}, \ldots, m_{k}$ are integers and $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ whenever $i \neq j$, then for any choice of integers $a_{1}, a_{2}, \ldots, a_{k}$, there exists a solution to the simultaneous congruences

$$
\begin{array}{cc}
n \equiv a_{1} & \left(\bmod m_{1}\right) \\
n \equiv a_{2} & \left(\bmod m_{2}\right) \\
\vdots & \\
n \equiv a_{k} & \left(\bmod m_{k}\right)
\end{array}
$$

Moreover, if $n=n_{0}$ is one integer solution, then the complete solution is

$$
n \equiv n_{0} \quad\left(\bmod m_{1} m_{2} \ldots m_{k}\right)
$$

Solve

$$
\begin{align*}
& x \equiv 5 \bmod 6 \tag{1}\\
& x \equiv 2 \bmod 7 \tag{2}\\
& x \equiv 3 \bmod 11 \tag{3}
\end{align*}
$$

From (1) $x=5+6 k$ forsome $k \in \mathbb{Z}$.
Pluginto(2) $5+6 k \equiv 2 \bmod 7$
$6 k \equiv-3 \bmod 7$
$-k \equiv-3 \bmod 7$
$k \equiv 3 \bmod 7$
$k=3+7 \ell$ for some $l=\mathbb{Z}$

$$
\therefore x=5+6(3+7 e)
$$

$$
\begin{equation*}
=23+42 l . \tag{4}
\end{equation*}
$$

$\therefore x \equiv 23 \bmod 42$
Now we need to solve

$$
\begin{align*}
& x \equiv 23 \bmod 42 \\
& x \equiv 3 \bmod / 1 \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& \text { Plug (4)into (3) } \\
& 23+42 l \equiv 3 \operatorname{mad} 11 \\
& -2 l \equiv-20 \bmod 11 \\
& \text { 'UseCD uclid } \\
& \because \operatorname{gcck}(-2,11)=1 \quad \therefore l=10+11 \mathrm{~m} \text { for somem } \mathbb{Z} \text {. } \\
& l \equiv 10 \bmod 11 \\
& \because x=23+42 e \text {, } \\
& \Rightarrow x=23+42(10+11 \mathrm{~m}) \\
& =443+462 m \\
& \therefore x \equiv 443 \bmod 462
\end{aligned}
$$

Twists
Solve

$$
\begin{aligned}
& 3 x \equiv 2 \bmod 5 \\
& 2 x \equiv 6 \bmod 7
\end{aligned}
$$

mult byz

$$
6 x=4 \text { moels }
$$

$$
x \equiv 4 \operatorname{modh}
$$

mult. by 4

$$
8 x \equiv 24 \bmod 7
$$

$$
x \equiv 3 \bmod 7
$$

Tuist2:

$$
\begin{aligned}
& x \equiv 4 \bmod 6 \quad \text { (1) } \\
& x \equiv 2 \quad \bmod 8 \quad \text { (2) }
\end{aligned}
$$

(1) $>0 \quad x=4+6 k$ for some $k \in \mathbb{Z}$.
into(2): $4+6 k \equiv 2 \bmod 8$

$$
\begin{aligned}
& 6 k \equiv-2 \bmod 8 \\
& 6 k \equiv 6 \bmod 8
\end{aligned}
$$

Clearly $K=1$ is a solution.
LCTI says $K \equiv 1 \bmod \frac{8}{\operatorname{gal}(6,8)}$ gives 1 Sll

$$
K \equiv 1 \bmod 4
$$

$k=1+4 l$ forgone let.

$$
\begin{aligned}
\therefore x & =4+6(1+4 l) \\
& =10+24 l \\
\therefore \quad x & =10 \bmod 24
\end{aligned}
$$

Example: Solve $x^{2} \equiv 34 \bmod 99$
This implies $991 x^{2}-34$
Note $9199 \therefore 91 x^{2}-34$ by transitivity

$$
=0 x^{2} \equiv 34 \bmod 9
$$

Note $11199 \therefore 11 \mid x^{2}-34$ by transitivity

$$
\begin{aligned}
& \Rightarrow x^{2} \equiv 34 \text { mod ll } \\
& \Rightarrow x^{2} \equiv 1 \text { medal } \\
& \Rightarrow x \equiv \pm 1 \text { med ll }
\end{aligned}
$$

Similarly $x^{2} \equiv 34 \equiv 7 \bmod 9=0 x \equiv \pm 4 \bmod 9$.
This gives 4 systems of equations:

$$
\begin{aligned}
& \begin{cases}x \equiv 1 \bmod 11 \\
x \equiv 4 \bmod 9\end{cases} \\
& \left\{\begin{array}{l}
x \equiv 1 \bmod 11 \\
x \equiv-1 \bmod 11 \\
x \equiv-4 \bmod 9
\end{array}\right.
\end{aligned}\left\{\begin{array}{ll}
x \equiv-1 \bmod 9 \\
x \equiv-4 \bmod 11
\end{array}\right] .
$$

Use CRT 4 times.

$$
\text { (Sol'n } x \equiv 23,32,67,76 \bmod 99)
$$

Splitting the Modulus (SM)
Let m, n be coprime positive integers.
Then for any integers x, a,

$$
\begin{aligned}
& x \equiv a \bmod m \\
& x \equiv a \bmod n
\end{aligned}
$$

Splitting the Modulus (SM)
Let m, n be coprime positive integers.
Then for any integers x, a,
$x \equiv a \bmod m$ (simultaneously) $\Leftrightarrow x \equiv a \bmod m n$
$x \equiv a \bmod n$
PF: $(\Delta t) \quad x \equiv a \operatorname{modmn}$
$\Rightarrow m n \mid x-a$
$\Rightarrow x \equiv a \bmod m \quad \because m / m n^{2} m n l x a$ sob transitivitymito \& $x \equiv a \bmod$ similarly.
\Leftrightarrow Assume $x \equiv a \bmod m$ \& $x \equiv a \operatorname{modn}$ Note $x=a$ is a solution. Sine $\operatorname{gad}(m, n)=1$ byCRT $x \equiv a \operatorname{modmn}$ gives all solutions.

For what integers is $x^{5}+x^{3}+2 x^{2}+1$ divisible by 6 ?
wont to solve

$$
x^{5}+x^{3}+2 x^{2}+1 \equiv 0 \bmod 6 .
$$

By (SM)

$$
\begin{aligned}
& x^{5}+x^{3}+2 x^{2}+1 \equiv 0 \bmod 2 \\
& x^{5}+x^{3}+2 x^{2}+1 \equiv 0 \bmod 3
\end{aligned}
$$

Use equation 1 and plugin $x \equiv 0 \bmod 2$ $\& x \equiv 1 \bmod 2$. In both loses

$$
x^{5}+x^{3}+2 x^{2}+1 \equiv 1 \bmod 2
$$

$\therefore \quad x^{5}+x^{3}+2 x^{2}+1$ is never divisibleby 6 .

Cryptography

- The practice/study of secure communication.

Eve
Alice

NB: Acryptosystem should not depend on the secrecy of the methods of encryption \& decryption (except for possibly secret Keys).

Private Key Cryptography
Agree before hand on a secret encryption \& decryption Key.
Ex: Caesar Cipher (ASCII Table) Map plaintext M to

$$
C \equiv M+3 \bmod 26 \quad \cos c<26
$$

$$
\begin{array}{rlllll}
\text { Et: } A & p & p & L & E \\
00 & 15 & 15 & 11 & 04 \\
03 & 18 & 18 & 14 & 07 \\
D & S & S & 0 & H
\end{array}
$$

Cons of Private Key Cryptography.

- Tough to shore private Key before hand.
- Too many private keys to share.
- Difficult to communicate with stronger:

Public Key Cryptography.
Analogy: Pad lock

- Easy to lock
- Difficult to unlock without a Key

Eve
Alice $\frac{1}{\text { publickeye }}$ Bob
privatekeyd

$$
M \mapsto C
$$

Decrypt C send C using encryption to Musing Key d.

- Encryption \& Decryption areinverses d \& e are different
- Only dis secret.

Exponentiation Ciphers
Alice chooses a (kine) prime p and an integer e satisfying

$$
1<e<p-1 \quad \& \operatorname{gcd}(e, p-1)=1
$$

Alice makes (e, p) public.
Alice computes d, an integer via $1<d<p-1 \quad \& \quad e d \equiv \mid \bmod p-1$
Note: d con be found quickly using $E \in A$.
Note: Inverse exists $\because \operatorname{gal}(e, p-1)=1$.
To send a message $0 \leq M<p$ to Alice, Bob computes C s.t. $0 \leq C<p \quad \& \quad C \equiv M^{e} \bmod p$ Bob sends C to Alice \& Alice computes $R \equiv C^{\text {d }} \bmod$? with $O \leq R<p$.

Recall Corollary to FLT: If $p \nmid a$ and $r \equiv s \bmod p-1$ then $a^{r} \equiv a^{s} \bmod p$

Last Time: Let p be a prime, e an integer satisfying

$$
1<e<p-1 \quad \text { and } \quad \operatorname{gcd}(e, p-1)=1
$$

Let d be an integer such that

$$
1<d<p-1 \quad \text { and } \quad e d \equiv 1 \quad \bmod p-1
$$

Let M be an integer between 0 and $p-1$ inclusive. Compute C an integer satisfying

$$
0 \leq C<p \quad \text { and } \quad C \equiv M^{e} \quad \bmod p
$$

and let $R \equiv C^{d} \bmod p$ be an integer with $0 \leq R \leq p-1$.

