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1 Real Analysis

1.1 Single Variable Calculus

Theorem 1.1. (Intermediate Value Theorem) Let f : [a, b] → R be a continuous function and
suppose that f(a) < x < f(b). Then there exists a c ∈ [a, b] such that f(c) = x.

Theorem 1.2. (Extreme Value Theorem) Let f : [a, b] → R be a continuous function. Then
there exists a c, d ∈ [a, b] such that f(c) ≤ f(x) ≤ f(d) for all x ∈ [a, b].

Theorem 1.3. (Mean Value Theorem) Let f : [a, b]→ R be a continuous function and suppose
that f is differentiable on the open interval (a, b). Then there exists a c ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c)

1. Prove that the product of two uniformly continuous real valued functions on (0, 1) is also
uniformly continuous on (0, 1).

Solution: First a lemma

Lemma 1.4. If f is a uniformly continuous function on a bounded set A ⊆ R. Show that
f(A) is bounded.

Proof. Let ε > 0. Then there exists a δ > 0 such that for all x, y ∈ A satisfying |x − y| < δ,
then |f(x) − f(y)| < ε. Notice that we can cover A with finitely many balls of radius δ and
centres x1, .., xn. The diameter of each of these balls is 2ε (maximum variation of two points
in the ball) and so in particular, the maximum variation from any two balls is at worst 2nε,
a finite number. Hence f(A) is bounded. �

Let f and g be two uniformly continuous functions and let ε > 0. By the lemma, we have
that both f and g are bounded say by M and N respectfully. Then there exists a δf > 0 such
that for all x, y ∈ (0, 1) with |x−y| < δf , then |f(x)−f(y)| < ε

2N . Similarly, there exists a δg
such that for all x, y ∈ (0, 1) with |x− y| < δf , then |g(x)− g(y)| < ε

2M . Let δ = min{δf , δg}.
Then for all x, y ∈ (0, 1) with |x− y| < δ, we have

|f(x)g(x)− f(y)g(y)| = |f(x)g(x)− f(x)g(y) + f(x)g(y)− f(y)g(y)|
≤ |f(x)g(x)− f(x)g(y)|+ |f(x)g(y)− f(y)g(y)|
≤ |f(x)||g(x)− g(y)|+ |g(y)||f(x)− f(y)|

< M
ε

2M
+N

ε

2N
= ε
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This is precisely the condition that fg is uniformly continuous as required. �

2. Let f(x) be a continuous and integrable function on [0,∞). Show that if f is uniformly
continuous on [0,∞) then

lim
t→∞

f(t) = 0

3. Let F be a real valued function on [0, 1] having the following property: for any real y, the
equation f(x)−y = 0 has either no roots, or exactly two roots. Prove that f is not continuous.

Solution: First note f is not a constant function. Assume towards a contradiction that f
is continuous. Then the Extreme Value Theorem (1.2) tells us that there exists an a such
that f(a) = supx∈[0,1] f(x). The conditions on the problem give us a b ∈ [0, 1] such that
f(b) = f(a). Without loss of generality assume a < b. Note that by the Intermediate Value
Theorem (1.1) there is a point f(a)− ε for some ε > 0 such that there are values c, d ∈ [0, 1]
with a < c < d < b and f(c) = f(a)− ε = f(d). Moreover, if b 6= 1, then since b is a maximum
point, we know that we can find an epsilon small enough so that there is an e > b such that
f(e) = f(c) = f(d), a contradiction. So b = 1. Similarly in the opposite direction, we can find
a e < a with f(e) = f(c) = f(d) for a sufficiently small ε provided a 6= 0. So indeed a = 0.
Repeating this argument with −f(x), we see that both the minima must be at 0 and 1. This
implies that the minima and the maxima are equal and hence f is constant, a contradiction.
Thus, f is not continuous as required. �

4. Let xn be a sequence satisfying x0 = c, x1 = 1− c and xn+2 = 5
2xn+1− 3

2xn where c ∈ R. Fpr
what values does xn converge and what is the value of the limit in these cases.

Solution: We devise a recurrence relation for this polynomial. The associated characteristic
polynomial is x2 − 5

2x + 3
2 = (x − 3

2)(x − 1). This gives rise to the recurrence relation
xn = A(3

2)n +B(1)n. Solving using the initial conditions gives

c = A+B

1− c =
3

2
A+B

yielding A = 2 − 4c and B = 5c − 2. Thus, xn = (2 − 4c)(3
2)n + (5c − 2). Notice that if

2 − 4c 6= 0 then this limit cannot exist as 1 < 3
2 so the power will not converge. Thus, the

seqence only converges when c = 1
2 in which case xn = 1

2 for all n ∈ N and hence the limit is
1
2 . �

5. Let f be a continuous function from [0, 1] to R. Show that there is a c ∈ [0, 1] such that∫ 1

0
f(x)x2 =

1

3
f(c)

Solution: Since f is a continuous real function from [0, 1], we have by the Extreme Value
Theorem (1.2) that

min
x∈[0,1]

f(x) =: m ≤= M := max
x∈[0,1]

f(x)

Also by the Extreme Value Theorem (1.2), there exist an a, b ∈ [0, 1] such that f(a) = m and
f(b) = M . Hence,

f(a)

3
=
m

3
≤
∫ 1

0
mx2

∫ 1

0
f(x)x2 ≤

∫ 1

0
Mx2 =

M

3
=
f(b)

3

⇒ f(a) ≤ 3

∫ 1

0
f(x)f2 ≤ f(b)
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Now, since f(x) is continuous, we know that every value from f(a) to f(b) is attained for some
value of x by the Intermediate Value Theorem (1.1). Hence, we can invoke the intermediate
value theorem to get a value c ∈ [0, 1] such that

f(c) = 3

∫ 1

0
f(x)x2

giving the desired conclusion. �

6. (i) Show that a continuous function on R cannot take every real value exactly twice.

(ii) Find a continuous function on R that takes every real value exactly three times.

Solution:

(i) Suppose that such a function exists, say f . Consider the two points x < y where
f(x) = f(y) = 0. By the Extreme Value Theorem (1.2) there is a point x < a < y where
f takes on a non-zero maximum (or a minimum but without loss of generality we’ll say
maximum). If the function reaches its maximum value twice between x and y, say at
b, then there is at least one point in an epsilon ball around a and b that is achieved 4
times, a contradiction. So without loss of generality, the maximum is reached only once.
Notice that for all w < x and all y < z, the functions is either always positive or always
negative. The function cannot be both negative in both directions as then the maximum
isn’t achieved twice a contradiction. But notice that there is an epsilon and delta ball
around x and y where f(x + ε) = f(y − δ). Hence, if the function goes positive again,
we have another contradiction as some point is reached three times. This means that f
cannot exist as required. On a side note, it might be best to draw out this picture to see
everything clearly (I will omit this from this file...). �

(ii) One example is a seesaw function. The general shape is as follows. Draw a line from the
origin to (1

2 , 1) then draw a line from this point to (1, 1
2). Take this shape and repeat

starting at (1, 1
2). Continue the shape in the negative direction as well. This function

visually is very easy to see it satisfies the requirements. �

7. Let f be a continuous function over R and suppose that |f(x)−f(y)| ≥ |x−y| for all x, y ∈ R.
Show that Ran (f) = R.

Solution: Notice first that this function is clearly one to one for if f(x) = f(y) then 0 =
|f(x)−f(y)| ≥ |x−y| and so x = y. This implies that the map f takes open sets to open sets.
Now let yn be a sequence in Ran (f) that converges to a point y. I claim that y ∈ Ran (f). Let
ε > 0. Notice that since yi ∈ Ran (f), we have that yi = f(xi). Moreover, as yn is convergent,
it must be Cauchy and so there exists an N such that for all n,m > N , we have

|yn − ym| < ε

Combining this with the given fact yields

|xn − xm| ≤ |f(xn)− f(xm)| = |yn − ym| < ε

and so xn is Cauchy and hence convergent as R is complete. Now, let x be the limit of the
xn. Then by continity,

y = lim
n→∞

yn = lim
n→∞

f(xn) = f( lim
n→∞

xn) = f(x)

and thus y ∈ Ran (f) showing Ran (f) is closed. Hence Ran (f) is clopen and thus (as it is
non-empty) must be all of R as required. �
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8. Suppose f is a differentiable real valued function such that f ′(x) > f(x) for all x ∈ R and
f(0) = 0. Prove that f(x) > 0 for all positive x.

Solution: Notice that f ′(0) > f(0) = 0 ans so f is increasing in a neighbourhood around
the origin. Hence, f(x) > 0 for all x ∈ (0, ε) for some ε > 0. Now suppose that there exists a
point x0 such that f(x0) ≤ 0. Let c := inf{x|f(x) ≤ 0}. By the above, we know that c > 0
and f(c) = 0. By the mean value theorem, we have that

f(c)− f(0)

c− 0
= f ′(d)

for some d ∈ (0, c). This implies that f ′(d) = 0. the inequality given in the question gives
f(d) < f ′(d) = 0 contradicting the definition of c. hence f(x) > 0 for all x ∈ R+. �

9. Let x0 = 0 and xn+1 = 1
2+xn

for all n ∈ N. Prove that the limit exists and find its value.

Solution: This is a straightforward odd terms increase and even terms decrease (or vice
versa) problem. Use the Monotone Convergence Theorem and you’re home free.

1.2 Multivariable Calculus

Definition 1.5. Let f : Rn → R and suppose that u is a unit vector. Then the directional
derivative is

∇uf(x) = lim
h→0+

f(x + hu)− f(x)

h

Definition 1.6. Let f : Rn → Rm. Then we say that f is differentiable if there exists a linear
map J : Rn → Rm such that the following limit exists

lim
h→0

f(x+ h)− f(x)− J(h)

||h||
= 0

when it is differentiable, the Jacobian is the map used for J (in which case J(h) function like
Jh - for whatever reason I always see the Jacobian as a matrix).

1. Find the shortest distance from the line x+ y = 4 to the elipse

x2

4
+ y2 = 1

Solution: 1 I will present two solutions to this problem. One will be shorter but require
memory and the second solution will be easier to remember. To solve this problem we wish
to minimize the distance function (formula for the distance from a point to a line)

f(x, y) :=
|x+ y − 4|√

12 + 12

subject to the constraint that x and y satisfy

g(x, y) :=
x2

4
+ y2 = 1

So we proceed by Lagrange Multipliers. We solve ∇f = λ∇g. This gives

± 1√
2

(1, 1) = λ(
x

2
, 2y)
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The ± comes since our distance function has an absolute value so technically we don’t know
which sign to use. Solving coordinate wise gives the equations

λx = ±
√

2 λy = ± 1

2
√

2

The first says that neither x nor λ are 0. Hence λ = ±
√

2
x . Plugging this into the second

equation yields

±
√

2

x
y = ± 1

2
√

2
⇒ x

4
= y

Plugging into the equation for the ellipse gives

x2

4
+ y2 = 1⇒ y2 =

1

5

So we have that y = ±
√

5
5 giving x = ±4

√
5

5 . Plugging into the distance function gives

d =
| ± 4

√
5

5 +±
√

5
5 − 4|

√
2

=
| ±
√

5− 4|√
2

This is minimized when we take the positive and so,

d =
4−
√

5√
2

This is the required distance. �

Solution: 2 For our second solution, we won’t need the formula for the distance form a point
to a line. We will encode this in the Lagrange Multipliers. As an aside this idea was inspired
to me by Vince Chan when he jokingly mentioned that students in his SOS sessions had to
compute the minimal distance from a hyperboloid to a paraboloid. It was then that I realized
that hyperboloid and epllipse and paraboloid and line were not that far apart.

This time we wish to minimize the distance function

F (x, y, z, w) =
√

(x− w)2 + (y − z)2

subject to the constraints

g(x, y, z, w) :=
x2

4
+ y2 = 1

h(x, y, z, w) := w + z = 4

For simplicity, we will minimize f(x, y, z, w) = F (x, y, z, w)2 as its gradient will be far easier
to compute. So the idea here is to minimize the distance between two points subject to the
conditions that the points lie on the ellipse and line respectfully. Our Lagrange Multiplier
method gives the equation

∇f = λ∇g + µ∇h

(2(x− w), 2(y − z),−2(y − z),−2(x− w)) = λ(
x

2
, 2y, 0, 0) + µ(0, 0, 1, 1)

Equating coordinates yields

2(x− w) = λ
x

2
2(y − z) = 2yλ

−2(y − z) = µ −2(x− w) = µ
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Isolating the top row yields

(1− λ

4
)x = w (1− λ)y = z (1)

Substituting into the second row yields

−2λy = µ −x
2
λ = µ

Substituting yields 4y = x or λ = µ = 0. Assuming the second condition is true, we have that
x = w and y = z hence x+ y = 4 and x2

4 + y2 = 1. Substituting yields 5x2 − 32x+ 127 = 0
which has no real roots. So it must be that 4y = x substituting into the equation of the ellipse

yields 5y2 = 1 or y = ±
√

5
5 . Next, summing the equations in (1) and noting that z + w = 4

yields

4 = z + w = (5− 2λ)y ⇒ λ =
5∓ 4

√
5

2

Now we have solved enough variable to finish the problem. Notice that we are trying to
minimize f . This function at the point in question becomes

f(x, y, z, w) = (x− w)2 + (y − z)2 = (
x

2
λ)2 + (λy)2

=
λ2

4
(
x2

4
+ y2 + 3y2) =

λ2

4
(1 + 3(

1

5
)) =

λ2

4
(
8

5
) = λ2(

2

5
)

We actually want the square root of this function and thus, our distance becomes

d = |λ|
√

2

5
=
|
√

5∓ 4|√
2

=
4−
√

5√
2

when we take the smaller of the two answers. �

2. Let a, b, c, d > 0 be real numbers. Find conditions on a, b, c, d such that the following limit
exists.

lim
(x,y)→(0,0)

|x|a|y|b

|x|c + |y|d

Solution: First lets note if the limit exists it must be 0. To see this consider the limit on
the line y = 0. Then

lim
(x,0)→(0,0)

0

|x|c
= 0

so if it exists, it better be 0. Now, consider

|x|a|y|b

|x|c + |y|d
=

(|x|c)
a
c (|y|d)

b
d

|x|c + |y|d
≤ (|x|c + |y|d)

a
c (|x|c + |y|d)

b
d

|x|c + |y|d
= (|x|c + |y|d)

a
c

+ b
d
−1

and this converges to 0 if and only if the numerator is greater than 0 which occurs whenever
a
c + b

d > 1. �

3. Suppose that f : R2 → R has a directional derivative in all directions at the origin. Prove
that f is not necessairly differentiable at the origin.

Solution: Consider the following function

f(x, y) :=

{
y3

x2+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
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I will actually show a bit more and show that all the partial derivatives exist as well. Let
u = (a, b) be a unit vector. By definition, we need to show that the following limit exists

∇uf(x, y) = lim
h→0+

f(0 + ha, 0 + hb)− f(0, 0)

h
= lim

h→0+

(0+hb)3

(0+ah)2+(0+hb)2
− 0

h

= lim
h→0+

h3b3

a2h2+h2b2

h

=
b3

a2 + b2

and thus the directional derivatives exist in all directions at the origin. Partials clearly exists
everywhere not at the origin and at the origin, we have

∂f

∂x
(0, 0) = lim

h→0

f(0 + h, 0)− f(0, 0)

h
= 0

∂f

∂y
(0, 0) = lim

h→0

f(0, 0 + h)− f(0, 0)

h
= lim

h→0

h3

h3
= 1

So the partials exist everywhere as well. Also note that this function is continuous. Now, I
claim the function itself is not differentiable. I show that the following limit does not exist.

lim
(h,k)→(0,0)

f(0 + h, k + 0)− f(0, 0)− (0, 1)(h, k)T

||(h, k)T ||
= lim

(h,k)→(0,0)

k3

h2+k2
− 0− k

√
h2 + k2

= lim
(h,k)→(0,0)

−h2k
√
h2 + k23

To show this limit does not exist, we approach it from multiple lines. Suppose k = mh. Then,
along these lines, our limit is

lim
h→0

−mh3

√
h2 + h2m23 = lim

h→0

−m√
1 +m2

This depends on m and hence we get different values as we approach different lines. Thus,
the limit cannot exist and hence this function is not differentiable. �

4. Let Q := {0 < x < 1, 0 < y < 1}. For what values of a and b is the following integral bounded
on Q

xayb
∫ ∞

0

1

(x+ t)(y2 + t2)
dt

Solution: We evaluate the integral directly. We proceed by partial fractions.

5. Let f : [0, 1]× [0, 1]→ R be a continuous function. Define F (t) :=
∫ t

0 f(s, t)ds. Prove that F
is continuous on [0, 1]

6. Find the critical points of f(x, y) = x2 + 2xy + 2y2 − 1
2y

4 and classify each one as a local
minimum, local maximum, or a saddle point.

Solution: We compute the partials, set the first partials to 0, then compute the Hessian and
evaluate. Notice that

fx = 2x+ 2y fy = 2x+ 4y − 2y3

fxx = 2 fyy = 4− 6y2

fxy = 2 fyx = 2
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Setting fx = 0 gives x = −y. Into the second yields y−y3 = 0 giving y = 0, 1,−1 as solutions.
These give points p1 := (0, 0), p2 := (1,−1), p3 := (−1, 1) as our critical points. Our Hessian
is

∆ = det

[
fxx fxy
fyx fyy

]
= det

[
2 2
2 4− 6y2

]
= 2(4− 6y2)− 4 = 4− 12y2

Now, for a critical point p, we have the following possibilities,

(i) If ∆ > 0 and fxx(p) < 0 then f attains a local maximum at p.

(ii) If ∆ > 0 and fxx(p) > 0 then f attains a local minimum at p.

(iii) If ∆ < 0, then f has a saddle point at p

(iv) If ∆ = 0, then no conclusion can be drawn.

Since I can never remember these rules, I made a quick little poem to remember this.

When ∆ > 0 something can there be
When ∆ < 0, nothing can you see

In first when first is < 0
Then the point is big - a hero

Okay so in our case, ∆(p1) = 8− 4 = 4 so its positive and fxx = 2 so this is a local minimum.
The other points yield ∆(p2) = ∆(p3) = −8 in this case the Hessian is negative and so we
have two saddle points here. �

1.3 Stokes Theorem

Theorem 1.7. (Stokes’ Theorem) Let S be an oriented, piecewise smooth surface bounded by a
simple closed piecewise smooth curve C with positive orientation. Let F be a vector field whose
components have continuous partial derivatives on an open region in R3 that contain S. Then∮

C
F · dr =

∫ ∫
S

curlF · dS =

∫ ∫
S
∇× F · ndS

where n is normal to the surface in question and

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

and thinking of the formal cross product, where F = P i +Qj +Rk, we see

curlF = ∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣
=

((
∂R

∂y
− ∂Q

∂z

)
i +

(
∂P

∂z
− ∂R

∂x

)
j +

(
∂Q

∂x
− ∂P

∂y

)
k

)
1. Consider F (x, y, z) = (yz + x4)i + (x(1 + z) + ey)j + (xy + sin(z))k. Let C be a circle of

radius R lying in the plane 2x+ y + 3z = 6. What are the possible values of the line integral∫
C F · dr?