Corollary: $R=M$
Prof proposition 1:
If pl then $M=0$. Since $O \subseteq M \leqslant p-1$ Then $C \equiv \mu^{e} \equiv 0 \bmod p$ and so $C=0: 0 \leq c<p$. Then $R \equiv C^{d} \equiv 0$ made and so $R=0 \because 0 \leq R<p$. I foot M then

$$
\begin{aligned}
R & \equiv C^{d} \operatorname{modp} \\
& \equiv\left(M^{e}\right)^{d} \bmod p \quad\left(\text { Real } e d \equiv \bmod p^{-1}\right) \\
& \equiv M^{e d} \bmod p \\
& \equiv M \bmod p \quad(\text { By corollary to } F l T)
\end{aligned}
$$

Pfof Corollary: Since $0 \leq R, M \leq P-1$, and $P \mid R-\mu$, we have that $R-\mu=0$ ie $R=\mu$.

BSA
Alice chooses distinct primes $p \& q$ and an integer e satisfying

$$
1<e<(p-1)(q-1) \& \operatorname{gcd}(e,(p-1)(q-1))=1
$$

Alice's private Key d is an in teger satisting

$$
1<d<(p-1)(q-1) \& e d \equiv 1 \bmod (p-1)(q-1)
$$

Bob wants to send a message M, an integer between 0 \& $p q-1$ inclusive. He computes C an integer satisfying

$$
O \leq C<p q \text { and } C \equiv M^{e} \bmod p q
$$

Alice computes $R \equiv C^{d} \bmod p q$ with

$$
0 \leq R \leq p q-1
$$

$$
\begin{aligned}
& \text { Alice } \frac{\text { Eve }}{(e, p q)} \text { Bob } \\
& \text { private } C \equiv \mu^{e} \text { mod iq } \\
& \text { Compute } R \equiv C^{1} \text { madpq. } \\
& C
\end{aligned}
$$

Proposition 2: $R=M$
Pf! Since $e d \equiv 1 \bmod (p-1)(q-1)$, transitivity of divisibility says
$e d \equiv 1 \bmod p^{-1} \& e d \equiv 1 \bmod q-1$
Since $\operatorname{gcd}(e,(p-1)(q-1))=1, \operatorname{GCDPF}$ states that $\operatorname{gcd}(e,(p-1))=1=\operatorname{gcd}(e,(q-1))$ Sine $C \equiv M^{e} \bmod p q$ (SM) states
$C \equiv \mu^{e} \bmod p \& C \equiv M^{e} \operatorname{modq}$.
Similarly, by $(S M), R \equiv C^{d} \bmod p \quad \& R \equiv C^{d} \operatorname{modq}$
By proposition 1:
$R \equiv M \bmod p \quad \& R \equiv M \bmod q$
By $(S M)$ or (CRT) we have

$$
R \equiv \mu \bmod p q
$$

BOT since $0 \leq R, M \leq p q-1$ we have that $R=M$.

Why is this more secure?
Before: given (e,p) we con easily compute $p-1$. Hence con easily compute $d \equiv e^{-1} \bmod p-1$
Now: Given ($e, p q$) we cannot easily compute $\left.(p-1)_{q}-1\right)$ UNLESS we factor $p q$.
Notes: We denote $n=p q$ and

$$
\phi(n)=(p-1)(q-1)
$$

(ψ is called Euler's toitent function or phi-funtion)

$$
\sum_{\substack{p \leq x \\ \text { pisprine. }}} 1 \sim \frac{x}{\log (x)} \quad \text { PRIM NUMBER }
$$

Let $p=2, q=11$ and $e=3$

1. Compute $n, \phi(n)$ and d.
2. Compute $C \equiv M^{e} \bmod n$ when $M=8$
3. Compute $M \equiv C^{d} \bmod n$ when $C=6$
4.

$$
\begin{aligned}
& n=22 \quad \phi(n)=(2-1)(11-1)=10 \\
& 3 d \equiv 1 \bmod 10 \\
& d \equiv 7 \bmod 10 \quad \text { so } d=7
\end{aligned}
$$

2. $C \equiv M^{e} \bmod 22$

$$
\begin{aligned}
& \equiv 8^{3} \bmod 22 \\
& \equiv 8.64 \bmod 22 \\
& \equiv 8(-2) \bmod 22 \\
& \equiv-16 \quad \bmod 22 \\
& \equiv 6 \quad \bmod 22 .
\end{aligned}
$$

3.

$$
\begin{aligned}
M & \equiv C^{d} \bmod 22 \\
& \equiv 6^{7} \bmod 22 \\
& \equiv 6 \cdot\left(6^{3}\right)^{2} \bmod 22 \\
& \equiv 6 \cdot(216)^{2} \bmod 22 \\
& \equiv 6(-4)^{2} \bmod 22 \\
& \equiv 6 \cdot 16 \bmod 22 \\
& \equiv 6(-6) \bmod 22 \\
& \equiv-36 \bmod 22 \\
& \equiv 8 \quad \bmod 22 .
\end{aligned}
$$

Complex Numbers
Current view $\mathbb{N} \leq \mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R}$.
These sets can be thought of as helping ustasolve polynomial equations.
However $x^{2}+1=0$ has no solution in any of these sets.

Def': A complex number (in standard form) is an expression of the form $x+y_{i}$ where $x, y \in \mathbb{R}$ and i is the imaginary unit. Denote the set of complex numbers by

$$
\mathbb{C}:=\{x+y i: x, y \in \mathbb{R}\} .
$$

Es: $1+2 i, 3 i, \sqrt{13}+\pi i, 2+0 i$ Noted $\mathbb{R} \subseteq \mathbb{C}$.
If $z=x+y i$ then $x=R e(z)=\{(z)$ real part.

$$
y=\ln (z)=\tilde{J}(z) \text { imaginary. }
$$

Two complex numbers $z=x+y i$ and $\omega=u+v i$ are equal if

$$
x=u \quad \& \quad y=v .
$$

A complex number z is
-purely real if $\ln (z)=0$ ie $z=x$

- Purely imaginary if $\operatorname{Re}(z)=0$ ie $z=y i$

We turn © into a ring by defining,$+-\cdots \cdot b$

$$
\begin{aligned}
& (x+y i) \pm(u+v i)=(x \pm u)+(y \pm v) i \\
& (x+y i)(u+v i)=(x u-v y)+(x v+u y) i
\end{aligned}
$$

By this def $\quad \therefore$.

$$
i^{2}=i \cdot i=(0+i)(0+i)=-1+0 i=-1
$$

So i is a solution to $x^{2}+1=0$.
With this, multiplication con be rememberelt

$$
\begin{aligned}
(x+y i)(u+v i) & =x u+x v i+u y i+v y i^{2} \\
& =x u-v y+(x v+u y) i
\end{aligned}
$$

Ex:

$$
\begin{aligned}
(1+2 i)+(3+4 i) & =4+6 i \\
(1+2 i)-(3+4 i) & =-2-2 i \\
(1+2 i)(3+4 i) & =3-8+(4+6) i \\
& =-5+10 i
\end{aligned}
$$

Commutative
Rings (hence (C) have the following properties

1. Associativity (Let $v, w, z \in \mathbb{C} \& z=x+y i)$

$$
\begin{aligned}
(v+w)+z & =v+(w+z) \\
\&(v w) z & =v(w z)
\end{aligned}
$$

2. Commutativity

$$
w+v=v+w \quad \& \quad w v=v w
$$

3. Identities

$$
z+O=z \quad \& \quad z \cdot 1=z \text { where }
$$

$$
0=0+0 i \quad \& 1=1+0 i
$$

4. Additive inverses $z+(-z)=0$ where $-z=-x-y i$
5. Distributive Property

$$
z(w+v)=z w+z v
$$

Weturn \mathbb{C} into a field by defining the inverse operation for non zero complex numbers

$$
\left(x+y_{i}\right)^{-1}:=\frac{x}{x^{2}+y^{2}}-\frac{y}{x^{2}+y^{2}} i
$$

Note: If $z \in \mathbb{C} \& z \neq 0$ then

$$
z \cdot z^{-1}=1 \quad \text { (Exercise) }
$$

For complex numbers u, v, w, z with v, z nonzero, the cebove is consistent with the usual fraction rules'.

$$
\frac{u}{v}+\frac{w}{z}=\frac{u z+v w}{v z} \& \frac{u}{v} \cdot \frac{w}{z}=\frac{w w}{v z}
$$

For $k \in \mathbb{N}, z \in \mathbb{C}$ define $(z \neq 0)$

$$
z^{0}=1 \quad z^{\prime}=z \quad \& \quad z^{k+1}=z \cdot z^{k}
$$

Define $z^{-k!}=\left(z^{-1}\right)^{k}$

Usual exponent rules hold ie

$$
\left(z^{m}\right)^{n}=z^{m n} \& z^{m} \cdot z^{n}=z^{m+n}
$$

(for $m, n \in \mathbb{Z}$).
Ex: Write $\frac{1+2 i}{3-4 i}$ in standard form Solon!.

$$
\begin{aligned}
\frac{1+2 i}{3-4 i} & =(1+2 i)(3-4 i)^{-1} \\
& =(1+2 i)\left(\frac{3}{3^{2}+4^{2}}-\frac{(-4)}{3^{2}+4^{2}} i\right) \\
& =(1+2 i)\left(\frac{3}{25}+\frac{4}{25} i\right) \\
& =\frac{3}{25}-\frac{8}{25}+\left(\frac{4}{25}+\frac{6}{25}\right) i \\
& =\frac{-5}{25}+\frac{10}{25} i \\
& =\frac{-1}{5}+\frac{2}{5} i
\end{aligned}
$$

Express the following in standard form:

$$
\begin{aligned}
& \text { 1. } \frac{(1-2 i)-(3+4 i)}{5-6 i}=S \\
& \text { 2. } i^{2015}=T
\end{aligned}
$$

I.

$$
\begin{aligned}
S & =((1-2 i)-(3+4 i))(5-6 i)^{-1} \\
& =(-2-6 i)\left(\frac{5}{5^{2}+6^{2}}-\frac{(-6)}{5^{2}+6^{2}}\right) \\
& =(-2-6 i)\left(\frac{5}{61}+\frac{6}{61} i\right) \\
& =\left(\frac{-10}{61}+\frac{36}{61}\right)+\left(\frac{-12}{61}-\frac{30}{61}\right) i \\
& =\frac{26}{61}-\frac{42}{61} i
\end{aligned}
$$

2.

$$
\begin{array}{rlrl}
T & =i^{2015} & i^{2}=-1 \\
& =\left(i^{503} \cdot i^{3}\right. & i^{4}=1 \\
& =1^{503} \cdot i^{2} \cdot i \\
& =-i=0-i &
\end{array}
$$

Q1. I enjoy trying to discover and write MATH 135 proofs.
A) Strongly disagree
B) Disagree
C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q2. When I have difficulties with MATH 135 proofs, I know I can handle them.
A) Strongly disagree
B) Disagree
C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q3. How many integers x satisfy all of the following three conditions?

$$
x=6 \bmod \frac{A}{7} \quad \begin{aligned}
& x \equiv 6 \quad(\bmod 13) \\
& 4 x \equiv 3 \quad(\bmod 7) \\
& -1000<x<1000
\end{aligned}
$$

A) 1
B) 7
C) 13 By CRT OR S
$x=6+91 k$
D) 22
E) 91

$-1000<G+91 K<1000$

$-1006<91 k<994$
$91 \cdot 10=910$
$-11 \leq k \leq 10$
$91 \cdot 11=1001$
22 solutions!

Ex: Solve

$$
z^{2}-z+1=0 \quad \text { for } z \in \mathbb{C}
$$

Sol'n:

$$
\begin{aligned}
z & =\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(1)}}{2(1)} \\
& =\frac{1 \pm \sqrt{-3}}{2} \\
& =\frac{1 \pm \sqrt{3} i}{2}
\end{aligned}
$$

Q: What are the solutions to

$$
z^{2}=-r \quad \text { for } r \in \mathbb{R}, r \geq 0 \text { ? }
$$

Sol'n. Let $z=x+y i$ with $x, y \in \mathbb{R}$. Then

$$
\left.\begin{array}{rl}
\begin{array}{r}
r=z^{2}= \\
\therefore \\
\therefore 2 x y=0 \\
\\
\\
\quad
\end{array} x^{2}-y^{2}=-r
\end{array}\right\} \begin{aligned}
x^{2}-y^{2} & +2 x y i \\
=0 x=0 & \text { and } \\
-y^{2}=-r & =0 y^{2}=r \\
& \Rightarrow D y= \pm \sqrt{r}
\end{aligned} \begin{aligned}
\therefore z= \pm \sqrt{r} i
\end{aligned}
$$

Note! This validates the usage of

$$
\sqrt{-r}= \pm \sqrt{r} i
$$

Corollary: The quadratic formula still works for complex numbers.

Def'n: The complex conjuggite of a complex number $z=x+y i$ is $\bar{z}:=x-y i$

Solve $z^{2}=i \bar{z} \quad$ for $z \in \mathbb{C}$
Let $z=x+y i$ for $x, y \in \mathbb{R}$.

$$
\begin{aligned}
& (x+y i)^{2}=i(x-y i) \\
& x^{2}-y^{2}+2 x y i=y+x i \\
& x^{2}-y^{2}=y \quad(1) \\
& 2 x y=x \quad \Rightarrow 2 x y-x=0 \\
& x(2 y-1)=0 \\
& x=0 \text { OR } y=\frac{1}{2} .
\end{aligned}
$$

Subinto (1)
(x=0) $-y^{2}=y \Rightarrow y^{2}+y=0 \Rightarrow \quad y=0$ or- 1
$y=\frac{1}{2} \quad x^{2}-\left(\frac{1}{2}\right)^{2}=\frac{1}{2}=0 x^{2}=\frac{3}{4} \quad x= \pm \frac{\sqrt{3}}{2}$.

$$
\therefore z \in\left\{0,-i, \frac{\sqrt{3}}{2}+\frac{1}{2} i,-\frac{\sqrt{3}}{2}+\frac{1}{2} i\right\} .
$$

Find a real solution to

$$
6 z^{3}+(1+3 \sqrt{2} i) z^{2}-(11-2 \sqrt{2} i) z-6=0
$$

Take $z=r \in \mathbb{R}$

$$
\begin{aligned}
& 6 r^{3}+r^{2}+3 \sqrt{2} i r^{2}-11 r+2 \sqrt{2} i r-6=0 \\
& \Rightarrow 3 \sqrt{2} r^{2}+2 \sqrt{2} r=0 \Rightarrow r(3 r+2)=0 \\
& 6 r^{3}+r^{2}-11-6=0 \quad r=0 \text { OR } r=\frac{-2}{3}
\end{aligned}
$$

$r=0$ is note solution to $6 r^{3}+r^{2}-11 r-6=0$
$r=-\frac{2}{3}$ is a solution to $6 r^{3}+r^{2}-11--6=0$.
$\therefore z=\frac{-2}{3}$ is a relalsolution.

Properties of Conjugates (PCJ) Let $z, w \in \mathbb{C}$. Then

1. $\overline{z+\omega}=\bar{z}+\bar{\omega}$
2. $\bar{z} \bar{\omega}=\bar{z} \bar{\omega}$
3. $\overline{\bar{z}}=z$
4. $z+\bar{z}=2 \operatorname{Re}(z)$
5. $z-\bar{z}=2 i \ln (z)$

Pf: Let $z=x+y i \quad \& w=u+v i$.
(3) $\overline{\bar{z}}=(\overline{\overline{x+y i}})=\overline{(x-y i})=x+y i=z$.

$$
\text { (2) } \begin{aligned}
\overline{z \omega} & =\frac{(x+y i)(u+v i)}{((x u-v y)+(x v+u y) i} \\
& =x u-v y-(x v+u y) i \\
\bar{z} \bar{\omega}=(x-y i)(u-v i) & =x u-v y+(-x v-u y) i \\
& =\frac{z \omega}{z \omega}
\end{aligned}
$$

Properties of Corjugates (DCT) Let $z w \in \mathbb{C}$.

1. $\overline{z+\omega}=\bar{z}+\bar{\omega}$
2. $\bar{z} \bar{\omega}=\bar{z} \bar{\omega}$
3. $\overline{\bar{z}}=z$
4. $z+\bar{z}=2 \operatorname{Re}(z)$
5. $z-\bar{z}=\operatorname{Li}(m(z)$.

Prove the following for $z \in \mathbb{C}$

1. $z \in \mathbb{R}$ if and only if $z=\bar{z}$.
2. z is purely imaginary if and only if $z=-\bar{z}$.

$$
\text { 1. } \Rightarrow \text { Let } z=x+0 i \in \mathbb{R} \text {. }
$$

Then $\bar{z}=x-0 i=x=z$
\& Let $z=x+y i^{-k}$. Assume

$$
\begin{aligned}
z & =\bar{z} \\
x+y i & =x-y i \\
\Rightarrow y & =-y \\
\Rightarrow 2 y & =0 \\
\Rightarrow y & =0 \quad \therefore z=x+0 i \in \mathbb{R} .
\end{aligned}
$$

2. Z is purely imaginary

$$
\begin{aligned}
& \Leftrightarrow i z \in \mathbb{R} \\
& B y_{K}^{\prime} \Rightarrow i z=i z \\
& \Leftrightarrow i z=-i \bar{z} \\
& \Leftrightarrow z=-\bar{z}
\end{aligned}
$$

Def' n : The modulus of $z=x+y i$ is the non-negative real number

$$
|z|=|x+y i|:=\sqrt{x^{2}+y^{2}}
$$

Properties of Modulus (PM)

1. $|\bar{z}|=|z|$
2. $z \bar{z}=|z|^{2}$
3. $|z|=0 \quad \Leftrightarrow z=0$
4. $|z \omega|=|z||\omega|$
5. $|z+w| \leqslant|z|+|\omega| \Delta$ inequality.

Prof 4: Let $z=x+y i \quad \& w=u+v i$
Suffices to show $|z u|^{2}=|z|^{2}|w|^{2}$

$$
\begin{aligned}
|z u|^{2} & =|(x+y i)(u+v i)|^{2} \\
& =|(x u-v y)+(x v+u y) i|^{2} \\
& =(x u-v y)^{2}+(x v+u y)^{2}
\end{aligned}
$$

$$
\begin{aligned}
|z w|^{2} & =|(x+y i)(u+v i)|^{2} \\
& =|(x u-v y)+(x v+u y) i|^{2} \\
B y d f^{\prime} n & =(x u-v y)^{2}+(x v+u y)^{2} \\
\text { of }|z| . & =x^{2} u^{2}-2 x u v y+v^{2} y^{2} \\
& +x^{2} v^{2}+2 x c u v y+u^{2} y^{2} \\
& =x^{2} u^{2}+x^{2} v^{2}+v^{2} y^{2}+u^{2} y^{2} \\
|z|^{2}|w|^{2} & =|x+y i|^{2}|u+v i|^{2} \\
& =\left(x^{2}+y^{2}\right)\left(u^{2}+v^{2}\right) \\
& =x^{2} u^{2}+x^{2} v^{2}+y^{2} u^{2}+y^{2} v^{2}=|z|^{2}
\end{aligned}
$$

Prof 5 (Exercise)
Revisit Inverses:
If $z=x+y i$ then $z^{-1}=\frac{x}{x^{2}+y^{2}}-\frac{y}{x^{3}+y^{2}} i$ Note $z^{-1}=\frac{1}{\bar{z}} \frac{\bar{z}}{\bar{z}}=\frac{\bar{z}}{z \cdot \bar{z}}=\frac{\bar{z}}{|z|^{2}}$.