2. Consider the vector field

F (x, y, z) =
xi + yj + zk

(x2 + y2 + z2)
3
2
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(i) Verify that ∇ · F = 0 on R3\{0}
(ii) Let S be a sphere centred at the origin with outward orientation. Show that∫ ∫

S
F · dS = 4π

(iii) Now, let E ⊆ R3 be an open region with smooth boundary S with outward orientation.
Further, suppose 0 ∈ E. Show that the above integral has the same value.

3. Evaluate
∫
C u ·dr where C is the unit circle centred at the origin and directed in an anticlock-

wise sense with u = (cos(x), 2x+ y sin(y), x).

Solution: Let S = {(x, y, z)|x2 + y2 + z2 ≤ 1, z = 0} and notice that C is the boundary of
this surface. Using Stokes’ theorem (1.7), we have∫

C
u · dr =

∫ ∫
S

((
∂R

∂y
− ∂Q

∂z

)
i +

(
∂P

∂z
− ∂R

∂x

)
j +

(
∂Q

∂x
− ∂P

∂y

)
k

)
· ndS

=

∫ ∫
S

((0− 0) i + (0− 1) j + (2− 0) k) · ndS

=

∫ ∫
S

(−j + 2k) · ndS

To compute ndS we use the following

ndS = ±(−fx,−fy, 1)dxdy

where z = f(x, y) = 0 which is the curve in question. Using the positive sign gives a positive
k component. This leads to ndS = (0, 0, 1). Combining gives∫ ∫

S
(0,−1, 2) · (0, 0, 1)dxdy =

∫ ∫
R

2dxdy = 2π

This gives ∫
C
u · dr = 2π

as required. �

4. Compute
∫
C F · dr where F = (z− y)i− (x+ z)j− (x+ y)k and C is the curve {(x, y, z)|x2 +

y2 + z2 = 4, z = y} oriented counterclockwise when viewed from above.

Solution: We will use Stokes’ theorem. First, we need a sufrace S such that C = ∂S. We
will choose S := {(x, y, z)|x2 + y2 + z2 ≤ 4, z = y}. We compute curl(F ) and n · dS. Let
z = f(x, y) = y.

curl(F ) = det

 i j k
∂
∂x

∂
∂y

∂
∂z

z − y −x− z −x− y

 = 2j

ndS = ±(−fx,−fy, 1) = (0,−1, 1)dxdy

curl(F ) · ndS = −2dxdy

Notice that our region of integration is R := {(x, y)|x2 + 2y2 ≤ 4} which is an ellipse. This

has equation
(
x
2

)2
+
(

y√
2

)2
≤ 1 and hence has area 2

√
2π. Thus,∫

C
F · dr =

∫ ∫
S

curl(F ) · ndS =

∫ ∫
R

(−2)dxdy = −2(2
√

2π) = −4
√

2π
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1.4 Green’s Theorem

Theorem 1.8. (Green’s Theorem) Let C be a positively oriented, piecewise smooth, simple
closed curve in R2. Let D be the region bounded by C. If L and M are functions of (x, y)
defined on an open region containing D and having continuous partial derivatives there, then∮

C
(Ldx+Mdy) =

∫ ∫
D

(
∂M

∂x
− ∂L

∂y

)
dxdy =

∫ ∫
D

(
∂M

∂x
− ∂L

∂y

)
dA

Proof. This turns out to be a special case of Stokes theorem. Let F = (L,M, 0). Then,∮
C

(Ldx+Mdy) =

∮
C

(L,M, 0) · (dx, dy, dz) =

∮
C
F · dr

Now, applying Stokes Theorem (1.7), we have that∮
C
F · dr =

∫ ∫
S
∇× F · ndS

where S is the region in the plane D with unit normals point up in the positive Z direction to
match the positive orientation needed for both theorems. Continuing with the simplification,

∇× F · n =

((
∂0

∂y
− ∂M

∂z

)
i +

(
∂L

∂z
− ∂0

∂x

)
j +

(
∂M

∂x
− ∂L

∂y

)
k

)
· k =

(
∂M

∂x
− ∂L

∂y

)
This gives us ∮

C
(Ldx+Mdy) =

∫ ∫
S
∇× F · ndS =

∫ ∫
D

(
∂M

∂x
− ∂L

∂y

)
dA

as reqiured. �

1. Let C be a simple closed C1 curve in R2 with positive orientation enclosing a region D.
Assume that D has area 2 and centroid (3, 4). Let F (x, y) = (y2, x2 + 3x). Find the line
integral

∮
C F · dS.

Solution: We know that the formula for the centroid is

x =
1

A

∫ ∫
D
xdA and y =

1

A

∫ ∫
D
ydA

Now by Green’s Theorem (1.8), we have∮
C
F · dS =

∫ ∫
D

(
∂(x2 + 3x)

∂x
− ∂y2

∂y

)
dA =

∫ ∫
D

(2x+ 3− 2y) dA

= 2

∫ ∫
D

(x) dA+ 3

∫ ∫
D
dA− 2

∫ ∫
D

(y) dA

= 2xA+ 3A− 2yA

= 2(3)(2) + 3(2)− 2(4)(2) = 12 + 6− 16 = 2

as required. �

1.5 Divergence Theorem (Gauss’ Theorem)

Theorem 1.9. (Divergence Theorem) Suppose that V is a subset of Rn which is compact and
has a piecewise smooth boundary S. If F is a continuously differentiable vector field defined on
a neighbourhood of V , then we have∫ ∫ ∫

V
(∇ · F )dV =

∫ ∫
S
F · ndS

where n is the outward pointing unit normal field of the boundary ∂V .
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1. Let S be the unit sphere and let F be the vector field F = 2xi + y2j + z2k. Compute∫ ∫
S F · ndS where n is the outward pointing unit normal field.

Solution: This is a straightforward application of the Divergence Theorem (1.9).∫ ∫
S
F · nds =

∫ ∫ ∫
W

(∇ · F )dV = 2

∫ ∫ ∫
W

(1 + y + z)dV

Now since the functions y and z are odd, we have∫ ∫ ∫
W
ydV =

∫ ∫ ∫
W
zdV = 0

Hence, ∫ ∫
S
F · nds = 2

∫ ∫ ∫
W
dV =

8π

3

Where we use the fact that the volume of a sphere is 4π
3 . �

2. Let S be the hemisphere {x2 + y2 + z2 = 1|z ≥ 0} and let F be the vector field F =
(x+cos(z2))i+(y+ln(x2 +z5))j+

√
x2 + y2k. Compute

∫ ∫
S F ·ndS where n is the outward

pointing unit normal field.

Solution: This is a straightforward application of the Divergence Theorem (1.9).∫ ∫
S
F · nds =

∫ ∫ ∫
W

(∇ · F )dV =

∫ ∫ ∫
W

(1 + 1 + 0)dV

Hence, ∫ ∫
S
F · nds = 2

∫ ∫ ∫
W
dV =

4π

3

Where we use the fact that the volume of a hemisphere is 2π
3 . �

3. Let S be the cylinder bounded by x2 + y2 = 1, z = 0, z = 2 and let u = (xz2, sin(x), y).
Compute

∫ ∫
S u · ndS where n is the outward pointing unit normal field.

Solution: We use the Divergence Theorem (1.9).∫ ∫
S
u · nds =

∫ ∫ ∫
W

(∇ · F )dV =

∫ ∫ ∫
W

(z2 + 0 + 0)dV

Setting C to be the unit circle centred at the origin. Hence,∫ ∫ ∫
W

(z2 + 0 + 0)dV =

∫ ∫
C

∫ 2

0
z2 =

∫ ∫
C

23

3
=

8π

3

Where we use the fact that the area of a circle is π(1)2. �

1.6 Stone-Weierstrass Approximation Theorem

Theorem 1.10. (Stone-Weierstrass Approximation Theorem)

1. Let g1, g2, ... be non-negative continuous functions on [0, 1] such that the limie

lim
n→∞

∫ 1

0
xkgn(x)dx

11



exists for every k ∈ N (including k = 0). Show that the limit

lim
n→∞

∫ 1

0
f(x)gn(x)dx

exists for every continuous function f on [0, 1].

Solution: First, we plug in k = 0 to see that

lim
n→∞

∫ 1

0
gn(x)dx

exists for all n and hence that |
∫ 1

0 gn(x)dx| ≤ M for all n. Now, by the Stone Weierstrass
Theorem (1.10), we have that there is a sequence of polynomials converging to f in sup norm
say {pn}. Now, given an ε > 0 there exists some integer kε such that ||f −pkε ||∞ ≤ ε

3M . Also,

as
∫ 1

0 pkε(x)gn(x)dx converges, it is Cauchy and hence, there is an integer nε such that

|
∫ 1

0
pkε(x)gn(x)dx

∫ 1

0
pkε(x)gm(x)dx| < ε

3

for all m,n ≥ nε. Thus, for all n,m ≥ nε, we have

∣∣∣∣∫ 1

0
f(x)gn(x)dx−

∫ 1

0
f(x)gm(x)dx

∣∣∣∣ ≤ ∣∣∣∣∫ 1

0
f(x)gn(x)dx−

∫ 1

0
pkε(x)gn(x)dx

∣∣∣∣
+

∣∣∣∣∫ 1

0
pkε(x)gn(x)dx−

∫ 1

0
pkε(x)gm(x)dx

∣∣∣∣
+

∣∣∣∣∫ 1

0
pkε(x)gm(x)dx−

∫ 1

0
f(x)gm(x)dx

∣∣∣∣
<

∫ 1

0
|(f(x)− pkε(x))gn(x)|dx+

ε

3

+

∫ 1

0
|(f(x)− pkε(x))gm(x)|dx

≤ ||(f(x)− pkε(x))||∞
∫ 1

0
gn(x)dx+

ε

3

+ ||(f(x)− pkε(x))||∞
∫ 1

0
gm(x)dx

≤ ε

Thus the sequence
∫ 1

0 f(x)gn(x)dx is Cauchy and hence convergent in our complete metric
space.

1.7 Uniform Convergence and Arzela-Ascoli

Definition 1.11. Let fn be a sequence of functions on a closed and bounded interval I = [a, b].
We say that fn is uniformly bounded if there exists an M such that |fn(x)| ≤ M for all x ∈ I
and all fn in teh sequence.

Definition 1.12. Let fn be a sequence of functions on a closed and bounded interval I = [a, b].
We say that fn is equicontinuous if for every ε > 0 there exists a δ > 0 such that if |x− y| < δ
then |fn(x)− fn(y)| < ε for every fn.

Theorem 1.13. (Arzela-Ascoli Theorem) Let fn be a sequence of functions on a closed and
bounded interval I = [a, b] ⊆ R. If this sequence is uniformly bounded and equicontinuous, then
there exists a subsequence fnk such that it converges uniformly to some limit function f .
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Theorem 1.14. (Dini’s Theorem) Suppose K ⊆ R is a compact set and fn)n≥1 is a sequence
of functions satisfying

(i) Each fn is continuous

(ii) fn converges pointwise to a continuous function f in K

(iii) fn(x) ≥ fn+1(x) for all x ∈ K and n = 1, 2, ...

Then fn → f uniformly on K.

Proof. Let ε > 0 and fix x ∈ K. Pointwise convergence tells us that there exists an Nx,ε such
that |fn(x)− f(x)| < ε

3 for all N ≥ Nx,ε. Now, there exists a δN,ε such that for all |x− y| < δN,ε
we have that both |fN (y)−fN (x)| < ε

3 and |f(x)−f(y)| < ε
3 (use the delta that is the minimum

in both definitions of continuity). Hence, for all y ∈ BδN,ε(x), we have that

|fN (y)− f(y)| ≤ |fN (y)− fN (x)|+ |fN (x)− f(x)|+ |f(x)− f(y)| < ε

Notice that we can write K =
⋃∞

x∈K
n≥Nx,ε

Bδn,ε(x). By compactness, we need only finitely many of

these sets say K =
⋃k
i=1Bδni,ε(xi). Let N = max1≤i≤k{ni}. Thus, for any z ∈ K, we have that

z ∈ Bδni,ε(xi) for some i. This implies that |fni(z) − f(z)| < ε. Since ni ≥ N , we have for all
n ≥ N that

|fn(z)− f(z)| ≤ |fni(z)− f(z)| < ε

where the first inequality holds since −fn(x) ≤ −fn+1(x) ⇒ |f(x) − fn(x)| ≤ |f(x) − fn+1(x)|
(note this holds similarly if the functions were non-decreasing). This is the precise statement of
uniform convergence (we found an N so that for all n ≥ N we have pointwise limits holding for
every x). �

�

1. Suppose that fn : [0, 1]→ R are C1 functions such that for all x ∈ [0, 1] we have

|fn(x)|+ |f ′n(x)| ≤ 1

Prove that (fn)n≥1 has a uniformly convergent subsequence.

Solution: Notice that |fn(x)| ≤ |fn(x)| + |f ′n(x)| ≤ 1 and |f ′n(x)| ≤ 1. The first condition
says that fn is uniformly bounded. I claim that this sequence is equicontinuous. Let ε > 0
and let δ = ε. Suppose |x− y| < δ. Then, using the Mean Value Theorem (1.3), we have that
for some c ∈ [0, 1]

|fn(x)− fn(y)| = |x− y||f ′n(c)| < ε(1) = ε

Hence fn is eqiucontinuous. By the Arzela-Ascoli Theorem (1.13) we have that (fn)n≥1 must
have a uniformly convergent subsequence as required. �

2. Let {fn} be an equicontinuous sequence of functions on a compact set K, which converges
pointwise to a function f . Prove that f is continuous. Further, show that {fn} converges
uniformly to f .

Solution: Let ε > 0 and fix an arbitrary a ∈ K. We need to find a δ so that for all |x−a| < δ
we have that |f(x) − f(a)| < ε. By equicontinuity, we know that there exists a δ such that
|fn(x)− fn(a)| < ε

3 whenever |x− a| < δ. Choose this delta and suppose |x− a| < δ. Note by
pointwise convergence there is a n1 such that for all n ≥ n1 we have that |fn(x)− f(x)| < ε

3 .
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Similarly, by pointwise convergence there is a n2 such that for all n ≥ n2 we have that
|fn(a)− f(a)| < ε

3 . Let n0 = max{n1, n2}. For all n ≥ n0 and all |x− a| < δ, we have that

|f(x)− f(a)| < |f(x)− fn(x)|+ |fn(x)− fn(a)|+ |fn(a)− f(a)| < ε

3
+
ε

3
+
ε

3
= ε

proving that f is continuous. Using the fact that fn are equicontinuous, choose a δ > 0 such
that |fn(x)− fn(y)| < ε

3 and |f(x)− f(y)| < ε
3 for all x, y ∈ K such that |x− y| < δ. Notice

that
⋃
x∈K Bδ(x) = K and so by compactness, there must exist a finite subcover say K =⋃k

i=1Bδ(xi). Pointwise convergence for each i gives us an Ni such that |fn(xi)−f(xi)| < ε
3 for

all n ≥ Ni. Let N = max1≤l≤k{Ni}. Now, for any x ∈ K, there is an xi such that x ∈ Bδ(xi).
This tells us that for all n ≥ N we have

|fn(x)− f(x)| ≤ |fn(x)− fn(xi)|+ |fn(xi)− f(xi)|+ |f(xi)− f(x)| < ε

showing that fn is uniformly convergent. �

3. Let (fn)n≥1 be a set of continuous functions on [0, 1]. Suppose that for all x, y ∈ [0, 1] and all
n ∈ N, we have that

|fn(x)− fn(y)| ≤ L|x− y|

where L is a fixed constant. Suppose further that fn converges pointwise to a function f .
Show that fn converges uniformly to f and that f satisfies (for all x, y ∈ [0, 1])

|f(x)− f(y)| ≤ L|x− y|

Solution: Let ε > 0 and set δ = ε
L . Then

|fn(x)− fn(y)| ≤ L|x− y| < L
ε

L
= ε

and so the set of functions is equicontinuous. The previous question tells us that f is contin-
uous and moreover that fn converges uniformly to f . All that’s left is showing f satisfies the
same Lipschitz property with the constant L. This follows since for all x, y ∈ [0, 1], and large
enough n,

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|
≤ ε+ L|x− y|+ ε

and since ε is arbitrary, we get our desired result. �

4. Let φ : [0, 1]×R→ R be a bounded and continuous function. For each n ∈ N, let Fn : [0, 1]→
R satisfy (for t ∈ [0, 1]),

Fn(0) =
1

n
F ′n(t) = φ(t, Fn(t))

Here F ′n(0) denotes the right derivative and F ′n(1) denotes the left derivative.

(i) Prove that there is a subsequence of (Fn)n≥1 such that it converges uniformly to a limit
function F .

(ii) Prove that F solves (for t ∈ [0, 1]),

F (0) = 0 F ′(t) = φ(t, F (t))

14



Solution:

(i) Notice that Fn(x) =
∫ x

0 F
′
n(t)dt+Fn(0) by the Fundamental Theorem of Calculus. Since

φ is bounded, we have that F ′n is bounded on [0, 1] say by C. Now, for all x ∈ [0, 1] and
using the Mean Value Theorem (1.3) to get a c ∈ [0, x],

|Fn(x)| ≤ |Fn(x)− Fn(0)|+ |Fn(0)| = |x||F ′n(c)|+ 1

n
≤ (1)(C) + 1 = C + 1

So (Fn(x))n≥1 is uniformly bounded. Since φ is bounded, there exists a C such that
|φ(t, Fn(t))| ≤ C. Now, suppose that ε > 0. Then let δ = ε

C . If |x − y| < δ, then again
by using the Mean Value Theorem (1.3) to get a d ∈ [0, 1], we have

|Fn(x)− Fn(y)| ≤ |x− y||F ′n(c)| < ε

C
C = ε

Hence (Fn)n≥1 are equicontinuous. Thus, by the Arzela-Ascoli theorem (1.13), we have
that there is a uniformly continuous subsequence of this sequence that convergse to a
limit function F as required. �

(ii) Notice that F (0) = limn→∞ Fn(0) = limn→∞
1
n = 0. For the other part, NEEDS TO BE

COMPLETED. �

5. For n = 1, 2, .. and x ∈ R, let

fn(x) =
sin(x)

1 + n2x2

Show that (fn)n≥1 converges uniformly on [−π, π].

Solution: We will use Dini’s Theorem (1.14) which we can use since our interval is compact.
We need three properties.

(i) Firstly, since both the numerator and denominator are continuous functions and the
denominator is never 0, we have that each fn are continuous.

(ii) I claim that fn(x)→ 0 as n→∞ and this is easy to see when x 6= 0. If x = 0 then notice
that the function fn(0) = 0 and so this too converges to the zero function. Moreover,
since the zero function is continuous, this property is satisfied.

(iii) Since n2 ≤ (n+ 1)2 for all n ∈ N, we have that fn+1(x) ≤ fn(x).

Hence our theorem is satisfied and thus fn → f uniformly as required. �

6. Consider

f(x) =
∞∑
n=1

1

1 + n2x

(i) For which x does this series converge absolutely?

(ii) On which intervals does it converge uniformly?

(iii) Is f continuous wherever the series converges?

(iv) Is f bounded?

Solution:
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(i) Notice that this function is not convergent at x = 0 and isn’t even defined at −1
n2 . Let

S = R\{0, (−1
n2 )∞n=1}. I claim that the series is absolutely convergent if and only if x ∈ S.