Pictures! (Argand Diagrams)

Polar Coordinates
A point in the plane corres ponds to a length and an angle.

Es: $(r, \theta)=\left(3, \frac{\pi}{4}\right)$

$$
\frac{3 / 13 \cdot \sin \frac{\pi}{4}=\frac{3}{\sqrt{2}}}{3 \cos \frac{\pi}{4}}=\frac{3}{\sqrt{2}}
$$

Corresponds to $3 \cos \frac{\pi}{4}+i \cdot 3 \sin \frac{\pi}{4}$

$$
=\frac{3}{\sqrt{2}}+\frac{3}{\sqrt{2}} i
$$

Given $z=x+y i$

$$
r=|z|=\sqrt{x^{2}+y^{2}}
$$

$\theta=\arccos \left(\frac{x}{r}\right)=\arcsin \left(\frac{y}{r}\right)=\arctan \left(\frac{y}{x}\right)$
Ex: $\quad z=\sqrt{6}+\sqrt{2} i$

$$
r=\sqrt{\sqrt{6}^{2}+\sqrt{2}^{2}}=\sqrt{8}=2 \sqrt{2} .
$$

$\theta=\arctan \left(\frac{\sqrt{2}}{\sqrt{6}}\right)=\arctan \left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}$.
$\frac{2}{\sqrt{3}} \operatorname{los}^{2} \quad \therefore z$ Corresponds to $(1, \theta)=\left(2 \sqrt{2}, \frac{\pi}{6}\right)$
Deft: The polar form of a complex number z is $z=r(\cos \theta+i \sin \theta)$ where r is the modulus of z and θ is called an argument of z $(\arg (z)=\theta)$
Denote $\operatorname{cis} \theta:=\cos \theta+i \sin \theta$ Ex: $z=\sqrt{6}+\sqrt{2} i=2 \sqrt{2}(\cos \pi / 6+i \sin \pi / 6)$

Express the following in terms of polar coordinates:

1. -3
2. $1-i$

Triangle Inequality: Let $z, w \in \mathbb{C}$. Then $|z+w| \leq$ $|z|+|w|$.

Proof: It suffices to prove that

$$
|z+w|^{2} \leq(|z|+|w|)^{2}=|z|^{2}+2|z w|+|w|^{2}
$$

since the modulus is a positive real number. Using the Properties of Modulus and the Properties of Conjugates, we have

$$
\begin{array}{rlrl}
|z+w|^{2} & =(z+w)(\overline{z+w}) & \mathrm{PM} \\
& =(z+w)(\bar{z}+\bar{w}) & & \text { PCJ } \\
& =z \bar{z}+z \bar{w}+w \bar{z}+w \bar{w} & & \\
& =|z|^{2}+z \bar{w}+\overline{z \bar{w}}+|w|^{2} & & \text { PCJ and PM }
\end{array}
$$

Now, from Properties of Conjugates, we have that

$$
z \bar{w}+\overline{z \bar{w}}=2 \Re(z \bar{w}) \leq 2|z \bar{w}|=2|z w|
$$

and hence

$$
|z+w|^{2}=|z|^{2}+z \bar{w}+\overline{z \bar{w}}+|w|^{2} \leq|z|^{2}+2|z w|+|w|^{2}
$$

completing the proof.

Diagram:

Express the following in terms of polar coordinates:

1. -3
2. $1-i$
I.

$$
\begin{aligned}
z & =-3 \\
r & =1-31=3 \\
e & =\arctan (0)=0 \\
-3 & =3(\cos (0)+i \sin (0)) x
\end{aligned}
$$

actually, $\theta=0+\pi$.

$$
-3=3(\cos \pi+i \sin \pi)
$$

2.

$$
\begin{array}{rl}
1-i & r=|1-i|=\sqrt{1^{2}+1^{2}}=\sqrt{2} \\
1-i & =\sqrt{2}\left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right) \\
& =\sqrt{2}\left(\cos \left(\frac{7 \pi}{4}\right)+i \sin \left(\frac{7 \pi}{4}\right)\right) \\
& =\sqrt{2} \operatorname{cis}\left(\frac{7 \pi}{4}\right)
\end{array}
$$

1. Write $\operatorname{cis}(15 \pi / 6)$ in standard form.
2. Write $-3 \sqrt{2}+3 \sqrt{6} i$ in polar form.
3.

$$
\begin{aligned}
\cos \left(15 \frac{\pi}{6}\right) & =\cos \left(\frac{5 \pi}{2}\right)+i \sin \left(\frac{5 \pi}{2}\right) \\
& =i
\end{aligned}
$$

2.

$$
\begin{aligned}
& r=|-3 \sqrt{2}+3 \sqrt{6} i| \\
&=\sqrt{(-3 \sqrt{2})^{2}+(3 \sqrt{6})^{2}} \\
&=\sqrt{18+54} \\
&=\sqrt{72} \\
&=6 \sqrt{2} \\
&-3 \sqrt{2}+3 \sqrt{6} i=6 \sqrt{2}\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \\
& 2 \operatorname{cin}^{2} \frac{2 \pi}{3} \quad=6 \sqrt{2} \operatorname{Cis}\left(\frac{\pi}{3}\right)
\end{aligned}
$$

$$
\frac{\sqrt{3} h^{2} k^{2}+\frac{\pi}{3}}{131}
$$

Polar Multiplication of Complex Numbers If $z_{1}=r_{1} \operatorname{cis} \theta, \quad \& z_{2}=r_{2} \operatorname{cis} \theta_{2}$ Then $z_{1} z_{2}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)$
Pf:

$$
\begin{aligned}
z_{1} z_{2}= & r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
= & r_{1} r_{2}\left(\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right. \\
& +i\left(\cos \theta_{1} \sin \theta_{2}+\sin \theta_{1} \cos \theta_{2}\right. \\
= & r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)_{1}\right.
\end{aligned}
$$

Cig
Corollary: Multiplication by $i=\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)$ gives a rotation by $\frac{\pi}{2}$.

$$
\text { Ex: } \begin{aligned}
& (\sqrt{6}+\sqrt{2} i)(-3 \sqrt{2}+3 \sqrt{6} i) \\
= & 2 \sqrt{2} c 15\left(\frac{\pi}{6}\right) \cdot 62 \sqrt{2} \operatorname{css}\left(2 \frac{\pi}{3}\right) \\
\text { PMCV } & 24 \mathrm{Cls}\left(\pi / 6+\frac{\pi}{3}\right) \\
= & 24\left(15\left(5 \frac{1}{6}\right)\right. \\
= & 24\left(-\frac{\sqrt{3}}{2}+\frac{i}{2}\right) \\
= & (-12 \sqrt{3}+12 i) \\
&
\end{aligned}
$$

De Moire's Theorem If $\theta \in \mathbb{R}$ \& $n \in \mathbb{Z}$ then

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)
$$

Pf: First note that when $n=0$,

$$
\begin{aligned}
& (\cos \theta+i \sin \theta)^{0}=1 \\
& \cos (0 \cdot \theta)+i \sin (0 \cdot \theta)=1
\end{aligned}
$$

Now, if $n<0$, write $n=-m$ for some $m \in$

$$
\begin{aligned}
(\cos \theta+i \sin \theta)^{n} & =(\cos \theta+i \sin \theta)^{-m} \\
& =\left((\cos \theta+i \sin \theta)^{-1}\right)^{m} \\
& =\left(\frac{\cos \theta-i \sin \theta}{\cos ^{2} \theta+\sin ^{2} \theta}\right)^{m} \\
& =(\cos \theta-i \sin \theta)^{m} \\
& =(\cos (-\theta)+i \sin (-\theta))^{m}
\end{aligned}
$$

Thus, it suffices to prove DMT with a positive exponent.

De Moire's Theorem
Let $\theta \in \mathbb{R}$ \& $n \in \mathbb{Z}$. Then

$$
\left.(\cos \theta)^{n}=\operatorname{cisc} \theta\right)
$$

Pf! From work yesterday, it suffice. to prove the claim for $n \in \mathbb{N}$.
Proof by induction on n.
Base Case: $n=1$

$$
\operatorname{cis}(n \theta)=\operatorname{cis} \theta=(\operatorname{cis} \theta)^{\prime}=(\cos \theta)^{n} .
$$

IH: Assume that

$$
(\operatorname{cis} \theta)^{k}=\operatorname{Cis}(k \theta)
$$

for some $K \in \mathbb{N}$
IStep: WANT $(\operatorname{Cis} \theta)^{k+1}=\operatorname{Cis}((k+1) \theta)$

$$
\begin{aligned}
L H=(\operatorname{Cis} \theta)^{k+1} & =(\operatorname{cis} \theta)^{k}(\operatorname{cis} \theta) \\
& =\operatorname{Cis}(k \theta) \operatorname{cis}(\theta) \\
\operatorname{PMCN} & =\operatorname{Cis}(k \theta+\theta) \\
& =\operatorname{Cis}((k+1) \theta)
\end{aligned}
$$

\therefore by POMI (ci set $=\operatorname{cish} \theta) \forall n \in \mathbb{N}$.

Corollary: If $z=r \operatorname{cis} \theta$ then

$$
z^{n}=r^{n} \operatorname{cis}(n \theta)
$$

Write $(\sqrt{3}-i)^{10}$ in standard form.
Convert $\sqrt{3}-i$ to polar Coordinates.

$$
\begin{array}{rll}
\sqrt{3}-i & =2\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right) \quad \because 2=|\sqrt{3}-i| \\
& =2 \operatorname{cis}\left(-\frac{\pi}{6}\right) & \frac{\sqrt{3}}{2 \pi} \sqrt{3}-1 \\
& =2 \operatorname{cis}\left(\frac{1 \pi}{6}\right) &
\end{array}
$$

$$
\begin{aligned}
& \text { C } 2 \operatorname{cis}\left(11 \frac{1}{6}\right. \\
& \frac{2 / \pi / 3}{1} \sqrt{3}
\end{aligned}
$$

$$
\varnothing^{\text {DAT }}
$$

$$
=2^{10} \operatorname{cis}\left(\frac{110}{6} \pi\right)
$$

$$
=2^{10} \operatorname{cis}\left(\frac{55}{3} \pi\right)
$$

$$
=2^{10} \cos \left(9(2 \pi)+\frac{\pi}{3}\right)
$$

$$
=2^{10} \cos \left(\frac{\pi}{3}\right)
$$

$$
=2^{10}\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)
$$

$$
=2^{9}+2^{9} \sqrt{3} i
$$

$$
=512+512 \sqrt{3} i
$$

Complex Exponential Function ${ }^{12884}$
For real θ, define

$$
e^{i \theta}:=\cos \theta+i s m \theta=\operatorname{cis} \theta
$$

Note: Can write zen as zr e $e^{i \theta}$ where $r=|z| \& \theta$ is an argumetotz
Q:. Why this def'n?
Reason 1: Exponent Laws Work!

$$
e^{i \theta} \cdot e^{i \alpha}=e^{i(\theta+\alpha)} \text { PM CU) }
$$

$$
n \in \mathbb{Z} \quad\left(e^{i \theta}\right)^{n}=e^{i n \theta} \quad(D M T)
$$

Reason 2: Derivative wot θ

$$
\begin{aligned}
\frac{d}{d \theta}(\cos \theta+i \sin \theta) & =-\sin \theta+i \cos \theta \\
& =i(\cos \theta+i \sin \theta) \\
& =i e^{i \theta}
\end{aligned}
$$

Reason 3: Power Series

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}!-\cdots \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}!}{4!}-\cdots
\end{aligned}
$$

Using these,
$e^{i x}=\cos x+i \sin x$ Formula.
If $\theta=\pi$ then

$$
e^{i \pi}=\cos \pi+i \sin \pi=-1
$$

Ex: Write $\left(2 e^{11 \pi i / 6}\right)^{6}$ in standard form.
Sol'n: By exponentrules (DMT)

$$
\begin{aligned}
\left(2 e^{11 \pi i / 6}\right)^{6} & =2^{6} e^{11 \pi i} \\
& =2^{6}(\cos (11 \pi)+i \sin (1 \pi \pi)) \\
& =2^{6}(-1+0 i) \\
& =-64 .
\end{aligned}
$$

Solve:

$$
\text { ave: } \begin{aligned}
z^{6}+2 z^{3}-3 & =0 \\
\left(z^{3}\right)^{2}+2 z^{3}-3 & =0 \\
\left(z^{3}-1\right)\left(z^{3}+3\right) & =0 \\
z^{3}=1 \quad \text { OR } \quad z^{3} & =-3
\end{aligned}
$$

Q: Can we solve $z^{n}=w$ for a fixed $\omega \in \mathbb{C}$?
Note: Saw this with $n=2 \& w=-r$.
Ex: Solve $z^{6}=-64$
Sorn: $2 e^{\prime \prime \pi i / 6}$ was asolution.
$\pm 2 i$ are 20 there examples.
How do we find solutions ingeneral?
Ans: Write $z=r e^{i \theta}$

$$
\begin{aligned}
z^{6}=r^{6} e^{i 6 \theta} & =-64 \\
\left|r^{6}\right| e^{i 6 \theta}| | & =64 \\
|r|^{6} & =64 \quad(: r>0) \\
\Rightarrow r & =2
\end{aligned}
$$

Q1. I enjoy trying to discover and write MATH 135 proofs.
A) Strongly disagree
B) Disagree
C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q2. When I have difficulties with MATH 135 proofs, I know I can handle them.
A) Strongly disagree
B) Disagree
C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q3. What is the value of $\left|(\overline{-\sqrt{3}+i})^{5}\right|$?

B) 27
C) 32
E) $64=\mid\left(\square(-\sqrt{3}-i)^{5}|(-\sqrt{3}-i)|^{3}\right.$

Last Time: Solve $z^{6}=-64$

$$
\begin{aligned}
& z=r e^{i \theta} \quad(r=|z|) \\
& \cdot 64=|z|^{6}=r^{6}\left|e^{i .6 \theta}\right|=r^{6} \Rightarrow r=2 \\
& \cdot r^{6} e^{i .6 \theta}=-64=D e^{i 6 \theta}=-1
\end{aligned}
$$

$\cos (6 \theta)+i \sin (6 \theta)=-1=\cos \pi+i \sin \pi$.
Equating real parts gives

$$
\cos (b \theta)=\cos (\pi)=D 6 \theta=\pi+2 \pi k\left(\frac{f a r}{k \in \pi}\right.
$$

Solving for θ gives: $\theta=\frac{\pi+2 \pi k}{6}=\frac{\pi}{6}+\frac{\pi}{3} k$. when do two θ values coincide with the same complex point? A: What they differ by multiples of 2π.
Claim: $\theta_{1}=\frac{\pi}{6}+\frac{\pi}{3} k_{1} \quad \& \theta_{2}=\frac{\pi}{6}+\frac{\pi}{3} k_{2}$ are equal upto 2π rotations iff $K_{1} \equiv K_{2} \bmod 6$ PSI
$\theta_{1}=\theta_{2}+2 \pi m$ for sone $m \in \mathbb{Z}$

$$
\Leftrightarrow \frac{\pi}{6}+\frac{\pi}{3} k_{1}=\frac{\pi}{6}+\frac{\pi}{3} k_{2}+2 \pi m
$$

$$
\begin{aligned}
& \Leftrightarrow \frac{\pi}{3} k_{1}=\frac{\pi}{3} k_{2}+2 \pi m \\
& \Leftrightarrow k_{1}=k_{2}+6 m \\
& \Leftrightarrow k_{1} \equiv k_{2} \bmod 6 .
\end{aligned}
$$

$$
\begin{aligned}
\text { Hence } \theta & =\frac{\pi}{6}+\frac{\pi}{3} k_{1} \text { for } k_{1} \in\{0,1,2,3,4,5\} \text {. } \\
\therefore \theta & \theta\left\{\frac{\pi}{6}, \frac{3 \pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{9 \pi}{6}, \frac{11 \pi}{6}\right\} \\
& \theta \in\left\{\frac{\pi}{6}+\frac{\pi}{3} k,: k_{1} \in\{0,1,2,3,4,5\}\right\} . \\
\therefore & z
\end{aligned}=r e^{i \theta} \in\left\{2 e^{i\left(\frac{\pi}{6}+\frac{\pi}{3} k\right)} \cdot k \in\{0,1,2,34,5\} ?\right.
$$

Draw. $\quad 2 e^{i \pi / 2}=2 i *$.

Complex $n^{\text {th }}$ Roots Theorem (CNRT)
Any non zero complex number has exactly $n \in \mathbb{N}$ distinct $n^{\text {th }}$ roots. The roots lie on a circle (of radius $|z|$).
centred at the origin and spaced oct evenly by angles of $\frac{2 \pi}{n}$.
Def n': An $n^{\text {th }}$ root of unity is a complex number z s.t. $z^{n}=1$. (Sometimes denoted by (in) (zeta) Ex: His a second rato funity (and fourth, and sixth,...)

Find all eighth roots of unity in standard form. Draw.
Wont to solve $z^{8}=1$
Know $z \in\{ \pm 1, \pm i\}$ are solutions.

Solve

$$
z^{5}=-16 \bar{z}
$$

Sol'n: Trick!. Take moduli (by PM)

$$
\begin{gathered}
\left|z^{5}\right|=|z|^{5}=|-|6 \bar{z}|=|6| \bar{z}|=16|z| \\
|z|^{5}=16|z| \\
|z|^{5}-|6| z \mid=0 \\
|z|\left(|z|^{4}-16 \mid=0\right. \\
|z|=0 \quad \text { OR }|z|^{4}=16 . \\
\Leftrightarrow z=0 \quad \text { OR } \quad|z|=2
\end{gathered}
$$

Let's revisit $z^{5}=-16 \bar{z}$
Multiply by $z: \quad z^{6}=-16 z \bar{z}=-16|z|^{2}=-6$

$$
\therefore z \in\{0, \pm 2 i, \pm \sqrt{3} \pm i\}
$$

Fsolutions!