It is clear if f(x) is absolutely convergent at x, then x ∈ S. Suppose x ∈ S. Choose
N > 1√

x
. Then for all n ≥ N , we have

∑
n≥N
|fn(x)| ≤ 1

n2|x| − 1

Clearly, the right hand side is convergent, we have by the comparison theorem that f(x)
is absolutely convergent at x. �

(ii) Suppose c > 0. Define Sc = {x ∈ S | |x| ≥ c}. I claim that f(x) is uniformly convergent
on Sc. Let

sn(x) :=
n∑
i=1

1

1 + i2x

Now, let ε > 0 and N1 >
1√
c
. Then for m > n ≥ N1,

|sm(x)− sn(x)| =

∣∣∣∣∣
m∑

k=n+1

fk(x)

∣∣∣∣∣ ≤
m∑

k=n+1

|fk(x)| ≤
m∑

k=n+1

1

k2c− 1

Again since the right hand side converges, there is an N2 > N1 such that if m > n ≥ N2,
then

m∑
k=n+1

1

k2c− 1
≤ ε

2
< ε

Thus for all m > n ≥ N2 and for all x ∈ Sc,

|sm(x)− sn(x)| < ε

Hence f(x) is uniformly convergent on the intervals In =
(
−1
n2 ,

−1
(n+1)2

)
(when they in-

tersect Sc), (−∞,−1) and [c,∞). The only points excluded are those in (0, c). Assume
towards a contradiction that f is uniformly convergent on (0, c). Then there exists an n
such that for n > m > N and 0 < x < c we have

|sn(x)− sm(x)| < 1

2

Therefore for n > N and 0 < x < c

|sn+1(x)− sn(x)| = |fn+1(x)| < 1

2

However, fn(x) tends to 1 at 0, a contradiction. Thus, the set of points where f is
uniformly convergent is Sc. �

(iii) From the first part, it follows that f converges exactly on the set S. The above also tells
us that f is uniformly convergent on Sc and hence continuous on Sc. Note that if x ∈ S,
then x ∈ Sc for any c < |x|. Therefore, f is continuous at x. �

(iv) Assume that |f(x)| ≤ M for all x ∈ S. For x > 0 we have that M ≥ f(x) ≥ sn(x).
Therefore, M ≥ supx>0 sn(x) = n (recalling at 0 we have sn(0) = n). This holds for
each n giving a contradiction. �
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1.8 Fourier Series

Theorem 1.15. (Fourier formula) Let f(x) be a function with period 2L. Then, the Fourier
series of f is

a0

2
+
∞∑
n=1

(an cos(
nxπ

L
) + bn sin(

nxπ

L
)

where

an =
1

L

∫ L

−L
f(x) cos(

nxπ

L
)dx

bn =
1

L

∫ L

−L
f(x) sin(

nxπ

L
)dx

1. Define a periodic function f(x) by f(x) = ex on [−π, π] and f(x + 2π) = f(x). Find the
Fourier series representation of f(x) and check if its derivative is itself.

Solution: We note

an =
1

L

∫ L

−L
f(x) cos(

nxπ

L
)dx

=
1

π

∫ π

−π
ex cos(nx)dx

Note that ∫
ex cos(nx)dx =

1

n
ex sin(nx)− 1

n

∫
ex sin(nx)

=
1

n
ex sin(nx)− 1

n
(
1

n
ex cos(nx) +

1

n

∫
ex cos(nx))

⇒ (1 +
1

n2
)

∫
ex cos(nx) =

1

n
ex sin(nx)− 1

n2
ex cos(nx)

⇒
∫
ex cos(nx) =

n

n+ 1
ex sin(nx)− n

n+ 1
ex cos(nx)

Hence,

an =
1

π

n

n+ 1
ex sin(nx)− n

n+ 1
ex cos(nx)

∣∣∣∣π
−π

=
1

π
(− n

n+ 1
eπ cos(nπ)− n

n+ 1
e−π cos(−nπ))

Similarly... Man this is painful I’m going to sleep. �

1.9 Random Real Analysis Questions

1. Let (X, d) be a complete metric space (all Cauchy sequences converge). Let L : X → X be a
function such that for some k < 1, we have for all x, y ∈ X,

d(L(x), L(y)) < kd(x, y)

Prove that there exists a point z ∈ X such that L(z) = z and that this z is unique.
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Solution: I believe in the literature this is called the Banach Contractive Mapping Theorem
(or the Banach Fixed Point Theorem). Let x0 = x for some fixed x ∈ X and xn = Ln(x).
Now for a large enough n ∈ N we have

d(xn+1, xn) = d(Ln+1(x), Ln(x)) < kd(Ln(x), Ln−1(x)) < ... < knd(L(x), x)

Let ε > 0. Now, choose an N ∈ N such that qN < ε(1−k)
d(L(x),x) . This gives us for all n > m ≥ N

d(xn, xm) ≤ d(xn, xn−1) + ...+ d(xm+1, xm)

< kn−1d(L(x), x) + kn−2d(L(x), x) + ...+ kmd(L(x), x)

= d(L(x), x)
qm

1− q

≤ d(L(x), x)
qN

1− q
< ε

Hence this sequence is Cauchy and thus converges by completeness. Let z = limn→∞ xn. I
claim L(z) = z. Let N be large enough so that d(xn, z) <

ε
2 for all n ≥ N . Hence,

d(L(z), z) ≤ d(L(z), xN+1) + d(xN+1, z) < kd(z, xN ) +
ε

2
< d(z, xN ) +

ε

2
< ε

Thus the distance is as arbitrarily small as we want and hence L(z) = z. For uniqueness,
suppose that there is another fixed point say L(w) = w with w 6= z. Then

d(z, w) = d(L(z), L(w)) < kd(z, w) ⇒ 1 < k

which is a contradiction since k < 1. �

2 Complex Analysis

2.1 Conformal Mapping Theorem

Theorem 2.1. (Möbius Transformation Theorem) The following maps take straight lines and
circles to straight lines or circles from C ∪ {∞} to itself (bijectively).

z 7→ z + b

z 7→ 1

z
z 7→ kz

z 7→ az + b

cz + d

where k 6= 0 and ad − bc 6= 0. A fun note: These functions form a group under composition.
Moreover, these maps are conformal (on the extended complex plane).

Theorem 2.2. Let U ⊆ C be an open set. A function f : U → C is conformal if and only if it
is complex analytic (holomorphic) and its derivative everywhere on U is non-zero.

1. LetD be the unit disc. Then there is a conformal map from the unit disc to H := {z|=(z) > 0}.

Solution: Define f(z) := z−i
z+i . Notice that its inverse is f−1(w) = i1+w

1−w . Moreover, f(0) =
−1, f(1) = −i, and f(−1) = i and such by (2.1), this map is conformal and takes the real
line to the unit circle. Since f(i) = 0 we also have that this map takes H to D. Hence f−1

takes D to H as required. �
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2. Let D be the unit disc. Find a conformal map from the half plane H rotated counter clockwise
by α to D. Note this map will take the closed upper half plane to the closed unit disc.

Solution: Notice that S(z) := e−iαz rotates the rotated half plane to H. So, using the fact

that f(z) := z−i
z+i maps H to D by the previous exercise, we have that f(S(z)) = e−iαz−i

e−iαz+i
maps

the rotated half plane to the unit disc as required. �

3. Let D be the unit disc. Find a conformal map from D to D that sends the point a to 0.

Solution: f(z) := a−z
1−az does the trick. This map is also an automorphism and an involution

(it is its own inverse). (Note Marsden also has an eiθ factor but i’m not sure why). �

4. Find a conformal map from the open upper semicircle U = {z|0 < arg(z) < π, 0 < |z| < 1}
to the open first quadrant V = {z|0 < arg(z) < π

2 }.

Solution: Consider the map from the open unit disc to the upper half plane f(z) = i1+z
1−z .

Notice that this takes the open upper semi circle to the open second quadrant. Hence, rotating
this by 3π

2 (ie multiplying by ei
3π
2 = −i) will map the open upper semi circle to the open first

quadrant. This map is simply g(z) := −if(z) = 1+z
1−z . �

5. Find a conformal map from U = {z|0 < arg(z) < π
2 , 0 < |z| < 1} to the open unit disc D.

Solution: Note that the map z 7→ z4 is not correct as it misses the positive axis. The set U
is just the quarter circle in the first quadrant without the x and y axes. What we shall do is
perform the following transformations:

(i) Open quarter circle to open half circle via f1(z) = z2

(ii) Open half circle to open first quadrant via f2(z) = −iz−i
−iz+i = 1+z

1−z

(iii) Open first quadrant to (open) upper half plane via f3(z) = z2

(iv) (Open) Upper half plane to D via f4(z) = z−i
z+i

Taking the composition of all these functions in order yields

f(z) =
(1 + z2)2 − i(1− z2)2

(1 + z2)2 + i(1− z2)2

as required. �

2.2 Laurent Series

Theorem 2.3. A Laurent series is unique whenever it exists. if f(z) =
∑

n=−∞∞an(x− c)n,
then

an =
1

2πi

∮
γ

f(z)

(z − c)n+1

1. Find the Laurent Expansion of f(z) = 1
(z−1)(z−2i) in the region

(i) |z| < 1

(ii) 1 < |z| < 2

(iii) 2 < |z|
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Solution: We begin by first by a partial fraction decomposition.

1

(z − 1)(z − 2i)
=

A

z − 1
+

B

z − 2i

⇒ 1 = A(z − 2i) +B(z − 1)

⇒ A =
1

1− 2i
=

1 + 2i

5

B =
1

2i− 1
= −A

(i) In this case,

A

z − 1
=
−A

1− z
= −A(1 + z + z2 + ...) = −A

∞∑
n=0

zn

B

z − 2i
=
−B

2i− z
=
−B
2i

1

1− z
2i

=
−B
2i

∞∑
n=0

(
z

2i
)n = A

∞∑
n=0

zn

(2i)n+1

⇒ 1

(z − 1)(z − 2i)
=

A

z − 1
+

B

z − 2i
= −A

∞∑
n=0

zn +A
∞∑
n=0

zn

(2i)n+1
= A

∞∑
n=0

(
zn

(2i)n+1
− zn)

⇒ 1

(z − 1)(z − 2i)
=

1 + 2i

5

∞∑
n=0

(
1

(2i)n+1
− 1)zn

�

(ii) In this case, we still have that

B

z − 2i
= A

∞∑
n=0

zn

(2i)n+1

However the Laurent series changes for A
z−1 . This becomes,

A

z − 1
=
−A

1− z
=
A

z

1

1− 1
z

=
A

z
(1 +

1

z
+ (

1

z
)2 + ...) = A

∞∑
n=0

1

zn+1
= A

∞∑
n=1

1

zn

Combining yields

1

(z − 1)(z − 2i)
= A

∞∑
n=1

1

zn
+A

∞∑
n=0

zn

(2i)n+1
=

1 + 2i

5
(

∞∑
n=1

1

zn
+

∞∑
n=0

1

(2i)n+1
zn)

�

(iii) In this case, we still have that

A

z − 1
= A

∞∑
n=1

1

zn

However the Laurent series changes for A
z−1 . This becomes,

B

z − 2i
=
−B

2i− z
=
B

z

1

1− 2i
z

=
B

z

∞∑
n=0

(
2i

z
)n = −A

∞∑
n=1

(2i)n−1

zn
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Combining yields

1

(z − 1)(z − 2i)
= A

∞∑
n=1

1

zn
−A

∞∑
n=1

(2i)n−1

zn
=

1 + 2i

5

∞∑
n=1

1− (2i)n−1

zn

�

2.3 Singularities

Definition 2.4. Removable Singularity: The Laurent series has no negative terms (the principle
value is zero). One can think of this as a pole of order 0 (see below).

Definition 2.5. Essential Singularity: The Laurent series has infinitely many non-zero negative
terms (that is, the principle value is infinite).

Definition 2.6. Pole: The Laurent series has only finitely many negative terms with at least
one non-zero (the principle value is finite and non-zero).

Theorem 2.7. (Riemann’s Theorem) Let D ⊆ C be open, a ∈ D and f a holomorphic function
on D\{a}. Then TFAE

(i) f is holomorphically extendable over a

(ii) f is continuously extendable over a

(iii) There exists a neighbourhood of a of which f is bounded

(iv) limz→a(z − a)f(z) = 0

When any of these hold, we say that the singularity is removable. As a corollary, let f be an
analytic function on C except on a set of singularities. If all singularities of a function are
removable, then the function can be extended to an entire function.

2.3.1 Liouville’s Theorem

Theorem 2.8. (Cauchy’s Inequality) Let f be an analytic function on a region A and let γ be a
circle with radius R and centre z0 that lies in A. Suppose that |f(z)| ≤M for all z on γ. Then
for each k ∈ N (including k = 0), we have

|fk(z0)| ≤ k!

Rk
M

Theorem 2.9. (Liouville’s Theorem) If f is an entire (analytic on all of C) and bounded
(|f(z)| ≤M for some finite M) function, then f is constant.

Proof. By Cauchy’s Inequality (2.8) on k = 1, we have that

|f ′(z0)| ≤ M

R

This holds for any circle |z − z0| = R. Thus, taking the limit as R → ∞ gives us |f ′(z0)| = 0
and hence f ′(z0) = 0. As z0 ∈ C was also arbitrary, f ′(z) = 0 for all z ∈ C. Hence f is constant
as required. �

1. Find all entire functions f such that |f(z)| ≤ e<(z).

Solution: Notice that the following function is entire and

|f(z)

ez
| = |f(z)|

e<(z)
≤ 1

and so the function is bounded. By Liouville’s Theorem (2.9) we have that f(z)
ez = c for some

c ∈ C. Now, f(z) = cez and since |c|e<(z) = |f(z)| ≤ e<(z) we have that |c| ≤ 1. This
constitutes all the functions as required. �
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2. Let f be an entire function such that <(f(z)) ≥ −2 for all z ∈ C. Show that f is constant.

Solution: Consider g(z) := e−f(z). This function is entire and |g(z)| = e−<(z) ≤ e−2. Hence
g is a bounded entire function so by Liouville’s Theorem (2.9) this function is constant. Notice
that this constant is nonzero, call it c ∈ C. Now this gives us that f(z) = log |c|+arg(c)+2πk
for k ∈ Z. But since f is continuous, this has to be a specific value for k. Hence f is also
constant. (I have spelt this out very bluntly hopefully to make it as clear as possible where
the continuity of f matters here - in the past I haven’t truly understood where the continuity
mattered here). �

3. Let f and g be two entire functions such that <(f(z)) ≥ k<(g(z)) for all z ∈ C and some
k ∈ C (independent of z). Show that there exist constant a and b such that f(z) = ag(z) + b.

Solution: Consider h(z) := f(z) + kg(z). This function is entire and

|eh(z)| = e<(f(z))−k<(g(z)) ≤ e0 = 1

Hence eh(z) is a bounded entire function so by Liouville’s Theorem (2.9) this function is
constant. As in the previous question, we must have by the continuity of h that h(z) = b for
some b ∈ C. The result follows. �

4. Show that if |f(z)| ≤M |z|n then f is a polynomial function of degree at most n.

Solution: Note this is true even if |f(z)| ≤ M |z|n holds only for |z| ≥ R. By Cauchy’s
Inequality (2.8) on n, we have that (for any z0 ∈ C),

|f (n)(z0)| ≤ n!M0

Rn

where for γ a circle of radius R and centre z0,

M0 = max
z∈γ
|f(z)| ≤ max

z∈γ
M |z|n = MRn

and hence

|f (n)(z0)| ≤ n!M0

Rn
≤ n!M

(this holds not just for n but for all n0 > n as well). Since z0 was arbitrary, we have that
f (n)(z) is bounded for all z ∈ C. By Liouville’s Theorem (2.9) we have that f (n)(z) = cn for
some cn ∈ C. Thus, antidifferentiating n times tells us that

f (n−1)(z) = cnz + cn−1
...f (1)(z) = cnz

n−1 + cn−1z
n−2 + ...+ c1f(z) = cnz

n + cn−1z
n−1 + ...+ c0

where ci ∈ C. Thus f is a polynomial of degree at most n. �

5. Let f and g be entire functions and suppose that |f(z)| ≤ |g(z)| for all z ∈ C. Prove that
f(z) = ag(z) for some a ∈ C

Solution: If g(z) = 0 then this is trivial. Otherwise, |f(z)
g(z) | ≤ 1 for all z ∈ C. Hence

all singularities are removable by Riemann’s Theorem (2.7) and thus our function can be
extended to an entire function (also by Riemann’s Theorem). Since this function is bounded,

then Liouville’s Theorem (2.9) tells us that f(z)
g(z) = a for some a ∈ C. �
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6. Let f be an entire nonconstant function. Then the image of f is dense in C.

Solution: If the image is not dense, then there exists a complex number w and a neighbour-
hood (in particular, an open disc of radius r) of w such that the image does not intersect it.
This means that |f(z)−w| > r. Define g(z) := 1

f(z)−w . This function is entire. Moreover g is

bounded since |g(z)| = 1
|f(z)−w| <

1
r which holds for all z ∈ C. This means that g is constant.

2.3.2 Classifying Singularities and Theorems of Complex Analysis

Theorem 2.10. (Casorati-Weierstrass Theorem) Let U ⊆ C be open and let z ∈ U . Suppose
that f is a holomorphic function on U\{z} and that f has an essential singularity at z. Then
if V is any neighbourhood of z contained in U , then f(V \{z}) is dense in C.

Theorem 2.11. (Open Mapping Theorem) Let U ⊆ C be a connected open subset. Suppose that
f is a non-constant holomorphic function from U to C. Then f is an open map (that is, it takes
open sets to open sets).

Theorem 2.12. (Weierstrass Factorization Theorem) An entire function can be represented by
a product involving their zeroes. In particular, every entire function can be represented by a
power series (that is a Laurent expansion with no negative terms).

Theorem 2.13. (Little Picard) Let f(z) be an entire non-constant complex function. Then the
set of values that f(z) assumes is either the whole complex plane or the plane minus a single
point

Theorem 2.14. (Big Picard) Let f(z) be an analytic and suppose f has an essential singularity
at a point w. Then on any open set containing w, the function f(z) takes on all possible complex
values, with at most a single exception, infinitely often.

1. Prove that all entire functions that are injective are linear.

Solution: Let f(z) be an entire injective function. Let g(z) := f(1
z ) defined from C∗ to C.

Essentially we wish to classify the singularity of f at∞. To do this we classify the singularity
of 0 on g.

If the singularity at 0 is removable, then Riemann’s Theorem (2.7) tells us that g is bounded
on a closed disc centred at the origin. This means that f(z) = g(1

z ) is bounded outside a
closed circle centred at the origin. Now, since f is continuous and the closed circle centred
at the origin is compact, we have that f must also be bounded on the closed circle. Hence f
is bounded. Thus, by Liouville’s Theorem (2.9), since f is entire, we have that f is constant.
This contradicts the injectivity of f .

If the singularity at 0 is essential, Then by Casorati-Weierstrass (2.10), setting D to be a
punctured closed disc of radius r at the origin, we have that g(D) is dense in C. This means
that f({|z| > r}) is dense in C. Now, by the open mapping theorem (2.11), f({|z| < r}) is a
non-empty open set. Hence f({|z| < r}) ∩ f({|z| > r}) 6= ∅. This contradicts the injectivity
of f as now two points map to the same point.

Hence, by the classification, 0 must be a pole of g. By the uniqueness of Laurent Expansions,
we must have that the Laurent expansion of g has only finitely many terms of negative degree
(the principle part). Hence f has only finitely many positive degree terms. Since f can be
written as a power series by Weierstrass Factorization Theorem (2.12), we have that f is a
polynomial. Since f is injective, this function can have at most one root. Since f is injective,
it must be non-constant. Hence f(z) = az + b with a 6= 0 and a, b ∈ C as reqiured. �
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2. Prove that the unit disc D and C are homeomorphic but that there is no holomorphic function
f from C onto D.

Solution: The function g(z) := z
1−|z|2 is a real analytic and bijective function with analytic

inverse. This shows that they are homeomorphic.

Let f : C → D be a holomorphic onto function. By the Little Picard theorem (2.13), we
have that since f is entire, f(C) misses at most one point in the complex plane. But f was
supposed to be onto the unit disc, a contradiction. Hence no function can exist. �

3. Show that there cannot be an analytic bijective function f from C to the unit disc D or vice
versa.

Solution: In the first case, the function is entire and |f | < 1 so by Liouville’s Theorem (2.9)
f is a constant function. In the opposite direction, We have that f−1 will be a bounded entire
function.

2.4 Maximum Modulus Principle

Theorem 2.15. (Maximum Modulus Principle) Suppose that A ⊆ C is an open, connected and
bounded set. Let f : cl(A) → R be an analytic function on A and continuous on cl(A). Then
|f | has a finite maximum attained at some z ∈ cl(A). Further, if this max is contained at some
point in A\cl(A), then f is constant on cl(A) (which contains A).

Theorem 2.16. (Maximum Modulus Principle Harmonic) Suppose that A ⊆ C is an open,
connected and bounded set. Let u : cl(A)→ C be a continuous and harmonic function on A and
continuous on cl(A). Then u has a finite maximum attained at some (x, y) ∈ cl(A). Further, if
this max is contained at some point in A\cl(A), then u is constant on cl(A) (which contains A).

1. Suppose that f(z) is analytic on the plane, f(0) = 3 + 4i, and that |f(z)| ≤ 5 whenever
|z| < 1. Find f ′(0).

Solution: By the Maximum Modulus Principle (2.15), note that f attains its maximum in
the interior of the open unit disc (|f(0)| = 5 and |f(z)| ≤ 5 on the open unit disc). Thus, f
is the constant function f(z) = 3 + 4i and so f ′(0) = 0. �

2. Let f be an analytic function on the open unit disc D. Moreover, suppose that f is continuous
on the closure of D and that f is real valued on the boundary. Show that f is constant.

Solution: Note that on the boundary, f is a real valued function. So the imaginary part of f
is 0 on the boundary. Write f(x+ iy) = u(x, y) + iv(x, y). Note since f is analytic, f satisfies
the Cauchy Riemann Equations and hence both u and v are harmonic (the sums of the double
partial derivatives with respect to x and y equal 0). Since v(x, y) is 0 on the boundary, we
have by the Maximum Modulus Principle Harmonic version (2.16) that v(x, y) = 0 for all
(x, y) ∈ D. Thus, f is a function form C to R. Again, using the Cauchy Riemann Equations
gives us that ux = uy = 0 and so u(x, y) = c ∈ R for some c. This shows us that f is constant
as required. �

3. Suppose that p(z) and q(z) are polynomial functions of the same degree with all their zeros
inside the unit disc D. Suppose further that |p(z)| = |q(z)| on |z = 1|. Show that q(z) = ap(z)
with |a| = 1.

Solution: Since p and q are of the same degree, the ration p
q has a non-zero finite limit at∞.

Consider the function f(z) :=
p( 1
z

)

q( 1
z

)
. This function has a removable singularity at 0. Moreover,
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1
f also has this property. Since p and q have no zeros in |z| ≥ 1, we also have that f and 1

f

are analytic in a neighbourhood of |z| ≤ 1. By assumption, f and 1
f have unit modulus on

|z| = 1. By the Maximum Modulus Principle (2.15) we have that |f(z)| ≤ 1 and | 1
f(z) | ≤ 1 on

the closure of the unit disc. Therefore, |f(z)| = 1 on D. Thus, f attains its maximum on the
interior of D. So the Maximum Modulus Principle applies again telling us that f is constant
on D say f(z) = a. Note that 1 = |f(z)| = |a|. Moreover, this means that p(1

z ) = aq(1
z ) and

since p and q are of the same degree, we get that p(z) = aq(z) as required. �

4. Suppose that f is analytic on the open unit disc, continuous on its closure, and satisfies
|f(z)| = 1 on |z| = 1. Show that f is a rational function.

Solution:

5. Let f be an entire function and suppose f(z)
z → 0 as |z| → ∞. Show that f(z) is constant.

Solution: Let g(z) := f(z)− f(0). Note that g(0) = 0 and that g(z)
z tends to 0 as |z| → ∞.

Moreover, we can extend g(z)
z to an entire function as 0 is a removable singularity (then use

Riemann’s Theorem (2.7)). Call this function h(z). The first part above says that for any
ε > 0 there is an R > 0 such that |h(z)| < ε for all |z| ≥ R. Now, on the disc |z| < R, we
can invoke the Maximum Modulus Principle (2.15) (since h is entire) to get that |h(z)| ≤M .
Note that if |h(z)| > ε inside the disc, then h(z) must be a constant function since it obtains
its maximum in the interior of the disc. This will contradict that |h(z)| < ε outside the disc.

Hence M < ε. Thus |h(z)| < ε everywhere. But ε was arbitrary so h(z) = 0. Now g(z)
z = 0

and thus g(z) = 0 for all z. This gives f(z) = f(0) for all z, that is, f is a constant function.
�

6. Suppose that f is analytic on the open connected bounded region A, continuous on its closure,
and satisfies |f(z)| = c on its boundary for some real number c. Show that f has a zero or f
is constant.

Solution: Suppose that f has no zeros in A. It suffices to show that f is constant. Notice that
g(z) := c

f(z) is analytic on all of A and continuous on its boundary. Moreover on the boundary,

|g(z)| = 1. Hence by the Maximum Modulus Principle (2.15) we have that |f(z)| ≤ c and
| c
f(z) | ≤ 1. This implies that c ≤ |f(z)| ≤ c on all of A. So |f(z)| = c on A. Thus, a second

application of the Maximum Modulus Principle (it attains its max on the interior of A) tells
us that f is constant on A as required.

2.5 Schwarz Lemma

Theorem 2.17. (Schwarz Lemma) Let D be the open unit disc and f a holomorphic map from
D to D fixing the origin (f(0) = 0). Then

|f(z)| ≤ |z| ∀z ∈ D and

|f ′(0)| ≤ 1

Moreover, if |f(z)| = |z| for some nonzero z or if |f ′(0)| = 1 then f is a rotation, that is
f(z) = az for some a ∈ C with |a| = 1.

1. Suppose that f(z) is analytic inside the unit disc D and continuous on its boundary. Suppose
further that |z| ≤ |f(z)| ≤ 1 for all z ∈ D. Find all possible function f .

Solution: Notice that on the boundary, 1 = |z| ≤ |f(z)| ≤ 1 and so |f(z)| = 1 on the
boundary, that is, it is constant. By a problem in the Maximum Modulus Principle section
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(6.), we have that either f(z) = 1 or that f has a zero inside the unit disc. By assumption
|z| ≤ |f(z)| so the only place a zero is possible is at z = 0. Thus, f fixes 0 and so we can
apply Schwarz Lemma (2.17) to get that |f(z)| ≤ |z|. Thus, |z| ≤ |f(z)| ≤ |z| so |f(z)| = |z|
for every z ∈ D. By Schwarz Lemma again we have that f(z) = az with a ∈ C and |a| = 1.

2. Let H := {z|=(z) > 0} and suppose that f : H → C is an analytic function such that
|f(z)| < 1 for all z ∈ H and f(i) = 0. Show that |f(2i)| ≤ 1

3 . Prove that there is a unique
function satisfying f(2i) = i

3 and find its formula.

Solution: Let g(z) := i1+z
1−z . By the exercises on conformal mappings, we know this map

takes D to H. Now note that the map in question takes H to D so define h := f ◦ g : D → D.
Notice that h(0) = f(g(0)) = f(i) = 0 and hence by Schwarz lemma (2.17) we have for every
point on D, |h(z)| ≤ |z|. Now consider 1

3 ≥ |h(1
3)| = |f(g(1

3))| = |f(2i)| as required. If
f(2i) = i

3 then note that |h(1
3)| = |13 | and hence h is a rotation. So h(z) = az. Plugging

in 1
3 yields i

3 = a1
3 so a = i and hence h(z) = iz. Solving using inverses of functions yields

f(z) = 1+zi
z+i . �

3. Let H := {z|<(z) > 0} and suppose that f : H → C is an analytic function such that
|f(z)| < 1 for all z ∈ H and f(1) = 0. What is the largest possible value of |f ′(1)|?

Solution: Let g(z) := e−3π2 z−i
e−3π2 z+i

= iz−i
iz+i = z−1

z+1 so that g−1(z) = − z+1
z−1 . By the exercises on

conformal mappings, we know this inverse map takes D to H. Now note that the map in
question takes H to D so define h := f ◦ g−1 : D → D. Notice that h(0) = f(g−1(0)) =
f(1) = 0 and hence by Schwarz lemma (2.17) we have for every point on D, |h(z)| ≤ |z|
and |h′(0)| ≤ 1. Notice that h′(z) = f ′(g−1(z))(g−1)′(z) = f ′(g−1(z)) 2

(z−1)2
giving that

h′(0) = 2f ′(1) hence |f ′(1)| ≤ 1
2 which is achievable. �

4. Let f : D → D be a holomorphic map (where D is the unit disc) and suppose that f(z) is
not the identity map f(z) = z. Prove that f can have at most one fixed point.

Solution: Suppose that f(z1) = z1 and f(z2) = z2 for distinct z1 and z2. Take the conformal
map from D to D mapping z1 to 0 automorphically, namely g(z) := z−z1

1−z1z . Note that

h := g ◦ f ◦ g−1 is a map from D to D fixing the origin. Hence Schwarz lemma applies
and we see that |h(z)| ≤ |z| for all z ∈ D. Note that h(g(z2)) = g(z2) and g(z2) 6= 0.
Schwarz theorem then tells us that h is a rotation (since there is a second point satisfying
|h(z)| = |z|). Thus, h(z) = az. Next, ag(z2) = h(g(z2)) = g(z2) and hence a = 1. So
h(z) = z ⇒ f(g−1(z)) = g−1(z). Since g is an automorphism, we have that f maps D to
D identically, that is f(z) = z a contradiction. Hence f has only at most one fixed point as
claimed. �

5. Let f(z) be an analytic function and |f(z)| ≤ 1 in the unit disc D ⊆ C. Given z0 ∈ D, find
a Möbius transformation (i.e., a transformation of the form z 7→ az+b

cz+d ) which maps D to D
and sends z0 to 0. Then show that

|f(z)− f(z0)

z − z0
| ≤ 2

1− |z0||z|

for any z ∈ D.

Solution: The map as in the section on conformal maps is g(z) := z0−z
1−z0z . Recall that this

map is an involution. Let h(z) := f(z0)−z
1−f(z0)z

. Notice that this sends the unit disc to itself and

f(z0) to 0. Hence h ◦ f ◦ g is a map sending 0 to 0. We can now apply Schwarz Lemma (2.17)
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to get that |(h ◦ f ◦ g)(w)| ≤ |w| for any w ∈ D. Set z = g−1(w) = g(w). Expanding gives

| f(z0)− f(z)

1− f(z0)f(z)
| = | f(z0)− f(g(w))

1− f(z0)f(g(w))
| = |(h ◦ f ◦ g)(w)| ≤ |w| = |g(z)| = | z0 − z

1− z0z
|

⇒ | f(z0)− f(z)

1− f(z0)f(z)
| ≤ | z0 − z

1− z0z
|

⇒ |f(z0)− f(z)

z0 − z
| ≤ |1− f(z0)f(z)

1− z0z
| ≤ 1 + |f(z0)||f(z)|

|1− z0z|
≤ 2

1− |z0z|

which holds since |f(z)| ≤ 1 for all z ∈ D and since |1| ≤ |1 − z0z| + |z0z| and hence
1

|1−z0z| ≤
1

1−|z0z| . �

2.6 Rouché’s Theorem

Theorem 2.18. (Rouché’s Theorem) Let C be a simply connected region. Then two holomorphic
(analytic) functions f and g have the same number of roots if

|f(z)− g(z)| < |f(z)|+ |g(z)|

holds for all z ∈ ∂C. Equivalently, if f and g satisfies

|f(z) + g(z)| < |f(z)|

holds for all z ∈ ∂C, then f and g have the same number of roots.

1. (i) Show that all the zeros of the polynomial f(z) = z8 − 3z + 1 lie inside the disc |z| < 5
4 .

Solution: Let f(z) := z8 − 3z + 1 and g(z) := −z8. Then on the boundary of the disc,

|f(z) + g(z)| = | − 3z + 1| ≤ 3(
5

4
) + 1 =

19

4
< 5 < (

5

4
)8 = | − z8| = |g(z)|

So f and g have the same number of roots inside the unit disc by (2.18). Sinze g has eight
roots at the origin, we know that f must also have eight roots inside the disc |z| < 5

4 . �

(ii) How many zeros lie inside the unit circle?

Solution: Let f(z) := z8 − 3z + 1 and g(z) := 3z − 1. Then on the boundary of the
unit disc,

|f(z) + g(z)| = |z8| = 1 < 2 = |3z| − |1| ≤ |3z − 1| = |g(z)|

So f and g have the same number of roots inside the unit disc by (2.18). Sinze g has
one root at 1

3 , we know that f must also have one root inside the unit disc. �

2. (i) Show that all the zeros of the polynomial f(z) = z4 − 7z − 1 lie inside the disc |z| < 2.

Solution: Let f(z) := z4 − 7z − 1 and g(z) := −z4. Then on the boundary of the disc,

|f(z) + g(z)| = | − 7z − 1| ≤ 7(2) + 1 = 15 < 16 <= | − z4| = |g(z)|

So f and g have the same number of roots inside the unit disc by (2.18). Sinze g has
four roots at the origin, we know that f must also have four roots inside the disc |z| < 2.
�
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(ii) How many zeros lie inside the unit circle?

Solution: Let f(z) := z4 − 7z − 1 and g(z) := 7z + 1. Then on the boundary of the
unit disc,

|f(z) + g(z)| = |z4| = 1 < 6 = |7z| − |1| ≤ |7z + 1| = |g(z)|

So f and g have the same number of roots inside the unit disc by (2.18). Sinze g has
one root at −1

7 , we know that f must also have one root inside the unit disc. �

3. Let a > 1 be a real number. Prove that zea−z − 1 = 0 has one solution inside the unit disc.
Show that this solution is real.

Solution: Let f(z) := zea−z − 1 and let g(z) := −zea−z. Then on |z| = 1,

|f(z) + g(z)| = | − 1| = 1 = e0 < |ea−<(z)| = |ea−<(z)||e−=(z)| = | − z||ea−z| = |g(z)|

So f and g have the same number of roots inside the unit disc by (2.18). Sinze g has one root
at 0, we know that f must also have one root inside the unit disc. This solution is real by the
intermediate value theorem noting that f(0) = −1 < 0 < ea−1 = f(1). �

4. How many zeros of f(z) = ez − 2z − 1 lie inside the unit circle?

Solution: Let g(z) := 2z. Then on the boundary of the unit disc,

|f(z) + g(z)| = |ez − 1| = |z +
z2

2!
+
z3

3!
+ ...| ≤ |z|+ |z|

2

2!
+
|z|3

3!
+ ...

= 1 +
1

2!
+

1

3!
+ ... = e− 1 < 2 = |g(z)|

So f and g have the same number of roots inside the unit disc by (2.18). Sinze g has one root
at 0, we know that f must also have one root inside the unit disc. �

5. How many zeros of f(z) = 4z100 − ez lie inside the unit circle? How many distinct zeros are
there?

Solution: Let g(z) := 4z100. Then on the boundary of the unit disc,

|f(z) + g(z)| = | − ez| = |e<(z)| < e < 4 = |4z100| = |g(z)|

So f and g have the same number of roots inside the unit disc by (2.18). Sinze g has one
hundred roots at 0, we know that f must also have one hundred roots inside the unit disc. If
the roots are distinct then f ′ and f do not share any roots. Let x be a root of f inside the
unit circle. Then

f ′(x) = 400x99 − ex = 400x99 − 4x100 = 4x99(100− x) 6= 0

holding since x = 0 nor x = 100 are solutions inside the unit disc (z = 0 doesn’t satisfy the
equation and the latter is too big). Thus f has 100 distinct roots inside the unit circle. �

6. How many zeros of f(z) = z6 − 4z5 + z2 − 1 lie inside the unit circle?

Solution: Let g(z) := 4z5. Then on the boundary of the unit disc,

|f(z) + g(z)| = |z6 + z2 − 1| ≤ 3 < 4 = | − 4z5| = |g(z)|

So f and g have the same number of roots inside the unit disc by (2.18). Sinze g has five
roots at 0, we know that f must also have five roots inside the unit disc. �
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7. How many zeros of f(z) = z4 − 5z + 1 lie inside the annulus 1 < |z| < 2?

Solution: We break this into two parts, one inside the unit circle and one inside the circle of
radius two centres at the origin. Let g(z) := 5z − 1. Then on the boundary of the unit disc,

|f(z) + g(z)| = |z4| = 1 < 4 = |5z| − |1| ≤ |5z − 1| = |g(z)|

So f and g have the same number of roots inside the unit disc by (2.18). Sinze g has one root
at 1

5 , we know that f must also have one root inside the unit disc.

Lets consider the disc |z| < 2. Let g(z) := −z4. Then on the boundary of the unit disc,

|f(z) + g(z)| = |5z − 1| ≤ |5z|+ |1| = 11 < 16 = | − z4| = |g(z)|

So f and g have the same number of roots inside the unit disc by (2.18). Sinze g has four
roots at 0, we know that f must also have four roots inside the disc |z| < 2. Taking the
difference yields that there are 3 zeros inside the annulus in question. �

8. Show that there is exactly one point z in the right half plane {z|<(z) > 0} for which z+e−z =
2.

Solution: Let f(z) := z + e−z − 2 and g(z) := −z + 2. Consider γR to be the semi circle
from −Ri to Ri passing entirely in the positive real plane. Now, on ∂γR,

|f(z) + g(z)| = |e−z| = e−<(Z) ≤ e0 = 1

I claim 1 < |g(z)| whenever R ≥ 4. For suppose not, then on ∂γR ∩ {x = i}, we have

|g(z)| = | − iy + 2| =
√
y2 + 4 ≥ 2 > 1

and on the arc alone,

1 ≥ |g(z)| = |z − 2| =
√

(<(z)− 2)2 + =(z)2 =
√
R2 − 4<(z) + 4

⇒R2 + 3 ≤ 4<(z) ≤ 4R#

(the last inequality holds since z is on the boundary of the semicircle and thus cannot have
real part bigger than the radius) a contradiction when R ≥ 4. Thus 1 < |g(z)|. So f and g
have the same number of roots inside the semicircle γR by (2.18). Sinze g has one root at
2, we know that f must also have one root inside the semicircle γR. Since we can vary R as
large as we want, there must only be one root with positive real part. �

9. Show that there is exactly one point z in the right half plane {z|<(z) > 0} for which z+e−z =
2.

Solution: Let f(z) := 2e−z− z+ 3 and g(z) := z− 3. Consider γR to be the semi circle from
−Ri to Ri passing entirely in the positive real plane. Now, on ∂γR,

|f(z) + g(z)| = |2e−z| = 2e−<(Z) ≤ 2e0 = 2

I claim 2 < |g(z)| whenever R ≥ 5. For suppose not, then on ∂γR ∩ {x = i}, we have

|g(z)| = | − iy + 2| =
√
y2 + 9 ≥ 3 > 2

and on the arc alone,

1 ≥ |g(z)| = |z − 3| =
√

(<(z)− 3)2 + =(z)2 =
√
R2 − 6<(z) + 9

⇒R2 + 8 ≤ 6<(z) ≤ 6R#
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(the last inequality holds since z is on the boundary of the semicircle and thus cannot have
real part bigger than the radius) a contradiction when R ≥ 5. Thus 1 < |g(z)|. So f and g
have the same number of roots inside the semicircle γR by (2.18). Sinze g has one root at
3, we know that f must also have one root inside the semicircle γR. Since we can vary R as
large as we want, there must only be one root with positive real part. �

10. Prove the fundamental theorem of algebra.

Solution: Let p(z) := anz
n + ... + a0 and let g(z) := −anzn. Then on the boundary of the

circle centred at the origin of radius R,

|p(z) + g(z)| = |an−1z
n−1 + ...+ a0| ≤ |an−1|Rn−1 + ...+ |a0| ≤MRn−1

where M = maxi=1..n−1 |ai|. So if R was such that M
|an| < R then

|p(z) + g(z)| ≤MRn−1 < |an|Rn = |g(z)|

So p and g have the same number of roots inside |z| < R by (2.18). Sinze g has n roots at 0,
we know that p must also haven roots inside |z| < R. �

11. Let f be analytic in an open set containing the closed unit disc. Suppose that |f(z)| > 2 for
|z| = 1 and that |f(0)| < 2. Prove that f has at least one zero in the open disc |z| < 1.