Restatement of CNRT
If $a=r e^{i \theta}$, then solutions to $z^{n}=a$ are given by

$$
\begin{aligned}
& \text { ven by } \\
& z=\sqrt[r]{r} e^{i\left(\frac{\theta+2 \pi k}{n}\right)}
\end{aligned}
$$

for $k \in\{0,1, \ldots, n-1\}$
Solve $z^{6}+2 z^{3}-3=0$
Sol: : $\quad\left(z^{3}-1\right)\left(z^{3}+3\right)=0$

$$
\Rightarrow z^{3}=1 \text { OR } z^{3}=-3
$$

Note $1=e^{i \cdot 0} \quad$ \& $-3=3 e^{i \pi}$
By CNRT, soling to $z^{3}=1$ we given by

$$
z \in\left\{e^{i \cdot 0}, e^{i 2 \pi / 3}, e^{i 4 \pi / 3}\right\}
$$

and solutions to $z^{3}=-3$ are given by

$$
z \in\left\{\sqrt[3]{3} e^{i \pi / 3}, \sqrt[3]{3} e^{i \pi}, \sqrt[3]{3} e^{i 5 \pi / 3}\right\}
$$

Polynomials
For us fields include
$\mathbb{Q}, \mathbb{R}, \mathbb{C}$ or \mathbb{Z} for pa prime
Def'n: Apolynomial in x over afield \mathbb{F} is an expression of the form

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where $a_{0}, a_{1}, \ldots a_{n} \in \mathscr{F}$ and $n \geq 0$ is an integer. Denote the set/ring of all poly nomials over \mathbb{F} by $\mathbb{F}[x]$. Ex:

$$
\begin{aligned}
& (2 \pi+i) z^{3}-\sqrt{7} z+\frac{55 i}{4} \in \mathbb{C}[z] \\
& \cdot[5] x^{2}+[3] x+[1] \in \mathbb{Z}{ }_{7}[x] \\
& \\
& 5 x^{2}+3 x+1 \in \mathbb{Z}(x] \\
& \cdot x^{2}+\frac{1}{x} \text { is Not apoly nomial. } \\
& \cdot x+\sqrt{x} \text { is No l a polynomial. }
\end{aligned}
$$

Definitions:

- The coefficient of x^{n} is a_{n} - The degree of a poly nomial is n provided $a_{n} x^{n}$ is the largest non-zeroterm.
- Aterm of a poly nomial is any $a_{i} x^{i}$.
O is the zero polynomial A root of a polynomial $p(x) \in$ 斗 E : is a value $a \in$ 有 s.t. $p(a)=0$. If the degree of a poly nominal is 401 , the poly nominal is linear 42 , the polynomial is quadratic L 3. the polynomial is cubic.

$$
\mathbb{C}[x]
$$ $\mathbb{R}[x] \mathbb{Q}[x] \mathbb{Z}$ Complexpolynomials real rational lategra

- Let $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$

$$
g(x)=b_{n} x^{n}+\cdots+b_{1} x+b_{0}
$$

be polynomials over $\|[x]$. Then $f(x)=g(x)$ if $a_{i}=b_{i}$ forall $i \in\{0,1, \ldots n\}$

- Operations:

Addition, subtraction, multiplication - xis an indeterminate Cora variable). It has no meaning on its own (but can be replaced with a value when this makes sense.

Simplify $\left(x^{5}+x^{2}+1\right)(x+1)+\left(x^{3}+x+1\right)$ over $\mathbb{Z}_{2}[x]$

$$
\begin{aligned}
& =x^{6}+x^{5}+x^{3}+x^{2}+x+1+x^{3}+x+1 \\
& =x^{6}+x^{5}+2 x^{3}+x^{2}+2 x+2 \\
& =x^{6}+x^{5}+x^{2}
\end{aligned}
$$

Prove $(a x+b)\left(x^{2}+x+1\right)$ over \mathbb{R} is the zero polynomial iff $a=b=0$.
Pf: Expanding gives $(a x+b)\left(x^{2}+x+1\right)$

$$
=a x^{3}+(a+b) x^{2}+(a+b) x+b
$$

This is 0 iff

$$
a=0 \quad \&(a+b)=0 \quad \& \quad b=0
$$

which holds if $a=0=b$.
(DAP) Division Algorithm for Polynomials If $f(x), g(x) \in \mathbb{F}[x] \& g(x) \neq 0$ then I! polynomials $q(x) \& r(x) \in \mathbb{H}[x]$ s.t.

$$
f(x)=q(x) g(x)+r(x)
$$

with $r(x)=0$ or $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$ Pf: Exercise.

Notes:

- $q(x)$ is the quotient
- $r(x)$ is the remainder
- If $r(x)=0$ then $g(x)$ divides $f(x)$ and we write $g(x) \mid f(x)$.
Otherwise, $g(x) \nmid f(x)$.
Ex: Show over $\mathbb{R}[x]$ that

$$
(x-1) \times x^{2}+1
$$

Pf: By DAP, $\exists q(x), r(x) \in \mathbb{R}[x]$ s.t.

$$
x^{2}+1=(x-1) q(x)+r(x)
$$

To show $r(x) \neq 0$ it suffices to show $r(a) \neq 0$ for some $a \in \mathbb{F}$. Take $x=1$.
Then

$$
(1)^{2}+1=(1-1) q(1)+r(1)
$$

$$
2=r(1)
$$

$\therefore r(x) \neq 0$ hence $(x-1) X x^{2}+1$

Long Division
Let's Divide

$$
f(z)=i z^{3}+(i+3) z^{2}+(5 i+3) z+(2 i-2)
$$

by $g(z)=z+(i+1)$

$$
\begin{aligned}
& \frac{i z^{2}+4 z+(i-1)}{\left(z+(i+1) \sqrt{i z^{3}+(i+3) z^{2}+(5 i+3) z+(2 i-2)}\right.} \\
& \frac{-\left(i z^{3}+(i-1) z^{2}\right)}{4 z^{2}+(5 i+3) z} \\
& \frac{-\left(4 z^{2}+(4 i+4) z\right)}{(i-1) z+(2 i-2)} \\
& \frac{-((i-1) z-2)}{2 i} \\
& \therefore q(z)=i z^{2}+4 z+(i-1) \\
& r(z)=2 i
\end{aligned}
$$

Compute the quotient and the remainder when

$$
x^{4}+2 x^{3}+2 x^{2}+2 x+1
$$

is divided by $g(x)=2 x^{2}+3 x+4$ in $\mathbb{Z}_{5}[x]$.

$$
\begin{aligned}
& 2 x ^ { 2 } + 3 x + 4 \longdiv { x ^ { 4 } + 2 x ^ { 3 } + 2 x ^ { 2 } + 2 x + 1 } \\
& \frac{-\left(x^{4}+4 x^{3}+2 x^{2}\right)}{3 x^{3}+0 x^{2}+2 x} \\
& \frac{-\left(3 x^{3}+2 x^{2}+x\right)}{3 x^{2}+x+1} \\
& \xrightarrow[\longrightarrow]{-\left(3 x^{2}+2 x+1\right)}
\end{aligned}
$$

remainder

Proposition
Let $f(x), g(x) \in \mathbb{F}[x]$. If $f(x) \lg (x)$ \& $g(x) \mid f(x)$ then $f(x)=c \cdot g(x)$ for some $c \in \mathbb{F}$.
Pf: Note $f(x)=0$ iff $g(x)=0$. In this case, choose $c=1$. Now, resume neither are 0 . By deft \exists $q(x), \hat{q}(x) \in \mathbb{F}[x]$ s.t.
(1) $f(x)=g(x) q(x)$
(2) $\quad g(x)=f(x) \hat{q}(x)$

Substitute (2) into (1) giving:

$$
\begin{aligned}
& f(x)=f(x) \hat{q}(x) q(x) \\
& f(x)(1-\hat{q}(x) q(x))=0
\end{aligned}
$$

As $f(x) \neq 0$, we see that

$$
1=\hat{q}(x) q(x)
$$

In fact, $\hat{q}(x) q(x)$ are nonzero.

Now, $\operatorname{deg}(1)=0$ \& thus

$$
\begin{aligned}
& 0=\operatorname{deg}(\hat{q}(x) q(x))_{,}=\operatorname{deg}(\hat{q}(x)) \\
& \text { (\&xercise) }+\operatorname{deg}(q(x)) \\
& \therefore \operatorname{deg}(q(x))=0=\operatorname{deg}(\hat{q}(x)) \\
& \therefore q(x)=c \in \text {. Thus, by }(1) \\
& f(x)=c g(x) .
\end{aligned}
$$

Remainder Theorem (RT) Suppose $f(x) \in \mathbb{F}[x]$ and $c \in \mathbb{F}$.
Then the remainder when $f(x)$ is divided by $x-c$ is $f(c)$.
Pf: By DAP, $\exists!q(x) r(x) \in \mathbb{F}[x]$ s.t

$$
\begin{equation*}
f(x)=(x-c) q(x)+r(x) \tag{3}
\end{equation*}
$$

with $r(x)=0$ or $\operatorname{deg}(r(x))<\operatorname{deg}(x-c)$ $=1$

$$
\therefore \operatorname{deg}(r(x))=0
$$

Hence, in either case, $r(x)=k$ for some $k \in \mathbb{F}$. Plug $x=c$ into (3) to see that $f(c)=r(c)=K$
Hence $r(x)=f(c)$.
Ex: Find the remainder when $f(z)=z^{2}+1$ is divided by
A) $z-1$
B) $z+1=z-(-1) C) z+i+1=z-(-i-1)$

Sol'n: A) By RT, remainder is $f(1)=(1)^{2}+1=2$
B) By RT, remainder is $f(-1)=(-1)^{2}+1=2$

Note: $z^{2}+1=(z-1)(z+1)+2$.
(c) By RT, remainder is

$$
\begin{aligned}
f(-i-1)=(-i-1)^{2}+1 & =-1+2 i+1+1 \\
& =2 i+1 .
\end{aligned}
$$