Solution: Let g(z) := f(0)− f(z). Then on |z| = 1,

|f(z) + g(z)| = |f(0)| < 2 < |f(z)|

So f and g have the same number of roots inside the unit disc by (2.18). Sinze g has at least
one root at z = 0, we know that f must also have at least one root inside the unit disc. �

2.7 Residue Theorem

Theorem 2.19. Let f(z) be a complex meromorphic (analytic except at a finite number of
isolated poles) function with a pole of order n at c. Then the residue of f at c is equal to

Res(f, c) =
1

(n− 1)!
lim
z→c

dn−1

dzn−1
((z − c)nf(z))

Theorem 2.20. (The Residue Theorem) Suppose U is a simply connected open subset of the
complex plane. Further, suppose a1, ..., an ∈ U and f is a complex function which is defined and
holomorphic on U\{a1, ..., an}. If C is a rectifiable curve (ie finite arclength) in U which bound
the ak, but does not meet any ak and whose start and end points are equal, then

∮
C
f(z)dz = 2πi

n∑
i=1

I(C, ai)Res(f, ai)

where I(C, x) denotes the winding number.

1. Evaluate the following integrals

(i)
∮
C

sin(3z)
(z−1)4

dz, where C is the circle |z| = 2 oriented counterclockwise.

Solution: Here we use the residue theorem. Let f(z) := sin(3z)
(z−1)4

. Notice that z = 1 is a

removable pole of f . By (2.19), we have
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Res(f, 1) =
1

(4− 1)!
lim
z→1

d4−1

dz4−1
((z − 1)4f(z))

=
1

6
lim
z→1

d3

dz3
(sin(3z))

=
1

6
lim
z→1
−27 cos(3z)

=
−9

2
cos(3)

Hence by the residue theorem (2.20), we have

∮
C
f(z)dz = 2πiRes(f, 1) = −9πi cos(3)

�

2.8 Contour Integration

Theorem 2.21. Let f be a complex valued continuous function on a contour C. Suppose that
|f(z)| ≤M for some M ∈ R for all z ∈ C. Then

|
∫
C
f(z)dz| ≤M l(C)

where l(C) denotes the arc length of C. Note one may choose M := maxz∈C |f(z)|.

Theorem 2.22. Let n ∈ N. Then

lim
x→0

x log(x)n

1 + x2
= 0

Proof. Suppose n is odd. Note that for x ∈ (0, 1),

x log(x)n ≤ x log(x)n

1 + x2
≤ 0

Next by L’Hopitals Rule, we have

lim
x→0

x log(x)n = lim
x→0

log(x)n

1
x

= lim
x→0

n log(x)n−1

x
−1
x2

= lim
x→0

n log(x)n−1

−1
x

= ... = lim
x→0

(n!)x = 0

An application of the squeeze theorem completes the proof for odd n. Now for even n, note that

0 ≤ x log(x)n

1 + x2
≤ x log(x)n

and the same argument above finishes this proof.

1. Evaluate
∫∞

0
x2

1+x6
dx.

Solution: Let γR be the semicircle in the upper half plane with radius R. Let CR represent
the arc of the semi circle and LR the straight line of the semicircle (coinsiding with the real
axis). First, note that ∫

γR

z2

1 + z6
dz =

∫
CR

z2

1 + z6
dz +

∫
LR

z2

1 + z6
dz
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Next, consider the first integrand. We know that by the Estimation Lemma (2.21)

|
∫
CR

z2

1 + z6
dz| ≤ R2

1 +R6
Rπ

R→∞−→ 0

Now we set up the Residue Theorem (2.20). For x6 + 1 we see that the zeroes that lie in γR
are precisely i, iζ6 and iζ5

6 where ζ6 is a primitive sixth root of unity. We need to evaluate the
residues at these points. Notice that these are simple poles and thus,

∫
γR

z2

1 + z6
dz = 2πi


(i)2

5∏
k=1

(i− iζk6 )

+
(iζ6)2

5∏
k=0
k 6=1

(iζ6 − iζk6 )

+
(iζ5

6 )2

5∏
k=0
k 6=5

(iζ5
6 − iζk6 )



= 2πi


−1

i

5∏
k=1

(1− 1ζk6 )

+
−ζ2

6

iζ5
6

5∏
k=1

(1− ζk6 )

+
−ζ4

6

iζ25
6

5∏
k=1

(1− ζk6 )


= 2π(

−1

6
+
−ζ3

6

6
+
−ζ3

6

6
)

= 2π(
−1

6
+

1

6
+

1

6
)

=
π

3

Combining gives us

π

3
= lim

R→∞

π

3
= lim

R→∞

∫
γR

z2

1 + z6
dz = lim

R→∞

∫
CR

z2

1 + z6
dz + lim

R→∞

∫
LR

z2

1 + z6
dz

= lim
R→∞

∫ R

−R

z2

1 + z6
dz

= 2 lim
R→∞

∫ R

0

z2

1 + z6
dz

= 2

∫ ∞
0

z2

1 + z6
dz

⇒ π

6
=

∫ ∞
0

z2

1 + z6
dz

as required. �

2. Evaluate
∫∞

0
x2

x4+5x2+6
dx.

Solution: Let γR be the semicircle in the upper half plane with radius R. Let CR represent
the arc of the semi circle and LR the straight line of the semicircle (coinsiding with the real
axis). First, note that∫

γR

z2

z4 + 5z2 + 6
dz =

∫
CR

z2

z4 + 5z2 + 6
dz +

∫
LR

z2

z4 + 5z2 + 6
dz
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Next, consider the first integrand. We know that by the Estimation Lemma (2.21)

|
∫
CR

z2

z4 + 5z2 + 6
dz| ≤ R2

R4 + 5R2 + 6
Rπ

R→∞−→ 0

Now we set up the Residue Theorem (2.20). For x4 + 5x2 + 6 we see that the zeroes that lie
in γR are precisely i

√
2 and i

√
3. We need to evaluate the residues at these points. Notice

that these are simple poles and thus,

∫
γR

z2

z4 + 5z2 + 6
dz = 2πi

(
(i
√

2)2

(i
√

2 + i
√

2)(i
√

2− i
√

3)(i
√

2 + i
√

3)

)

+ 2πi

(
(i
√

3)2

(i
√

3 + i
√

2)(i
√

3− i
√

2)(i
√

3 + i
√

3)

)
= 2πi(

−2

−i(2
√

2)(
√

2−
√

3)(
√

2 +
√

3)
+

−3

−i(
√

3 +
√

2)(
√

3−
√

2)(2
√

3)
)

= 2πi(
−2

−i(2
√

2)(−1)
+

−3

−i(1)(2
√

3)
)

= 2π(
−1√

2
+

3

2
√

3
)

= 2π(
−3
√

2

6
+

3
√

3

6
)

= π(
√

3−
√

2)

Combining gives us

π(
√

3−
√

2) = lim
R→∞

π(
√

3−
√

2) = lim
R→∞

∫
γR

z2

z4 + 5z2 + 6
dz

= lim
R→∞

∫
CR

z2

z4 + 5z2 + 6
dz + lim

R→∞

∫
LR

z2

z4 + 5z2 + 6
dz

= lim
R→∞

∫ R

−R

z2

z4 + 5z2 + 6
dz

= 2 lim
R→∞

∫ R

0

z2

z4 + 5z2 + 6
dz

= 2

∫ ∞
0

z2

z4 + 5z2 + 6
dz

⇒ π

2
(
√

3−
√

2) =

∫ ∞
0

z2

z4 + 5z2 + 6
dz

3. Evaluate
∫∞

0
1

1+x4
dx.

Solution: Let γR be the semicircle in the upper half plane with radius R. Let CR represent
the arc of the semi circle and LR the straight line of the semicircle (coinsiding with the real
axis). First, note that ∫

γR

1

z4 + 1
dz =

∫
CR

1

z4 + 1
dz +

∫
LR

1

z4 + 1
dz
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Next, consider the first integrand. We know that by the Estimation Lemma (2.21)

|
∫
CR

1

z4 + 1
dz| ≤ 1

R4 + 1
Rπ

R→∞−→ 0

Now we set up the Residue Theorem (2.20). For x4 + 1 we see that the zeroes that lie in γR

are precisely ± 1√
2

+ 1√
2
i = (±1+i)

√
2

2 . We need to evaluate the residues at these points. Notice

that these are simple poles and thus,

∫
γR

1

z4 + 1
dz = 2πi

(
1

( (1+i)
√

2
2 − (1−i)

√
2

2 )( (1+i)
√

2
2 − (−1+i)

√
2

2 )( (1+i)
√

2
2 − (−1−i)

√
2

2 )

)

+ 2πi

(
1

( (−1+i)
√

2
2 − (1+i)

√
2

2 )( (−1+i)
√

2
2 − (1−i)

√
2

2 )( (−1+i)
√

2
2 − (−1−i)

√
2

2 )

)

= 2πi

(
4√

2(2i)(2)(2 + 2i)
+

4√
2(−2)(−2 + 2i)(2i)

)
= 2πi

(
1

2
√

2(−1 + i)
+

1

2
√

2(1 + i)

)
= 2πi

(
(−1− i)

4
√

2
+

(1− i)
4
√

2

)
= 2πi

(
(−1− i)

4
√

2
+

(1− i)
4
√

2

)
= π

√
2

2

Combining gives us

π

√
2

2
= lim

R→∞
π

√
2

2
= lim

R→∞

∫
γR

1

z4 + 1
dz

= lim
R→∞

∫
CR

1

z4 + 1
dz + lim

R→∞

∫
LR

1

z4 + 1
dz

= lim
R→∞

∫ R

−R

1

z4 + 1
dz

= 2 lim
R→∞

∫ R

0

1

z4 + 1
dz

= 2

∫ ∞
0

1

z4 + 1
dz

⇒ π

√
2

4
=

∫ ∞
0

1

z4 + 1
dz

as required. �

4. Evaluate
∫∞
−∞

1
(4+x2)3

dx.

Solution: Let γR be the semicircle in the upper half plane with radius R. Let CR represent
the arc of the semi circle and LR the straight line of the semicircle (coinsiding with the real
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axis). First, note that∫
γR

1

(4 + z2)3
dz =

∫
CR

1

(4 + z2)3
dz +

∫
LR

1

(4 + z2)3
dz

Next, consider the first integrand. We know that by the Estimation Lemma (2.21)

|
∫
CR

1

(4 + z2)3
dz| ≤ 1

(4 +R2)3
dzRπ

R→∞−→ 0

Now we set up the Residue Theorem (2.20). For (4 + x2)3 we see that the zeroes that lie in
γR are precisely 2i repeated 3 times. We need to evaluate the residues at this point. Using
the residue formula above (2.19),

∫
γR

1

(4 + z2)3
dz = 2πi

(
1

(3− 1)!
lim
z→2i

d3−1

dz3−1

1

(z + 2i)3

)
= 2πi

(
12

2(2i+ 2i)5

)
= 2πi

(
3

512i

)
= π

3

256

Combining gives us

π
3

256
= lim

R→∞
π

3

256
= lim

R→∞

∫
γR

1

z4 + 1
dz

= lim
R→∞

∫
CR

1

z4 + 1
dz + lim

R→∞

∫
LR

1

z4 + 1
dz

= lim
R→∞

∫ R

−R

1

z4 + 1
dz

=

∫ ∞
−∞

1

z4 + 1
dz

⇒ π
3

256
=

∫ ∞
−∞

1

z4 + 1
dz

as required. �

5. Evaluate
∫∞

0
1√

x(1+x2)
dx.

Solution: We have a lot of things to consider here. Firstly, note that
√
x requires that we

specify a branch for evaluation. We will choose the positive x-axis for reason that will be
made manifest later. To solve this integral, we will use a key hole contour. Draw a large
circle starting at (but not touching) the x-axis. Call this circle Γ and suppose it has radius
R. Next, create a small circle of radius ε around the point 0 starting at the x-axis (but not
touching it). Call this circle γ. So you picture right now should look like two pacman like
figures almost but not quite touching the x-axis. Lastly, connect the remaining ends of the
small circle horizontally with straight lines to the big circle. Your picture should look like a
keyhole facing the right side of your page. Call the keyhold K. This gives us the following:
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∫
K

1√
z(1 + z2)

dz =

∫
γ

1√
z(1 + z2)

dz +

∫
Γ

1√
z(1 + z2)

dz

+

∫ R

ε

1√
z(1 + z2)

dz +

∫ ε

R

1√
z(1 + z2)

dz

Consider the first two integrals as both ε→ 0 and R→∞. We have that by the Estimation
Lemma (2.21)

|
∫
γ

1√
z(1 + z2)

dz| ≤ 1√
ε(1 + ε2)

(2επ)
ε→0→ 0

|
∫

Γ

1√
z(1 + z2)

dz| ≤ 1√
R(1 +R2)

(2Rπ)
R→∞→ 0

This leaves only the two inside integrals to evaluate. Consider the two pieces we haven’t
looked at. Notice that they are NOT the negative of each other. This is due to our branch
choice. We pick up an extra value of 2π as we traverse the outer circle (for example) in the
argument of z.

∫ ε

R

1√
z(1 + z2)

dz =

∫ ε

R

e−
1
2

log |z|− 1
2
i arg(z)

(1 + z2)
dz

=

∫ ε

R

e−
1
2

log |z|− 1
2
i(2π)

(1 + z2)
dz

=

∫ ε

R

−e−
1
2

log |z|

(1 + z2)
dz

=

∫ R

ε

e−
1
2

log |z|

(1 + z2)
dz

=

∫ R

ε

1√
z(1 + z2)

dz

Notice for the last equality, the argument of z is 0 so these two integrals are equal. Thus,
taking the limits as ε→ 0 and R→∞ gives us

∫
K

1√
z(1 + z2)

dz = 2

∫ R

ε

1√
z(1 + z2)

dz

All that’s left is an application of the residue theorem. Notice that when we take the square
root of a complex number we wish to consider the principle value of it. Roughly speaking,
if we want the square root of a ∈ C, draw it on the plane then take the value corresponding
to half the angle from the positive real axis. Other things to note about complex number
square roots include that

√
ab 6=

√
a
√
b for complex a, b, necessairly due to the nature of the

branch cut. We might introduce extra values of 2π amongst other problems. Basically, when
dealing with roots of complex numbers in these computations, the best bet is to evaluate it
immediately and deal with math in a ‘normal’ setting. With this caveat in place, we note
that

√
i = 1√

2
+ 1√

2
i and

√
−i = − 1√

2
+ 1

2 i. Both roots i and −i are in our keyhole region.

So, by the Residue Theorem (2.20),
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∫
K

1√
z(1 + z2)

dz = 2πi

(
1√

i(i+ i)
+

1√
−i(−i− i)

)
= 2πi

( √
2

(1 + i)(2i)
+

√
2

(−1 + i)(−2i)

)

= 2πi

( √
2

(−2 + 2i)
+

√
2

(2 + 2i)

)

= 2πi

(√
2(−2− 2i)

8
+

√
2(2− 2i)

8

)

= 2πi

(
−4
√

2i

8

)
=
√

2π

Substituting into the above (after taking limits) yields

∫ ∞
0

1√
z(1 + z2)

dz =

√
2

2
π

as required. �

6. Evaluate
∫∞

0
x
1
3

1+x2
dx.

Solution: We start off by defining the key hole region

(i) Curve γ1 is z = x where x goes from ε to R.

(ii) Curve γ2 is z = Reit where t goes from 0 to 2π.

(iii) Curve γ3 is z = 2πix where x goes from R to ε (remember we introduce a 2π).

(iv) Curve γ4 is z = εeit where t goes from 2π to 0.

Calling the combined region K, we have

∫
K

z
1
3

1 + z2
dz =

∫
γ2

z
1
3

1 + z2
dz +

∫
γ4

z
1
3

1 + z2
dz

+

∫ R

ε

z
1
3

1 + z2
dz +

∫ ε

R

z
1
3

1 + z2
dz

Consider the first two integrals as both ε→ 0 and R→∞. We have that by the Estimation
Lemma (2.21)

|
∫
γ2

z
1
3

1 + z2
dz| ≤ (ε)

1
3

1 + (ε2
dz(2επ)

ε→0→ 0

|
∫
γ4

z
1
3

1 + z2
dz| ≤ R

1
3

1 +R2
dz(2Rπ)

R→∞→ 0

This leaves only the two inside integrals to evaluate. Consider the two pieces we haven’t
looked at. Notice that they are NOT the negative of each other. This is due to our branch
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choice. We pick up an extra value of 2π as we traverse the outer circle (for example) in the
argument of z.

∫ ε

R

z
1
3

1 + z2
dz =

∫ ε

R

e
1
3

log |z|+ 1
3
i arg(z)

1 + z2
dz

=

∫ ε

R

e
1
3

log |z|+ 1
3
i(2π)

1 + z2
dz

= e
2
3
πi

∫ ε

R

e
1
3

log |z|

1 + z2
dz

= −e
2
3
πi

∫ R

ε

e
1
3

log |z|

1 + z2
dz

= −e
2
3
πi

∫ R

ε

z
1
3

1 + z2
dz

Notice for the last equality, the argument of z is 0 so these two integrals are equal. Thus,
taking the limits as ε→ 0 and R→∞ gives us

∫
K

z
1
3

1 + z2
dz = (1− e

2
3
πi)

∫ R

ε

z
1
3

1 + z2
dz

All that’s left is an application of the residue theorem. We note that 3
√
i = −iζ3 and 3

√
−i = i

where ζ3 denotes a primitive third root of unity. Both roots i and −i are in our keyhole
region. So, by the Residue Theorem (2.20),

∫
K

z
1
3

1 + z2
dz = 2πi

(
3
√
i

i+ i
+

3
√
−i

−i− i

)
= 2πi

(
−iζ3 − i

2i

)
= 2πi

(
−ζ3 − 1

2

)
= ζ2

3πi = e
4
3
πiπi

Substituting into the above (after taking limits) yields

∫ ∞
0

z
1
3

1 + z2
dz =

e
4
3
πiπi

1− e
2
3
πi

=
e

4
3
πiπi(1− e

4
3
πi)

3
=
πi(e

4
3
πi − e

2
3
πi)

3

=
πi(2e

4
3
πi − 1)

3
=
πi(2(cos(4

3π) + sin(4
3π)i)− 1)

3

=
πi(2(1

2 −
√

3
2 i)− 1)

3
=
π
√

3

3

as required. �

7. Evaluate
∫∞

0
xp

1+x2
dx where 0 < p < 1.

Solution: It turns out that the above construction generalizes nicely. This will also work for
negative values of p with 0 < |p| < 1. The key changes in the above argument come with the
residue computation and the simplification of the two straight lines in the key hole contour.
I’m only including this problem because I saw it on a comp and it might help to double check
answers in the end.
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∫ ε

R

zp

1 + z2
dz =

∫ ε

R

ep log |z|+pi arg(z)

1 + z2
dz

=

∫ ε

R

ep log |z|+pi(2π)

1 + z2
dz

= e2pπi

∫ ε

R

ep log |z|

1 + z2
dz

= −e2pπi

∫ R

ε

ep log |z|

1 + z2
dz

= −e2pπi

∫ R

ε

zp

1 + z2
dz

and the residue computation yields (see 2.20), using the fact that i = e
πi
2 , −i = e

3πi
2 , and

sin(x) = eix−e−ix
2i ,

∫
K

zp

1 + z2
dz = 2πi

(
e
pπi
2

i+ i
+
e
−3pπi

2

−i− i

)
= −2πiepπi

(
e
pπi
2 − e

−pπi
2

2i

)
= −2πiepπi sin(

pπ

2
)

This with the argument from the previous problem gives

(1− e2pπi)

∫ ∞
0

zp

1 + z2
dz = −2πiepπi sin(

pπ

2
)

Note that

(1− e2pπi) = epπi(e−pπi − epπi) = −2iepπi sin(pπ) = −2iepπi(2 sin(
pπ

2
) cos(

pπ

2
))

Equating and simplifying yields∫ ∞
0

zp

1 + z2
dz =

−2πiepπi sin(pπ2 )

−2iepπi(2 sin(pπ2 ) cos(pπ2 ))
=
π sec(pπ2 )

2

8. Evaluate
∫ π
−π

1
5+3 cos(x)dx.

Solution: To solve problems that are polynomial in only trigonometric problems, we need
to use one of the identities

cos(x) =
eix + e−ix

2
sin(x) =

eix − e−ix

2

derivable from eix = cos(x) + i sin(x). Using this substitution and setting z = eix, we get∫
γ

1

5 + 3 cos(x)
dx =

∫
γ

1

5 + 3
z+ 1

z
2

dz

iz
=

∫
γ

−2i

3z2 + 10z + 3
dz =

∫
γ

−2i

3(z + 1
3)(z + 3)

dz

where γ represents the unit circle. The only residue we need to consider is at z = −1
3 and so

by the Residue Theorem (2.20),∫
γ

−2i

3(z + 1
3)(z + 3)

dz = 2π
−2i

3(−1
3 + 3)

= 4π(
1

8
) =

π

2

Hence ∫ π

−π

1

5 + 3 cos(x)
dx =

π

2

as required. �
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9. Let 0 < b < a be real numbers. Evaluate
∫ 2π

0
1

(a+b cos(x))2
dx.

Solution: Let z = eix. Then cos(x) = z+z−1

2 and dx = dz
iz . Substituting gives the integral

∫ 2π

0

1

(a+ b cos(x))2
dx =

∫
|z|=1

1

(a+ b( z+z
−1

2 ))2

dz

iz
=

4

ib2

∫
|z|=1

zdz

(z2 + 2a
b z + 1)2

Now we apply the Residue Theorem (2.20). First we examine which poles lies within the unit
circle. The roots of the denominator are

λ± =
−a±

√
a2 − b2
b

Examining the absolute value, we see that

|λ−| =
a+
√
a2 − b2
b

>
b+
√
a2 − b2
b

>
b

b
= 1

So this root is outside the unit circle. As for the other,

|λ+| =

∣∣∣∣∣−a+
√
a2 − b2
b

∣∣∣∣∣ < a−
√

(a− b)2

b
= 1

and thus we have one pole inside the unit circle. Hence, the residue at λ+ is

Res(f, λ+) =
1

(2− 1)!
lim
z→λ+

d2−1

dz2−1
((z − λ+)2f(z))

= lim
z→λ+

d

dz
(

z

(z − λ−)2
)

= lim
z→λ+

(z − λ−)2 − 2z(z − λ−)

(z − λ−)4

= lim
z→λ+

−z − λ−
(z − λ−)3

=
2a
b

8
√
a2−b2
b3

=
ab2

4
√
a2 − b23

and the Residue theorem gives us∫ 2π

0

1

(a+ b cos(x))2
dx =

4

ib2
(2πi)

ab2

4
√
a2 − b23 =

2aπ
√
a2 − b23

as reqiured. �

10. Evaluate
∫∞
−∞

cos(αx)
1+x2

dx for some positive real α.

Solution: Let γR be the upper half semi-circle. Notice that∫
γR

cos(αz)

1 + z2
dz =

∫
γR

<(eαiz)

1 + z2
dz = <

(∫
γR

eαiz

1 + z2
dz

)
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So we evaluate the last integral. First note that if C represents the arc of the upper half
circle, ∫

γR

eαiz

1 + z2
dz =

∫
C

eαiz

1 + z2
dz +

∫ R

−R

eαiz

1 + z2
dz

Now, by the Estimation Lemma (2.21), since |eαiz| ≤ 1 on the upper half plane, we have

|
∫
C

eαiz

1 + z2
dz| ≤ 1

1 +R2
Rπ

R→∞−→ 0

Now we apply the residue theorem (2.20). Notice that the only root in the upper half circle
is i and so ∫

γR

eαiz

1 + z2
dz = 2πi

eαi(i)

i+ i
= πe−α

Taking the real part and limiting as R→∞ yields∫ ∞
−∞

cos(αz)

1 + z2
dz = πe−α

as required (note if α < 0, just use the lower half circle and get the same answer, making the
general answer πe−|α|). �

11. Evaluate
∫∞

0
cos(x)
9+x2

dx.

Solution: First note that since the function in question is an even function,∫ ∞
0

cos(x)

9 + x2
dx =

1

2

∫ ∞
−∞

cos(x)

9 + x2
dx

So it suffices to evaluate the second integral. Let γR be the upper half semi-circle. Notice
that ∫

γR

cos(z)

9 + z2
dz =

∫
γR

<(eiz)

9 + z2
dz = <

(∫
γR

eiz

9 + z2
dz

)
So we evaluate the last integral. First note that if C represents the arc of the upper half
circle, ∫

γR

eiz

9 + z2
dz =

∫
C

eiz

9 + z2
dz +

∫ R

−R

eiz

9 + z2
dz

Now, by the Estimation Lemma (2.21), since |eiz| ≤ 1 on the upper half plane, we have

|
∫
C

eiz

9 + z2
dz| ≤ 1

9 +R2
Rπ

R→∞−→ 0

Now we apply the residue theorem (2.20). Notice that the only root in the upper half circle
is 3i and so ∫

γR

eiz

9 + z2
dz = 2πi

ei(3i)

3i+ 3i
=
π

3
e−3

Taking the real part and limiting as R→∞ and cutting in half yields∫ ∞
0

cos(αz)

9 + z2
dz =

π

6e3

as required. �
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12. Evaluate
∫∞
−∞

sin(πx)
1+x+x2

dx.

Solution: Let γR be the upper half semi-circle. Notice that∫
γR

sin(πz)

1 + z + z2
dz =

∫
γR

=(eπiz)

1 + z + z2
dz = =

(∫
γR

eπiz

1 + z + z2
dz

)
So we evaluate the last integral. First note that if C represents the arc of the upper half
circle, ∫

γR

eπiz

1 + z + z2
dz =

∫
C

eπiz

1 + z + z2
dz +

∫ R

−R

eπiz

1 + z + z2
dz

Now, by the Estimation Lemma (2.21) since |eiπz| ≤ 1 on the upper half plane,

|
∫
C

eπiz

1 + z + z2
dz| ≤ 1

1 +R+R2
Rπ

R→∞−→ 0

Now we apply the residue theorem. Notice that the only root in the upper half circle is −1+
√

3i
2

and so∫
γR

eπiz

1 + z + z2
dz = 2πi

e
πi

(
−1+

√
3i

2

)
(−1+

√
3i

2 − −1−
√

3i
2 )

= 2πi

(
(−i)e

−π
√
3

2

√
3i

)
= −2

√
3

3
πie

−π
√
3

2

Taking the imaginary part and limiting as R→∞ yields∫ ∞
−∞

sin(πx)

1 + x+ x2
dz = −2

√
3

3
πe
−π
√
3

2

as required. �

13. Evaluate
∫∞
−∞

sin(3x)
x2+2x+3

dx.

Solution: Let γR be the upper half semi-circle. Notice that∫
γR

sin(3z)

z2 + 2z + 3
dz =

∫
γR

=(e3iz)

z2 + 2z + 3
dz = =

(∫
γR

e3iz

z2 + 2z + 3
dz

)
So we evaluate the last integral. First note that if C represents the arc of the upper half
circle, ∫

γR

e3iz

z2 + 2z + 3
dz =

∫
C

e3iz

z2 + 2z + 3
dz +

∫ R

−R

e3iz

z2 + 2z + 3
dz

Now, by the Estimation Lemma (2.21), since |e3iz| ≤ 1 on the upper half plane, we have

|
∫
C

e3iz

z2 + 2z + 3
dz| ≤ 1

R2 + 2R+ 3
Rπ

R→∞−→ 0

Now we apply the residue theorem. Notice that the only root in the upper half circle is
−1 +

√
2i and so∫

γR

e3iz

1 + z + z2
dz = 2πi

e3i(−1+
√

2i)

(−1 +
√

2i− (−1−
√

2i)
=
π
√

2

2
e−3
√

2e3i

=
π
√

2

2
e−3
√

2(cos(−3) + i sin(−3))
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Taking the imaginary part and limiting as R→∞ yields∫ ∞
−∞

sin(3x)

x2 + 2x+ 3
dz =

π
√

2

2
e−3
√

2 sin(−3)

as required. �

Solution: Similar to the contour integration question with fractional roots, we have an issue
with branch cuts. Here we wish to use the branch that corresponds to the negative x-axis (so
−π < arg(z) < π).

∫ ∞
0

log(pz)

q2 + x2
dx =

π

2q
log(pq)

as required. �

14. Evaluate
∫∞

0
log(x)

(1+x2)2
dx.

Solution: To solve logarithm question, we actually want to consider the integral∫
K

log(z)2

(1 + z2)2
dz

where K is the key hole region defined below around the negative x-axis (our choice of branch).

(i) Curve γ1 is z = −πx where x goes from ε to R.

(ii) Curve γ2 is z = Reit where t goes from 0 to 2π.

(iii) Curve γ3 is z = πix where x goes from R to ε (remember we introduce a 2π).

(iv) Curve γ4 is z = εeit where t goes from 2π to 0.

Calling the combined region K, we have

∫
K

log(z)2

(1 + z2)2
dz =

∫
γ2

log(z)2

(1 + z2)2
dz +

∫
γ4

log(z)2

(1 + z2)2
dz

−
∫ R

ε

log(z)2

(1 + z2)2
dz −

∫ ε

R

log(z)2

(1 + z2)2
dz

(Note that the negative signs come in as we substitute the line integral in and so dz = −dx
on those lines). Consider the first two integrals as both ε→ 0 and R→∞. We have that by
the Estimation Lemma (2.21) and the Log Lemma (2.22),

|
∫
γ2

log(z)2

(1 + z2)2
dz| ≤ log(ε)2

(1 + (ε)2)2
dz(2επ)

ε→0→ 0

|
∫
γ4

log(z)2

(1 + z2)2
dz| ≤ log(R)2

(1 +R2)2
dz(2Rπ)

R→∞→ 0

This leaves only the two inside integrals to evaluate. Consider the two pieces we haven’t
looked at. Notice that they are NOT the negative of each other. This is due to our branch
choice. We pick up an extra value of 2π as we traverse the outer circle (for example) in the
argument of z.
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−
∫ ε

R

log(z)2

(1 + z2)2
dz −

∫ R

ε

log(z)2

(1 + z2)2
dz =

∫ R

ε

(log |z|+ iπ)2

(1 + z2)2
dz −

∫ R

ε

(log |z| − iπ)2

(1 + z2)2
dz

=

∫ R

ε

4πi log(z)

(1 + z2)2
dz

Thus, taking the limits as ε→ 0 and R→∞ gives us

∫
K

log(z)2

(1 + z2)2
dz = 4πi

∫ ∞
0

log(z)

(1 + z2)2
dz

All that’s left is an application of the residue theorem. Both roots i and −i are in our keyhole
region. So, by the Residue Theorem (2.20),

∫
K

log(z)2

(1 + z2)2
dz = 2πi

(
1

(2− 1)!
lim
x→i

d2−1

dz2−1

log(z)2

(z + i)2
+

1

(2− 1)!
lim
x→−i

d2−1

dz2−1

log(z)2

(z − i)2

)
= 2πi

(
2 log(i)(i+i)2

i − 2(i+ i) log(i)2

(i+ i)4
+

2 log(−i)(−i−i)2
−i − 2(−i− i) log(−i)2

(−i− i)4

)

= 2πi

(
−π
4

+
π2i

16
+
−π
4
− π2i

16

)
= −iπ2

Substituting into the above (after taking limits) yields

∫ ∞
0

log(x)

(1 + x2)2
dx =

−π
4

as required. �

15. Evaluate
∫∞

0
log(x)2

9+x2
dx.

Solution: To solve logarithm question, we actually want to consider the integral∫
K

log(z)3

9 + z2
dz

where K is the key hole region defined below around the negative x-axis (our choice of branch).

(i) Curve γ1 is z = −πx where x goes from ε to R.

(ii) Curve γ2 is z = Reit where t goes from 0 to 2π.

(iii) Curve γ3 is z = πix where x goes from R to ε (remember we introduce a 2π).

(iv) Curve γ4 is z = εeit where t goes from 2π to 0.

Calling the combined region K, we have

∫
K

log(z)3

9 + z2
dz =

∫
γ2

log(z)3

9 + z2
dz +

∫
γ4

log(z)3

9 + z2
dz

−
∫ R

ε

log(z)3

9 + z2
dz −

∫ ε

R

log(z)3

9 + z2
dz
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(Note that the negative signs come in as we substitute the line integral in and so dz = −dx
on those lines). Consider the first two integrals as both ε→ 0 and R→∞. We have that by
the Estimation Lemma (2.21) and the Log Lemma (2.22),

|
∫
γ2

log(z)3

9 + z2
dz| ≤ log(ε)3

9 + (ε)2
dz(2επ)

ε→0→ 0

|
∫
γ4

log(z)3

9 + z2
dz| ≤ log(R)3

9 +R2
dz(2Rπ)

R→∞→ 0

This leaves only the two inside integrals to evaluate. Consider the two pieces we haven’t
looked at. Notice that they are NOT the negative of each other. This is due to our branch
choice. We pick up an extra value of 2π as we traverse the outer circle (for example) in the
argument of z.

−
∫ ε

R

log(z)3

9 + z2
dz −

∫ R

ε

log(z)3

9 + z2
dz =

∫ R

ε

(log |z|+ iπ)3

9 + z2
dz −

∫ R

ε

(log |z| − iπ)3

9 + z2
dz

=

∫ R

ε

6πi log(z)2 − 2π3i

9 + z2
dz

Thus, taking the limits as ε→ 0 and R→∞ gives us

∫
K

log(z)3

9 + z2
dz = 6πi

∫ ∞
0

log(z)2

9 + z2
dz − 2π3i

∫ ∞
0

1

9 + z2
dz

To evaluate the last integral, we can use standard methods of integration to get:

lim
R→∞

∫ R

0

1

9 + z2
dz = lim

R→∞

1

9

∫ R

0

1

1 + ( z3)2
dz

= lim
R→∞

1

3
arctan(

z

3
)
∣∣∣R
0

=
1

3
(
π

2
− 0) =

π

6

To evaluate the first integral, all we need is an application of the residue theorem. Both roots
3i and −3i are in our keyhole region. So, by the Residue Theorem (2.20),

∫
K

log(z)3

9 + z2
dz = 2πi

(
log(3i)3

3i+ 3i
+

log(−3i)3

−3i− 3i

)
= 2πi

(
(log(3) + iπ

2 )3

6i
+

(log(3) + −iπ
2 )3

−6i

)

= log(3)2π2i− π4i

12

Substituting into the above (after taking limits) yields

∫ ∞
0

log(x)2

9 + x2
dx =

1

6πi

(
log(3)2π2i− π4i

12
+ 2π3i

π

6

)
=
π3

24
+

log(3)2π

6

as required. �
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3 Linear Algebra

Before I begin, I would like to give a huge thank you to Faisal al-Faisal for this section.
Many of the creative solutions are due either directly or indirectly to his invaluable input.

Theorem 3.1. A real symmetric matrix A ∈Mn(R) has only real eigenvalues and eigenvectors.

Proof. Let v be an eigenvector of A over C and let λ be its corresponding eigenvalue. then the
following is true,

Av = λv ⇒ (Av)T = λvT

⇒ (v)TA = λvT (A is symmetric)

⇒ (v)TA = λ(v)T

and therefore

λ(v)T v = (v)T (Av) = ((v)TA)v = λ(v)T v

Now, recalling that ||v||2 =< v, v >= vT v and since v is non zero, the above gives us that
λ ||v||2 = λ ||v||2 and so λ = λ and hence is real. To get that v must be real note that (A−λI) is
noninvertible and hence there is a real vector satisfying (A− λI)v = 0. This is our eigenvector.

Theorem 3.2. A matrix is diagonalizable if all of its eigenvalues are distinct.

Theorem 3.3. A matrix is diagonalizable if is real and symmetric. Further, there is an orthog-
onal matrix making it diagonal.

Proof. (Sketch) Use induction. Get an eigenvalue and unital eigenvector v (exists by real sym-
metry). Use GS to get an o.n.b. with the eigenvector then construct the matrix M consisting
of these vectors. Notice that Me1 = v. Moreover, e1 is an eigenvector of M−1AM we can write
this as a block diagonal matrix with the eigenvalue in the top left corner (as any matrix times
e1 gives you the first column of the matrix) and the bottom right corner is a symmetric matrix
(since M−1AM is symmetric) of strictly smaller size. Induction takes us home.

Definition 3.4. A Hermitian matrix is a square self-adjoint matrix, that is, one whose conjugate
transpose equals itself.