In $\mathbb{Z}_{7}[x]$, what is the remainder when $4 x^{3}+2 x+5$ is divided by $x+6$?
Sol: $\quad x+6=x-1 \cdot B y R T$,
the remainder is

$$
\begin{aligned}
4(1)^{3}+2(1)+5 & =11 \\
& \equiv 4 \bmod 7 .
\end{aligned}
$$

Factor Theorem (FT)
Suppose $f(x) \in \mathbb{F}[x]$ f $c \in \mathbb{F}$.
The polynomial $x-c$ is a factor of $f(x)$ iff $f(c)=0$ ie cis arootof $f(x)$
Pf: $x-c$ is a factor of $f(x)$

$$
\begin{aligned}
& \Leftrightarrow r(x)=0 \\
& \Leftrightarrow f(c)=0 \quad \text { by } T .
\end{aligned}
$$

Prove that there does not exist a real linear factor of

$$
f(x)=x^{8}+x^{3}+1
$$

Pf: By FT, it suffices to show $f(x)$ has wo real roots. We will Show $f(x)>0 \quad \forall x \in \mathbb{R}$.
If $|x| \geq 1$, then $x^{8}+x^{3} \geq 0$ hence $f(x)>0$
If $|x|<1$, then $\left|x^{3}\right|<1$ hence $x^{3}+1>0$ hence $f(x)>0$.

Prove that a polynomial over any field \mathbb{F} of degree $n \geqslant 1$ has at most n roots.
Let $P(n)$ be the statement that all poly nomials over F of degree n have at most a roots.
Proof by induction on n
Base Case: If $n=1$ ie polynomials of the form at-b havedaroot with $a \neq 0$ have a root over 1 1, I otis $x=\frac{b}{a}$.
IH: Assume $P(k)$ is true for some $K \in \mathbb{N}$ Instep: Let $p(x) \in \mathbb{F}[x]$ of degree $k+1$. Either $p(x)$ has noroot r OR $_{p}(x)$ has a root cENBy $F T, x-c$ is a factor of $p(x)$. Write $p(x)=(x-c) q(x)$ forsome $q(x) \in \mathbb{I}[x]$ of degree K. By IH, $q(x)$ has at most Grots. So $p(x)$ has a most $K+1$ rat

$$
\therefore \text { by POMI, } P(n) \text { is true } \forall n \in \mathbb{N} .
$$

Ex: Factor $f(x)=x^{4}-2 x^{3}+3 x^{2}-4 x+2$ over \mathbb{Z}_{Z}.
Pf: Nate $f(1)=0$ thus by FT $x-1$ is a factor. By long division.

$$
f(x)=(x-1)\left(x^{3}-x^{2}+2 x-2\right)
$$

Now, the sum of the coefficients of the cubic is still O hence $x-1$ is another root of $f(x)!$. By long division

$$
f(x)=(x-1)^{2}\left(x^{2}+2\right)
$$

Factor theorem says if $x^{2}+2$ could be factored, it must have aroct since the factors must be linear.

x	0	1	2	3	4	5	6
$x^{2}+2 \bmod 7$	2	3	6	4	4	6	3

The table shows $x^{2}+2$ hasnoroot.

Defin: The multiplicity of a root $c \in \mathbb{F}$ of $f(x) \in \mathbb{F}[x]$ is the largest $K \in \mathbb{I}$ s.t. $(x-c)^{k}$ is a factor of $f(x)$.
Ex: The multiplicity of 1 in the last example was 2.
Note: $x^{4}+2 x^{2}+1=\left(x^{2}+1\right)^{2}$ over $\mathbb{R}[x]$ BUI does not split into linear factors over Fundamental Theorem of Algebra Every non-Constant Complex polynomic has a complex root.
Notes: Roots need not be distinct.

- $x^{2}+1$ over \mathbb{R} shows this does not happen over all fields.
PF: 国

Solve: $x^{3}-x^{2}+x-1=0$ Ger \mathbb{C}.
Note $x-1$ is a factor. Either do long division or note:

$$
\begin{aligned}
x^{3}-x^{2}+x-1 & =x^{2}(x-1)+(x-1) \\
& =(x-1)\left(x^{2}+1\right) \\
& =(x-1)(x-i)(x+i)
\end{aligned}
$$

Factor $i z^{3}+(3-i) z^{2}+(-3-2 i) z-6$ as a product of linear factors. Hint: There is an easy to find integer root!
Note $z=1 \& z=2$ are roots'.
Hence $(z+1)(z-2)$ is a factor

$$
\begin{array}{r}
=z^{2}-z-2 \\
z^{2}-z-2 \frac{i z+3}{i z^{3}+(3-i) z^{2}+(-3-2 i) z-6} d^{f(z)} \\
\frac{\frac{i z^{3}-i z^{2}-2 i z}{3 z^{2}-3 z-6}}{3 z^{2}-3 z-6} \\
R O
\end{array} \quad \begin{array}{r}
R(z)=(z+1)(z-2)(i z+3) .
\end{array}
$$

(CPN) Complex Polynomials of Degree Have n Roots.

A complex polynomial $f(z)$ of degree $n \geq 1$ con be written as

$$
f(z)=c\left(z-c_{1}\right)\left(z-c_{2}\right)-\left(z-c_{n}\right)
$$

for some $c \in \mathbb{C}$, for $c_{b} c_{2}, \ldots c_{n} \in \mathbb{C}$. (not necessarily distinct) roots of $f(z)$
Ex: $2 z^{7}+z^{5}+i z+7$ conbeurittonas

$$
2\left(z-z_{1}\right)\left(z-z_{2}\right)-\cdots\left(z-z_{7}\right)
$$

for roots $z_{1}, z_{2}, \ldots, z_{7} \in \mathbb{C}$.
Note: Factorization depends on the field

$$
\begin{aligned}
& \text { Eg: }(z-i)(z+i)(z-\sqrt{2})(z+\sqrt{2})(z-1) \\
& \text { R: }\left(z^{2}+1\right)(z-\sqrt{2})(z+\sqrt{2})(z-1) \\
& \mathbb{Q}:\left(z^{2}+1\right)\left(z^{2}-2\right)(z-1)
\end{aligned}
$$

Pf of CPN': We prove the given statement by induction
Base case $1 n=1$ take $a z+b \in \mathbb{C}[z]$ rewrite les $a\left(z-\left(\frac{-b}{a}\right)\right)$ IH: Assume all polynomials over \mathbb{C} af degree k an be written in the given form. (forsome kEAN).
IStep: Take $f(z) \in \mathbb{C}[z]$ of darree $K+1$. By FTA \&FT, z-C C_{k+1} isafactor of $f(z)$ for some $c_{k+1} \in \mathbb{C}$. Write

$$
f(z)=\left(z-c_{k+1}^{k+1}\right) g(z)
$$

where degree $g(z)$ is K. By IH,
write $g(z)=c\left(z-c_{1}\right)\left(z-c_{2}\right) \cdots\left(z-c_{1}\right)$
for $c_{1} c_{1}, c_{2}, \cdots c_{k} \in \mathbb{C}_{k+1}$ Combine toget

$$
f(z)=C \prod_{i=1}^{k+1}\left(z-c_{i}\right)
$$

\therefore by POMI, the given statement is true $\forall n \in \mathbb{N}$.

Q1. I enjoy trying to discover and write MATH 135 proofs.
A) Strongly disagree
B) Disagree
C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q2. When I have difficulties with MATH 135 proofs, I know I can handle them.
A) Strongly disagree
B) Disagree
C) Neither agree nor disagree
D) Agree
E) Strongly agree

Q3. How many of the following statements are true?

FiT

- When $x^{3}+6 x-7$ is divided by $a x^{2}+b x+c$ in $\mathbb{R}[x]$, then the remainder has degree 1 .

TRUE • If $f(x), g(x) \in \mathbb{Q}[x]$, then $f(x) g(x) \in \mathbb{Q}[x]$.
FALSE ${ }^{\bullet}$ Every polynomial in $\mathbb{Z}_{5}[x]$ has a root in \mathbb{Z}_{5}.
A) 0

$$
f(x)=1
$$

B) 1
D) 3
E) 4

Rational, Roots Theorem (RRT)
If $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x]$ \& $r=5 / t \in \mathbb{Q}$ is arcot of $f(x)$ over \mathbb{Q} inlowest terms, then slag \& lan
Pf: Plugin $r=\frac{5}{t}$ into $f(x)$:

$$
0=a_{n}\left(\frac{s}{t}\right)^{n}+a_{n-1}\left(\frac{s}{t}\right)^{n-1}+\cdots+a_{1}\left(\frac{s}{t}\right)+a_{0}
$$

Multiply by t^{n} :

$$
\begin{aligned}
0 & =a_{n} s^{n}+a_{n-1} s^{n-1} t+\cdots+a_{1} s t^{n-1}+a_{0} t^{n} \\
a_{0} t^{n} & =-\left(a_{n} s^{n}+a_{n-1} s^{n-1} t+\cdots+a_{1} s t^{n-1}\right) \\
& =-s\left(a_{n} s^{n-1}+a_{n-1} s^{n-2} t+\cdots+a_{1} t^{n-1}\right)
\end{aligned}
$$

$\therefore s \mid a, t^{n}$. Since $\operatorname{gcd}(s, t)=1$, $\operatorname{gcel}\left(s, t^{n}\right)=1$ hence sta by CAD. Similarly than

Ex: Find the roots of

$$
2 x^{3}+x^{2}-6 x-3 \in \mathbb{R}[x]
$$

Sol'n: By RRT it cis root then writing $r=\frac{s}{t}$, we have that $s \mid-38 t 12$ Thus, $r \in\left\{ \pm 1, \pm 3, \pm \frac{3}{2}, \pm \frac{1}{2}\right\}$
Now, trying these one by one shows that $r=-\frac{1}{2}$ is a root since

$$
\begin{aligned}
& 2\left(\frac{-1}{2}\right)^{3}+\left(-\frac{1}{2}\right)^{2}-6\left(\frac{1}{2}\right)-3 \\
= & \frac{-1}{4}+\frac{1}{4}+3-3 \\
= & 0 .
\end{aligned}
$$

$\therefore\left(x+\frac{1}{2}\right)$ or $(2 x+1)$ is a factor!
By long division!

$$
\begin{aligned}
2 x^{3}+x^{2}-6 x-3 & =(2 x+1)\left(x^{2}-3\right) \\
& =(2 x+1)(x-\sqrt{3})(x+\sqrt{3})
\end{aligned}
$$

\therefore All real roots are $-\frac{1}{2}, \pm \sqrt{3}$.