3.1 Trace and Determinant

1. Show AB −BA = I has no solution over Mn(R).

Solution: Suppose there were matricies A,B satisfying AB −BA = I. Then

n = tr(I) = tr(AB −BA) = tr(AB)− tr(BA) = tr(AB)− tr(AB) = 0

which is a contradiction. For a counter example with infinite dimensional vector spaces, see
the eigenvalues section. �

3.2 Decomposition Theorems

Theorem 3.5. (Jordan Decomposition Theorem) Every matrix M ∈Mn(C) is similar to a block
diagonal matrix. In otherwords, there exist a matrix P such that J = P−1MP where J is of the
form

J =

J1

. . .

Jp


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where

Ji =


λi 1

λi
. . .
. . . 1

λi


subject to the conditions that

(i) Each λi is an eigenvalue of M

(ii) Given an eigenvalue λi its geometric multiplicity is the dimension of ker(M − λiI), and it
is the number of Jordan blocks corresponding to λi

(iii) The sum of the sizes of all Jordan blocks corresponding to an eigenvalue λi is its algebraic
multiplicity

Theorem 3.6. (Primary Decomposition Theorem) Every matrix is similar to the companion
matrix of its minimal polynomial (roughly speaking)

1. Show that no n by n real matrix A can be of the form

A2 =

−a1

. . .

−an


where each ai is positive, real and distinct.

Solution: Suppose that such an A exists. If n is odd, then note

0 < det(A)2 = det(A2) =
n∏
i=1

(−ai) = −
n∏
i=0

(ai)

a contradiction. So suppose n is even. Note that A satisfies p(A2) = 0 where p(x) =∏n
i=0(−ai − x) =

∏n
i=0(x+ ai). In particular, we know that A is a zero of p(x2). Let mA(x)

be the minimal polynomial of A. We know that mA | p(x2) and since all the factors are

monic and irreducible, we have that mA =
∏n/2
i=0(x2 + bi) where the bi form a subset of the ai.

Applying the primary decomposition theorem (3.6), we see that A is similar to the following
block matrix 

0 −b1 0 . . . 0

1 0 0 . . .
...

0
. . .

... 0 −bn
2

0 . . . 0 1 0


and thus A2 is similar to 

b1
b1

. . .

bn
2

bn
2


but similar matricies share the same eigenvalues (the proof is similar to the problem where
AB = BA with B invertible - show they share the same eigenvalues). The matrix above
only has n

2 distinct eigenvalues while A2 has n distinct eigenvalues, a contradiction. Hence A
cannot exist. �
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2. For what values of r and n is there an n × n matrix of rank r with real entries such that
A2 = 0?

Solution: Without loss of generality, we may suppose that A is in Jordan canonical form (for
A must be similar to a matrix in Jordan canonical form and we can do all the math with the
similar matrix and everything will carry over as similarity is rank and eigenvalue invariant).
Now, since A is nilpotent, its only eigenvalue is 0. Since A2 = 0 we know that the Jordan
blocks must consist only of matricies of the form

[
0
]

or

[
0 1
0 0

]
So we may construct a matrix consisting of these two blocks. Everytime we use the second
block, we add 1 to the rank. At most, we can use bn2 c of the second blocks. Also, we can
decide to use non of the second blocks giving r = 0 as our value. Hence for any value of n,
we have that 0 ≤ r ≤ bn2 c as requried. �

3. Show that GL(3,Z) cannot have an element of order 7.

Solution: By Gauss’ Lemma it suffices to show that GL(3,Q) cannot have an element of
order 7. Suppose there was an A ∈ GL(3,Q) such that A7 = I. Then letting p(x) be the
minimal polynomial for A, we see that p(x)|x7 − 1. since p(x) 6= x − 1, we must have that
p(x) = x6 + x5 + ... + 1 as it is irreducible over Q (I will show this in the ring section but

for a quicky proof, use Eisenstein on (y+1)7−1
(y+1)−1 = p(y + 1) to show this is irreducible and note

that irreducibility is invariant under shifts). By the Primary Decomposition Theorem (3.6)
we have that A is similar to the characteristic polynomial of p(x) which is a 6 by 6 matrix.
This is absurd. Hence A cannot have order 7.

As an aside, we can show that the only orders a matrix can have are 1, 2, 3, 4, 6 using a very
similar method. Moreover, this method extends to GL(n,Z). �

4. Let A ∈Mn(C). Show that the nullity of the commutator of A is at least of dimension n.

Solution: The commutator is the set of all matricies such that AB − BA = 0. We wish to
find a set of dimension n such that every element of this set commutes with A. Note that it
suffices to do this for an A in Jordan Canonical Form. By the Jordan Decomposition Theorem
(3.5), we have that A = P−1JP for some invertible matrix P and J in normal form. If we find
B such that JB = BJ , then note P−1JPP−1BP = P−1BPP−1JP ⇒ AP−1BP = P−1BPA
and invertible matricies do not change the linear independence or matricies. Now, analyzing
the matrix block by block, it sufices to consider a Jordan block and extend the results block
by block. So suppose we have a Jordan block J1 of size k ≤ n. Now, notice that J1 commutes
with powers of itself. So it suffices to show that k of these powers are linearly independent.
Consider the minimal polynomial of J1. Since it is a Jordan block, we know that the degree of
the minimal polynomial is k. Hence the matricies I, J1, ..., J

k−1
1 must be linearly independent

for otherwise we could find a polynomial with rational coefficients of a smaller degree, a
contradiction. Hence, we have found k linearly independent matricies that commute with J1.
Now, what we can do is do this construction block by block and thus we get at least n linearly
independent matricies that commute with our matrix A as required.

5. Compute the Jordan Canonical form of

A :=

1 2 3
0 4 5
0 0 4


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Solution: It turns out that you don’t need much effort to compute this one. Notice that the
characteristic polynomial is (1 − λ)(4 − λ)2 corresponding the eigenvalues λ = 1, 4. All we
need to do is determine the nullity of the eigenvalue associated to 4. Plugging in we note that

A− 4I =

1 2 3
0 0 5
0 0 0


which has nullity 1. Hence the geometric multiplicity (ie dimension of the nullspace ie the
dimension of the eigenspace associated to 0) is 1. Thus, the two eigenvalues of 4 correspond
to one Jordan block and hence the Jordan canonical form is

A :=

1 0 0
0 4 1
0 0 4


3.3 Eigenvalues and Eigenvectors

1. Prove that the following matrix has two positive and two negative eigenvalues (counting
multiplicities) 

0 5 1 0
5 0 5 0
1 5 0 5
0 0 5 0



Solution: This is a plug and chug. Turns out the characteristic polynomial is f(λ) :=
λ4 − 76λ2 − 50λ+ 625. Then simply note that

f(−8) > 0 > f(−7) < 0 < f(−3) > 0 > f(3) < 0 < f(9)

So applying the Intermediate Value Theorem (1.1) four times gives us the desired conclusion.
�

2. Let A and B be two n × n commuting matricies over C. Show that they share a common
eigenvector.

Solution: . Let λ be an eigenvalue of A (which exists since A has entries in an algebraically
closed field). Consider Vλ := {v ∈ Cn | Av = λv}, the eigenspace of λ. Note that this
Eigenspace is B-invariant. For if v ∈ Vλ, then Bv ∈ Vλ since ABv = BAv = B(λv) = λBv.
So we may view B as an operator acting on the eigenspace. Since it is complex valued it too
must have an eigenvector v0 ∈ Vλ. By definition, this eigenvector is an eigenvector for A as
well proving the claim.

3. Let A and B be real symmetric matricies with positive eigenvalues. Show that A+B has the
same property.

Solution: That A + B is real and symmetric is clear. We show that all eigenvalues of
A + B are positive. Let x be an eigenvector of A + B with associated eigenvalue λ. Then
Ax + Bx = (A + B)x = λx. Taking the inner product of both sides with x gives < Ax, x >
+ < Bx, x >= λ < x, x >. Since x 6= 0, we know that < x, x >> 0. So it suffices to show
that for any real symmetric matrix with positive eigenvalues say M that < Mx, x >> 0.
Since M is positive real symmetric, we can write M = P TDP where D is a diagonal matrix
whose entries are precisely the eigenvalues of M (think Jordan Canonical Decomposition) and

where P is an orthogonal matrix (by 3.3). Consider Q = P TD
1
2P where D

1
2 is the diagonal

matrix with the entries square rooted (possible since D has only positive elements). Notice
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that Q2 = M and that QT = Q and hence is symmetric. Thus, by the properties of the inner
product,

< Mx, x >=< Q2x, x >=< QTQx, x >=< Qx,Qx >> 0

The last inequality holds since Qx 6= 0 as it is invertible (with inverse P TD−1P ) and x 6= 0.
�

4. Let A and B be real matricies with B invertible. Show that AB and BA share common
eigenvalues.

Solution: Let x be an eigenvector for AB, that is ABx = λx. Set v := Bx. Then

BAv = BABx = B(λx) = λBx = λv

So λ is an eigenvalue for BA. Conversely, suppose y is an eigenvector for BA with eigenvalue
µ. Set u := B−1y. Then

ABu = B−1BABB−1y = B−1BAy = B−1µy = µB−1y = µu

So µ is an eigenvalue for AB. This completes the proof. �

5. Let a, b, c, d ∈ R not all zero. Find eigenvalues of the following matrix and describe the
eigenspace decomposition of R4. 

aa ab ac ad
ba bb bc bd
ca cb cc cd
da db dc dd


Solution: Without loss of generality, suppose a 6= 0. Notice that the matrix will row reduce
via the operations

−b
a
R1 +R2 → R2

−c
a
R1 +R3 → R3

−d
a
R1 +R4 → R4

to the matrix 
aa ab ac ad
0 0 0 0
0 0 0 0
0 0 0 0


Hence the kernel has dimension 3 and thus 0 is an eigenvalue of this matrix with multiplicity
three. A quick check reveals that this eigenspace is spanned by the eigenvectors

b
−a
0
0




c
0
−a
0



d
0
0
−a


All that is left is the last eigenvalue and its corresponding eigenvector. To compute this we
explicitly compute the characteristic polynomial.

det



aa− λ ab ac ad
ba bb− λ bc bd
ca cb cc− λ cd
da db dc dd− λ


 = det



aa− λ ab ac ad

bλ
a −λ 0 0
cλ
a 0 −λ 0
dλ
a 0 0 −λ




= (aa− λ)(−λ3)− (
bλ

a
)(λ2ba)

+ (
cλ

a
)(−λ2ca)− (

dλ

a
)(λ2da)

= λ4 − (a2 + b2 + c2 + d2)λ
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where the first equality holds by invariance of scalar row multiplication. So the last eigenvalue
is a2 + b2 + c2 + d2. A quick check reveals that the associated eigenvector is (a, b, c, d)T . �

6. Let M be an n by n real matrix with a 7 in each of the first p rows and a 4 in each of the last
n− p rows. Find the eigenvalues and eigenvectors of this matrix.

Solution: First we start off with the easy eigenvalues and eigenvectors. Note that each of
(1,−1, 0, ..0)T , (1, 0,−1, 0, .., 0)T , ..., (1, .., 0,−1)T are eigenvectors associated to the eigenvalue
0 (this is very clear from inspection). This is a set of n − 1 vectors. So all that is left is
discovering the final eigenvector.

Suppose that Mx = λx where x = (x1, ..., xn)T 6= 0. Let S :=
∑n

i=1 xi. Expanding yields

7S = λx1, 7S = λx2, ..., 7S = λxp, 4S = λxp+1, ..., 4S = λxn

Summing all the equations yields

7pS + 4(n− p)S = λS ⇒ (4n+ 3p− λ)S = 0

So either S = 0 (which we solved by inspection - in theory there COULD be another eigenvec-
tor in this category but this is not the case as we will see) or λ = 4n+ 3p. Now, we compute
the eigenvectors. We know that S = λx1

7 . Hence x1 = x2 = ... = xp and xp+1 = ... = xn = 4x1
7 .

Setting x1 = 1 yields the eigenvector (1, .., 1, 4
7 , ...,

4
7)T and thus completing the list. �

7. Let A =

[
a b
c d

]
with a, b, c, d > 0. Show that A has an eigenvector

(
x
y

)
∈ R2 with x, y > 0.

Solution: Let v = (x, y)T be an eigenvector. Notice that it satisfies

ax+ by = λx cx+ dy = λy

where λ is the associated eigenvalue. In particular, if x = 0 the the above says that by = 0 and
since b > 0, we have that y = 0 contradicting the fact that eigenvectors are nonzero. Similarly,
y = 0 leads to x = 0 a contradiction. So it suffices to show that x and y have the same sign
(if both are negative then −v has strictly positive entries and is also an eigenvalue). The
characteristic polynomial for this matrix is λ2 − (a+ d)λ+ ad− bc leading to the eigenvalues

λ± =
a+ d±

√
(a− d)2 + 4bc

2

Consider λ+. I claim that λ+ − a > 0. This holds since

λ+ − a =
d− a+

√
(a− d)2 + 4bc

2
>
d− a+

√
(a− d)2

2

=
d− a+ |d− a|

2
= max{0, d− a} ≥ 0

Using this eigenvalue, the first equation becomes

by = (λ+ − a)x

Now both b and λ+ − a are strictly greater than 0 so it must be that x and y have the same
sign as required. �

8. Let V be the vector space of all polynomials p(x) with real coefficients. Let A and B denote
the linear transformation on V of multiplication by x and differentiation respectfully.
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(i) Show that A has no eigenvalues and that 0 is the only eigenvalue of B

(ii) Compute the transform BA−AB
(iii) Show that no two linear transformation A and B ona finite dimensional real vector space

can satisfy BA−AB = I.

Solution:

(i) Let p(x) ∈ R[x] be an eigenvector for A, that is A(p(x)) = λp(x). Then xp(x) = λp(x).
A degree argument shows a contradiction unless p(x) = 0 in which case we don’t have
an eigenvector. Let q(x) ∈ R[x] be an eigenvector for B, that is B(q(x)) = µq(x). Hence
q′(x) = µq(x). Since q(x) 6= 0, then this holds if and only if q′(x) = 0 and µ = 0 . This
completes the proof. �

(ii) Let p(x) ∈ R[x]. Note that

BA(p(x)) = B(xp(x)) = (p(x) + x′p(x))

AB(p(x)) = A(p′(x)) = xp′(x)

Subtracting shows that (BA− AB)(p(x)) = p(x) and since p(x) was an arbitrary poly-
nomial, we get that BA−AB = I.

(iii) This was solved before - just take the traces and note that we get n = 0 a contradiction.
�

3.4 Nilpotent Matricies

1. Let A be a nilpotent n by n matrix. Prove or disprove the following.

(i) An = 0

(ii) det(A+ I) = 1

(iii) det(A+D) = det(D)

Solution:

(i) Since A is nilpotent, its minimal polynomial is p(t) = tk where k ≤ n. Hence An =
An−kAk = An−k0 = 0. �

(ii) By the Jordan Decomposition Theorem, A is similar to an upper triangular matrix with
all 0 entries on both the diagonal and the lower triangle. Call this matrix M and say
PAP−1 = M . Notice that det(M + I) = 1 and hence

1 = det(M + I) = det(PAP−1 + I) = det(P (A+ I)P−1) = det(P ) det(A+ I) det(P−1)

= det(A+ I)

as claimed. �

(iii) We construct a counter example. Notice that for a 2 by 2 matrix A, the characteristic
polynomial is p(t) = t2 − tr(A)t+ det(A). Consider[

6 −9
4 −6

]
This matrix has tr(A) = det(A) = 0. By the above, we know that A2 = 0 and so A is
nilpotent. Set [

−6 0
0 6

]
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and note that

−36 = det(D) 6= det(D +A) = det(

[
0 −9
4 0

]
) = 36

disproving the claim . �

2. Let M,N be 6 by 6 complex nilpotent matricies. Suppose further that N and M have the
same minimal polynomial and nullity. Show that N and M are similar. Moreover, show this
is not the case for 7 by 7 matricies.

Solution: Since every matrix has a unique Jordan decomposition, and both the minimal
polynomial and nullity are similarity invariant, it suffices to examine the Jordan decompo-
sition of matricies with the stated properties. Notice that for every Jordan block in the
decomposition, we add 1 to the nullity (there will be a zero row in the decomposition). So
it suffices to examine the nullity cases. Moreover note that flipping Jordan blocks does not
change the similarity (just use permutation matricies to flip the order of the blocks).

(i) Nullity is 0. This cannot happen as we have at least one Jordan block and hence the
nullity is at least 1

(ii) Nullity is 1. There is only one way this can happen and that is if the minimal polynomial
is t6. Hence M and N have the same Jordan decomposition.

(iii) Nullity is 2. We have two Jordan blocks. If the minimal polynomial is tk with k ≤ 2
then we have at least three Jordan blocks contradicting the nullity. If the minimal
polynomial is t3 then it must be the matrix with two Jordan blocks corresponding to t3.
If the minimal polynomial is t4 then we have again exactly two blocks one corresponding
to t4 and one corresponding to t2. If the minimal polynomial is t5 then again there is
only one matrix namely the one with the t5 block and the t block. In all these cases,
there is a unique Jordan matrix per nullity and minimal polynomial.

(iv) Nullity is 3. We have three Jordan blocks. If the minimal polynomial is t2 then we have
three equal Jordan blocks. If the minimal polynomial is t3, then we have a t3, a t2, and
a t block. If the minimal polynomial is t4 then we need two t blocks to meet the nullity
quota. Again in all cases we have a unique matrix.

(v) Nullity is 4. If the minimal polynomial is t2 then we have another t2 block and two t
blocks. If the minimal polynomial is t3, then we have all t blocks.

(vi) Nullity is 5. The minimal polynomial is t2 and we have four t blocks.

(vii) Nullity is 6. The minimal polynomial is t. We have the zero matrix. End of story.

In all cases we have a unique matrix and hence M and N are similar as required. Lastly, for
7 by 7 matricies, we do not have uniqueness. Consider the matrices where the Jordan blocks
are t3, t3 and t and the other matrix has blocks t3, t2, t2. These matrices have the same
nullity and the same minimal polynomial but are not similar. �

3.5 Gram-Schmidt Orthogonalization

Theorem 3.7. Let V be a finite dimensional inner product space. Define the projection operator
by

proju(v) =
< v, u >

< u, u >
u
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The Gram-Schmidt process takes a basis {vi} to an orthonormal basis. To do this use the vectors

u1 = v1

u2 = v2 − proju1(v2)

u3 = v3 − proju1(v3)− proju2(v3)

...

uk = vk −
k−1∑
j=1

projuj (vk)

then normalize to ei = ui
||ui|| . This works for an infinite dimensional vector space as well - at

each iteration we get a set of orthonormal vectors where the first k vectors share the same span.

1. (i) Prove that an orthogonal set of vectors {u1, .., un} in an n-dimensional Euclidean space
is linearly independent.

(ii) Let V be the subspace of R4 spanned by v1 = (0, 1, 1, 0)T , v2 = (1, 0, 1, 1)T , v3 =
(1, 1, 0, 2)T . Using Gram-Schmidt, construct an orthgonal basis for V .

(i) Suppose that v := a1u1 + ... + anun = 0. Notice that 0 =< v, ui >= ai as ui form an
orthonormal basis. Hence the set is linearly independent. �

(ii) Plug and chug...

u1 = v1 = (0, 1, 1, 0)T

u2 = v2 − proju1(v2) = (1, 0, 1, 1)T − < (1, 0, 1, 1)T , (0, 1, 1, 0)T >

< (0, 1, 1, 0)T , (0, 1, 1, 0)T >
(0, 1, 1, 0)T =


1
−1
2
1
2
1


u3 = v3 − proju1(v3)− proju2(v3)

= (1, 1, 0, 2)T − < (1, 1, 0, 2)T , (0, 1, 1, 0)T >

< (0, 1, 1, 0)T , (0, 1, 1, 0)T >


0
1
1
0

− < (1, 1, 0, 2)T , (1, −1
2 ,

1
2 , 1)T >

< (1, −1
2 ,

1
2 , 1)T , (1, −1

2 ,
1
2 , 1)T >


1
−1
2
1
2
1


= (0, 1,−1, 1)T

3.6 Random Linear Algebra Questions

1. Let x be a unit vector in Rn. Let A := I − βxxT .

(i) Show A is symmetric.