Fully factor $x^{3}-\frac{32}{15} x^{2}+\frac{1}{5} x+\frac{2}{15} \epsilon \mathbb{Q}[x]$

$$
=\frac{1}{15}\left(15 x^{3}-32 x^{2}+3 x+2\right)=f(x)
$$

By RRT, Possible roots are

$$
\pm 1, \pm \frac{1}{3}, \pm \frac{1}{5}, \pm \frac{1}{15}, \pm 2, \pm \frac{2}{3}, \pm \frac{2}{5} \pm \frac{2}{15} .
$$

Note: $x=2$ is aroot. By FT, x - Lis afactor.

$$
\begin{aligned}
& x-2 \begin{array}{l}
\frac{15 x^{2}-2 x-1}{15 x^{3}-32 x^{2}+3 x+2} \\
\\
\frac{15 x^{2}-30 x^{2}}{-2 x^{2}+3 x} \\
\frac{-2 x^{2}+4 x}{-x+2}
\end{array} \\
& \therefore f(x)=\frac{1}{15}(x-2)\left(15 x^{2}-2 x-1\right) \\
& = \\
& \frac{1}{15}(x-2)(5 x+1)(3 x-1)
\end{aligned}
$$

Prove $\sqrt{7}$ is irrational.
Assume towards a contradiction that

$$
\sqrt{7}=x \in \mathbb{Q}
$$

Square both sides:

$$
\begin{aligned}
& 7=x^{2} \\
& 0=x^{2}-7
\end{aligned}
$$

As a poly nomial, $x^{2}-7$ has arational root. By RRT, the only possible rational roots are given by $\pm 1, \pm 7$.
None of these are roots. (Check!) p.

$$
(\pm 1)^{2}-7=-6 \neq 0 \quad(\pm 7)^{2}-7=42 \neq 0 .
$$

Prove that $\sqrt{5}+\sqrt{3}$ is irrational.
BwOC (By way of contradiction) suppose

$$
\sqrt{5}+\sqrt{3}=x \in \mathbb{Q}
$$

Squaring

$$
\begin{aligned}
& 5+2 \sqrt{15}+3=x^{2} \\
& 2 \sqrt{15}=x^{2}-8
\end{aligned}
$$

Square again

$$
\begin{aligned}
60 & =x^{4}-16 x^{2}+64 \\
0 & =x^{4}-16 x^{2}+4=f(x)
\end{aligned}
$$

$R R T=$ only possible roots are:

$$
\pm 4, \pm 1, \pm 2
$$

Checking shows none work. An. (Eg: $f(\pm 1)=-11 \neq 0)$.

Conjugate Roots Theorem (CJRT) If $c \in \mathbb{C}$ is aroot of a polynomial $p(x) \in \mathbb{R}[x]$ (over \mathbb{C}) then cisaroototop(x)
Pf: Write $p(x)=0_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathbb{R}[x]$ \& $p(c)=0$. Then

$$
\begin{aligned}
p(\bar{c}) & =a_{n}(\bar{c})^{n}+\cdots+a_{1} \bar{c}+a_{0} \\
P M & =\overline{a_{n} c^{n}}+\cdots+a_{1} \bar{c}+\bar{a}_{0} \\
& =\overline{a_{n} c^{n}+\cdots+a_{1} c+a_{0}} \\
& =\overline{p(c)} \\
& =0 .
\end{aligned}
$$

Recall:
Conjugate Roots Theorem
If $c \in \mathbb{C}$ is a root of a real polynomial, then $\bar{c} \in \mathbb{C}$ is also a root.

Not true if coefficients are not real Ex: $(x+i)^{2}=x^{2}+2 i x-1$

Ex: Fully factor

$$
f(z)=z^{5}-z^{4}-z^{3}+z^{2}-2 z+2
$$

over \mathbb{C} given that i is aroot.
Pf: Note by CJRT $\pm i$ are roots. By FT $(z-i)(z+i)=z^{2}+1$ is a factor. Note $z-1$ is also a factor hence $\left(z^{2}+1\right)(z-1)=z^{3}-z^{2}+z-1$ is a factor.

$$
\begin{aligned}
& \begin{array}{ll}
& z^{2}-2 \\
z^{3}-z^{2}+z-1 \\
z^{5}-z^{4}-z^{3}+z^{2}-2 z+2
\end{array} \\
& \frac{-\left(z^{5}-z^{4}+z^{3}-z^{2}\right)}{-2 z^{3}+2 z^{2}-2 z+2}
\end{aligned}
$$

$$
\begin{aligned}
\therefore f(z) & =\left(z^{3}-z^{2}+z-1\right)\left(z^{2}-2\right) \\
& =(z-i)(z+i)(z-1)(z-\sqrt{2})(z+\sqrt{2}
\end{aligned}
$$

Fully factor $f(z)=z^{4}-5 z^{3}+16 z^{2}-9 z-13$ over \mathbb{C} given that $2-3 i$ is a root.
Factorsare (by FT \& CJRT)

$$
\begin{aligned}
& (z-(2-3 i) \mid(z-(2+3 i)) \\
= & z^{2}-4 z+13
\end{aligned}
$$

After long division

$$
f(z)=\left(z^{2}-4 z+13\right)\left(z^{2}-z-1\right)
$$

By the quadratic formula or $z^{2}-z-1$

$$
\begin{aligned}
z & =\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-1)}}{2(1)} \\
& =\frac{1 \pm \sqrt{5}}{2}
\end{aligned}
$$

Hence $f(z)=(z-(2-3 i))(z-(2+3 i))$

$$
\cdot\left(z-\left(\frac{1+\sqrt{5}}{2}\right)\right)\left(z-\left(\frac{1-\sqrt{3}}{2}\right)\right)
$$

Real Quadratic Factors ($R Q F$).
Let $f(x) \in \mathbb{R}[x]$ |f $c \in \mathbb{C} \backslash \mathbb{R}$ \& $f(c)=0$ then $\exists g(x) \in \mathbb{R}[x]$ s.t.
$g(x)$ is areal quadratic factor of $f(x)$.
Pf: Take $g(x)=(x-c)(x-\bar{c})$

$$
\begin{aligned}
& =x^{2}-(c+\bar{c}) x+c \bar{c} \\
& =x^{2}-2 \operatorname{Re}(c) x+|c|^{2} \in \operatorname{Rc} \bar{x}
\end{aligned}
$$

It suffices to show that $g(x)$ is a factor of $f(x)$. By $\operatorname{DAP}, \exists!\cdot q(x), r(x) \in \mathbb{R}[x]$ sit. $\quad f(x)=g(x) q(x)+r(x) \quad$ (1).
with $r(x)=0$ on $\operatorname{dog}(r(x))<\operatorname{deg}(g(x))=2$ Assume towards a contradiction that $r(x) \neq 0$ ie $\operatorname{deg}(r(x))=$ Oort. Plug $x=c$ into (1)

$$
\begin{gathered}
0=f(c)=g(c) q(c)+r(c)=r(c) . \\
\therefore r(c)=0 .
\end{gathered}
$$

Now, $r(x)$ is her arconstant real polynomial
(fr(x) was constant, $r(x)=0 \#$ (f $r(x)$ is linear, say $r(x)=a x+b$, then $r(c)=a c+b=0 \Rightarrow c=\frac{-b}{a} \in \mathbb{R} \quad \#$.

$$
\therefore r(x)=0 \quad \& g(x) \mid f(x)
$$

Real Factors of Real Polynomials (RFPF) Let $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathbb{R}[x]$. Then $f(x)$ con be written as a product of real linear \& real quadratic factors. Pf: By CPN, $f(x)$ has nrootsover \mathbb{C}. Let $r_{1}, r_{2}, \ldots r_{k}$ bethe real roots and let $c_{1}, c_{2}, \ldots c_{l}$ be the complex roots. By CJRT complex roots come in pairs say $c_{2}=\bar{c}_{1}, c_{4}=\bar{c}_{3}, \ldots c_{l}=\bar{c}_{l-1}$. Foreach pair, by $R Q F$, we have an associated quadratic factor, say $q_{1}(x), q_{2}(x), \ldots, q_{2 / 2}(x)$.

By FT, each real root corresponds to a linear factor, say $g_{1}(x), g_{2}(x), \ldots, g_{k}(x)$
Then $f(x)=c g_{1}(x) g_{2}(x)-\cdots g_{k}(x) q_{1}(x) \cdots q_{8}(x)$

Prove that a real polynomial of odd degree has a root.