(ii) Find all β such that A is orthogonal.

(iii) Find all β such that A is invertible.

Solution:

(i) Notice that (xxT )T = (xT )TxT = xxT and thus is symmetric. Multiplying this by a
scalar doesn’t change the “symmetricness”. Lastly, adding by I (that is, only adding
elements to the diagonal) also doesnt change the symmetricness and hence A is symmet-
ric.
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(ii) We wish to find values of β so that AAT = I. Since A is symmetric, it suffices to find
values such that A2 = I. Evaluating directly yields,

I = A2 = (I − βxxT )2 = I − 2βxxT + β2(xxT )(xxT )

= I − 2βxxT + β2x(xTx)xT = I − 2βxxT + β2xxT

where the last equality holds since x is a unit vector. This implies that (β2−2β)xxT = 0.
Since x is a unit vector, xxT has a non-zero entry and thus we must have that (β2−2β) =
0. This is true if and only if β = 0 or β = 2.

(iii) Since xxT is real symmetric, it is diagonalizable. Let Q be a real matrix such that
Q(xxT )Q−1 = D for some diagonal matrix D. Notice that the entries of the diagonal
are the eigenvalues of xxT .

A = I − βxxT ⇔ QAQ−1 = I − βQxxTQ−1 = I − βD
⇒ det(A) = det(QAQ−1) = det(I − βD) = (1− βλ1)...(1− βλn)

Where each of the λi represents the eigenvalue in position (i, i) of D. Notice that since
x is a unit vector, we have as before that (xxT )(xxT ) = x(xTx)xT = xxT and so xxT

as a matrix satisfies t2 − t = 0. Since all eigenvalues satisfy the minimal polynomial,
the eigenvalues of xxT must be either 0 or 1 and at least one is non-zero since otherwise
xxT is nilpotent and using the above we see that 0 = (xxT )n = xxT (for some n ∈ N),
a contradiction for a unit vector x. Thus for A to be invertible, we need a non-zero
determinant, and so we need (1− βλ1)...(1− βλn) 6= 0. As these λi = 0 or 1 and not all
are 0, we reduce this to (1− β) 6= 0 or simply β 6= 1. So if β 6= 1 then A is invertible. �

2. Let U,W be subspaces if a finite-dimensional vector space V . Prove that dim(U)+dim(W ) =
dim(U ∩W ) + dim(U +W ).

Solution: Let i = dim(U), j = dim(W ), k = dim(U ∩W ) and e1, .., ek a basis for U ∩W .
Next, extend this basis to a basis of U via e1, .., ek, f1, .., fi−k and extend this basis to a basis
of W via e1, .., ek, g1, .., gj−k. I claim that B := {e1, .., ek, f1, .., fi−k, g1, .., gj−k} is a basis of
U +W . First, let v = u+ w ∈ U +W with u ∈ U and w ∈W . Note that

u =
k∑
a=1

λaea +
i−k∑
b=1

µafb

w =
k∑
a=1

ωaea +

j−k∑
b=1

νbgb

⇒ v = u+ w =

k∑
a=1

(λa + ωa)ea +

i−k∑
b=1

µbfb +

j−k∑
c=1

νcgc

so B spans U +W . Next, suppose

v = u+ w =

k∑
a=1

λaea +

i−k∑
b=1

µbfb +

j−k∑
c=1

νcgc = 0

I claim each of the scalars must be 0. Observe that
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k∑
a=1

λaea +
i−k∑
b=1

µafb =

j−k∑
c=1

−νcgc

The right hand side is in W and the left hand side is in U so both sides lie in the intersection
U ∩W . By choice of gc, we know that gc were chosen in W and not in U ∩W so we have
that both sides equal 0. Since the gc is a part of a basis for W , we know that νc = 0. Since
e1, .., ek, f1, .., fi−k is a basis for U , we know that each of the λa and µb are also 0. Hence all
scalars are 0 and thus B is linearly independent. Hence B is a basis for U +W . Thus,

dim(U +W ) = k + i− k + j − k = i+ j − k = dim(U) + dim(W )− dim(U ∩W )

giving the desired result. �

3. Let A = [aij ] be an n by n matrix of complex numbers satisfying for each 1 ≤ i ≤ n,

|aii| >
∑
j 6=i
|aij |

Suppose that Ax = 0 where x = (x1, .., xn)T ∈ Cn.

(i) Show that aiixi = −
∑

j 6=i aijxj

(ii) Let M = max1≤k≤n |xk|. Show that M = 0.

(iii) Show that the matrix A is invertible

Solution:

(i) Direct multiplication gives for each 1 ≤ i ≤ n,

n∑
j=0

aijxj

Isolating gives the result. �

(ii) Let k be the index such that M = |xk|. Then

M
∑
j 6=k
|akj | = |xk|

∑
j 6=k
|akj | ≤ |xk||akk| = |akkxk| = |

∑
j 6=k

akjxj | ≤
∑
j 6=k
|akjxj | ≤M

∑
j 6=k
|akj |

Hence if M 6= 0 we have that ∑
j 6=k
|akj | = |akk|

contradicting the above. Hence M = 0 as required. �

(iii) Since Ax has only the trivial solution by the above, we have that A is invertible. �

4. Consider L : Mn(R)→Mn(R) defined by L(A) = A+AT .

(i) For n = 2 find bases for ker(L) and Ran (L).

(ii) For all n ≥ 2, find dim(ker(L)) and dim(Ran (L)).
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5. Let A be an n by n real symmetric matrix and define the matrix eA by the convergent series

eA :=
∞∑
j=0

1

j!
Aj

where A0 = I by convention. Show that eA is non-singular.

Solution: Notice that since A was an arbitrary real symmetric matrix, we have that the
following sum must also converge,

e−A :=
∞∑
j=0

1

j!
(−A)j

I claim that this is the inverse of eA. Notice that

eAe−A =
∞∑
j=0

1

j!
Aj

∞∑
j=0

1

j!
(−A)j =

∞∑
k=0

k∑
j=0

(−1)k

(k − j)!j!
Ak

Now for all k ≥ 1, we have

0 = (1− 1)k =
∑
i=1

k

(
k

i

)
(−1)k =

∑
i=1

k
k!

(k − i)!i!
(−1)k

dividing by k! tells us that
∑

i=1 k
(−1)k

(k−i)!i! = 0. Hence

eAe−A =
∞∑
k=0

k∑
j=0

(−1)k

(k − j)!j!
Ak = A0 + 0 = I

Thus, eA is invertible as required. �

6. For a vector v = (v1, ..., vn)T ∈ Rn, define ||v||1 :=
∑n

j=1 |vj | and for an n by n complex
matrix, define

||A||1 := sup
v∈Rn
v 6=0

||Av||1
||v||1

Show if A = [aij ], then

||A||1 := max
1≤j≤n

n∑
i=1

|aij |

Solution: Let M := max1≤j≤n
∑n

i=1 |aij |. First notice that M is obtained using one of the
vectors (0, .., 0, 1, 0, ..0)T (namely the one corresponding to the max) so ||A||1 ≤M . Next, we
have

M ≤ ||A||1 = sup
v∈Rn
v 6=0

||Av||1
||v||1

= sup
v∈Rn
v 6=0

∑n
i=1

∣∣∣∑n
j=1 aijvj

∣∣∣∑n
j=1 |vj |

≤ sup
v∈Rn
v 6=0

∑n
i=1

∑n
j=1 |aijvj |∑n

j=1 |vj |
= sup

v∈Rn
v 6=0

∑n
j=1 |vj |

∑n
i=1 |aij |∑n

j=1 |vj |

≤ sup
v∈Rn
v 6=0

M
∑n

j=1 |vj |∑n
j=1 |vj |

= M

This shows that ||A||1 = M as required. �
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7. Let A be an n by n matrix with diagonal entries s and all off-diagonal entries t. For which
complex values is this matrix not invertible? For each of these describe the null space of A
including its dimension.

Solution: Recall that a matrix is not invertible if and only if it has an eigenvalue of zero. So
we solve Ax = 0 where x = (x1, .., xn)T 6= 0. this becomes

tx1 + ...+ txi−1 + sxi + txi+1 + ...+ txn = 0

or equivalently,

(s− t)xi + tR = 0

for every 1 ≤ i ≤ n. Summing all these together and setting R = x1 + ...+ xn gives

(s+ (n− 1)t)R = 0

This gives us either R = 0 or s = (1 − n)t. In the first case, the above tells us that ei-
ther each xi = 0, which can’t happen as x is non-zero or it tells us that s = t. In this
case we have two possible nullspaces for A. If s = t = 0, then A = 0 and the null space
has full dimension. If s = t 6= 0, then A has dimension n − 1 and consists of vectors
(1,−1, 0, .., 0)T , (1, 0,−1, 0, .., 0)T , ..., (1, 0, .., 0,−1)T . In the second case, s = (1 − n)t and
so A = tB where B is the matrix of all ones except on the diagonal where it has 1 − n.
Clearly, (1, .., 1)T is an eigenvector and hence lies in the nullspace. To see the dimension of
the nullspace is indeed 1, negate the first row. Then take the first row and add it to all
subsequent rows one at a time (so sort of like a Gaussian Elimination). Then multiply all non
first rows by −1

n and add all rows to the first row to get a zero row on the top and all other
rows are non-zero (and are not multiples of the other rows). �

4 Group Theory

Theorem 4.1. (Lagrange’s Theorem) Let G be a finite group and H ≤ G. Then |H| | |G|.

Theorem 4.2. (First Isomorphism Theorem) Let G and H be groups and φ : G → H a group
homomorphism. Then G/ ker(φ) ∼= im(φ) in particular, if φ is one to one, then G/ ker(φ) ∼= H.

Theorem 4.3. (Third Isomorphism Theorem) Let G be a group and H and K normal subgroups
of G with H ≤ K. Then K/H E G/H and (G/H)/(K/H) ∼= (G/K)

Theorem 4.4. (The Class Equation) Let G be a finite group and let R be a set of representatives
from each conjugacy class (not in the centre). Then

|G| = |Z(G)|+
∑
a∈R

[G : CG(a)]

where Z(G) is the centre of the group (all commutative elements) and CG(a) = {g ∈ G | ag = ga}
a subgroup of G called the centralizer.

Theorem 4.5. (Sylow’s First Theorem) Let G be a finite group with |G| = pnm with p a prime
and gcd(p,m) = 1. Then, there exist p-subgroups (group of prime power order) of order pk for
k = 0..n. In particular, there exists a Sylow p-subgroup (ie a subgroup of order pn).

Theorem 4.6. (Sylow’s Second Theorem) Let G be a finite group with |G| = pnm with p a
prime and gcd(p,m) = 1. If P is a Sylow p-subgroup and Q is and p-subgroup, then there is
an element g ∈ G so that Q ≤ gPg−1. This means Q is contained in a conjugate of P . In
particular, all Sylow p-subgroups are conjugate to each other.
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Theorem 4.7. (Sylow’s Third Theorem) Let G be a finite group with |G| = pnm with p a prime
and gcd(p,m) = 1. Let np be the number of Sylow p-subgroups. Then np ≡ 1 (mod p). Moreover,
np | m as np is the index of the normalizer [G : NG(P )] for any Sylow p-subgroup P (where
NG(P ) = {g ∈ G | gPg−1 ∈ P}).

Theorem 4.8. (Cauchy’s Theorem) Let G be a finite group and p a prime dividing the order
of G. Then there is an element of order p.

Theorem 4.9. (Fundamental Theorem of Finitely Generated Abelian Groups) Let G be a finitely
generated abelian group. Then G is isomorphic to copies of Z along with copies of Zpαii for primes

pi. That is,

G ∼= Zα × Zpα11
× ...× Zpαkk

for primes pi and non-negative integers α, αi.

Definition 4.10. A group G is called solvable if there is a subnormal series

{1} = G0 ≤ G1 ≤ ... ≤ Gn = G

where Gi−1 E Gi and Gi/Gi−1 is abelian for all i = 1, ..n.

4.1 Random Group Theory Questions

1. Let G be a group of even order. Show that G contains an element of order 2.

Solution: Note that if a is an element of order n then so is a−1 for if not, then (a−1)k =
1 ⇒ ak = 1 and thus must have the same order. Pair off elements with their inverses. Note
that the identty is its own inverse. We go through the list and eventually we must reach an
element who’s partner is itself. This element has order 2 as claimed. �

2. Show that the kernel of a group homomorphism is a normal subgroup. Moreover, show that
the image is a subgroup.

Solution: Let φ : G→ H be a group homomorphism for groups G and H. Let K := ker(φ)
and I := im(φ). If a ∈ K then φ(a) = e. Moreover, as e ∈ K, we have

e = φ(e) = φ(aa−1) = φ(a)φ(a−1) = φ(a−1)

so a−1 ∈ K. Next, if a, b ∈ K, then φ(ab) = φ(a)φ(b) = (e)(e) = e. So K is a subgroup. If
g ∈ G then gag−1 ∈ K since

φ(gag−1) = φ(g)φ(a)φ(g−1) = φ(g)φ(g−1) = φ(gg−1) = e

So K is normal in G. Similarly, the image is a subgroup of G. �

3. Let H,K ≤ G with G = HK, H ∩K = {e} and elements of H commute with elements of K.
Then G ∼= H ×K.

Solution: We define a homomorphism φ : H ×K → G via φ(h, k) = hk. This is a homo-
morphism since

φ((h, k) ∗ (j, l)) = φ(hj, kl) = hjkl = hkjl = φ((h, k))φ((j, l))

where the second to last equality holds by the commuting property. This map is injective as
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φ((h, k)) = φ((j, l))⇒ hk = jl⇒ j−1h = lk−1

Note that the right hand side is in H and the left hand side is in K hence both sides lie in
H ∩K = {e}. This gives us that h = j and k = l and hence φ is injective. Since G = HK we
have that every element of G can be written as hk and hence is surjective as φ(h, k) = hk.
Thus φ is an isomorphism and so H ×K ∼= G. �

4. Let G = NK with N E G and K E G and N ∩K = {e}. Show that ab = ba for all a ∈ N
and b ∈ K.

Solution: Consider aba−1b−1. Notice that aba−1 ∈ K by normality of K and b−1 ∈ K so
aba−1b−1 ∈ K. Similarly, a ∈ N and ba−1b−1 ∈ N so aba−1b−1 ∈ N . Thus, aba−1b−1 ∈
N ∩K = {e} and hence aba−1b−1 = e, that is ab = ba as claimed. �

5. Let G = NK with N E G and K E G and N ∩K = {e}. If < a >= N and < b >= K (ie N
and K are cyclic), show that G is abelian.

Solution: The above shows ab = ba. Notice that any element of G is just aibj . So let
aibj , akbl ∈ G. Then,

aibjakbl = ai+kbj+l = ak+ibl+j = akaiblbj = akblaibj

showing that G is abelian. �

6. Find all group automorphisms of (Q,+). Moreover, find all automorphisms of finite order.

Solution: Let φ : Q → Q be an automorphism. Note that group automorphisms preserve
the additive identity and so φ(0) = 0. Let φ(1) = c. Note that

φ(n) = φ(1 + 1 + ...+ 1︸ ︷︷ ︸
n times

) = φ(1) + φ(1) + ...+ φ(1)︸ ︷︷ ︸
n times

) = nφ(1) = nc

Also, note 0 = φ(0) = φ(1− 1) = φ(1) + φ(−1) = 1 + φ(−1)→ −c = φ(−1) and so as before,
φ(−n) = −nc. Hence φ(n) = nc for all n ∈ Z. As well, if n 6= 0,

c = φ(1) = φ(
n

n
) = φ(

1

n
+

1

n
+ ...+

1

n︸ ︷︷ ︸
n times

) = φ(
1

n
) + φ(

1

n
) + ...+ φ(

1

n
)︸ ︷︷ ︸

n times

) = nφ(
1

n
)

and so φ( 1
n) = c

n giving for all n,m ∈ Z with n 6= 0, φ(mn ) = mφ( 1
n) = m

n c and so φ(q) = qc
for all q ∈ Q. It is clear that this is an automorphism so long as c 6= 0. Injectivity follows
from

φ(p) = φ(q)⇔ pc = qc⇔ p = q

For surjectivity, note that for any q ∈ Q we have that φ( qc ) = q. Now, the automorphisms
of finite order have the property that φn(q) = q for some n ∈ N. In this case, qcn = q and
consequently, c is a root of unity. The only rational roots of unity are 1 and −1 corresponding
to n = 1 and n = 2. Hence there are only two automorphisms of finite order.

7. Let G be a group and H ≤ G with [G : H] = n. Suppose g ∈ G.
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(i) Show that gk ∈ H for some 0 < k ≤ n
(ii) Show by example that gn may not lie in H

Solution:

(i) Consider H, gH, ..., gnH. Since [G : H] = n we must have that (at least) two of these
cosets are the same. Suppose that gjH = glH and without loss of generality, n ≥ j > l.
Notice that gj−lH = H and hence gj−l ∈ H. Since n ≥ j > l, n ≥ j − l > 0 as required.
�

(ii) Consider G = Sn and H a subgroup of G consisting of all permutations of the elements
1, .., n− 1. Notice that H ∼= Sn−1. Hence [G : H] = n!

(n−1)! = n. Let g = (2 . . . n). Notice

that g /∈ H. Moreover, note gn−1 = 1 ∈ H so gn = g /∈ H as required. �

8. Let G be a finite group with |G| = ab and gcd(a, b) = 1. Suppose that H is a normal subgroup
of G with order a. Show that H contains every subgroup of G whose order divides a. Find a
counter example when H is not normal.

Solution: For a counter example, consider G = S3 and H =< (1, 2) > (note that the
subgroup of S3 of size 3 is normal since its index is 2). Now consider K =< (2, 3) >. Notice
that K is not contained in H but both K and H have order equal to 2. Now, with the original
question, consider the map

π : G→ G/H

Let K be a subgroup of G whose order divides a. Then we know that π(K) is a subgroup of
G/H. Notice that the size of G/H is b and that the group π(K) has order dividing a. This
can only occur if π(K) = {1} which occurs only if K ⊆ H as required. �

9. Let G be an abelian group on generators x, y, z subject to

32x+ 33y + 26z = 0 (2)

29x+ 31y + 27z = 0 (3)

27x+ 28y + 26z = 0 (4)

How many elements does G have? Is G cyclic?

Solution: Subtracting (2) and (4) yields

5x+ 5y = 0 (5)

Subtracting (3) and (4) yields

2x+ 3y + z = 0 (6)

Summing the previous two equations (after isolating for z) yields

z = 3x+ 2y (7)

Subbing (6) into (2) yields (after simplifying using (5))

25y = 0 (8)

Taking (5) and multiplying by 5 along with (8) yields

25x = 0 (9)
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Similarly, 25 times (6) yields

25z = 0 (10)

Using (3) and (5) yields

2z = x− y (11)

Examining the original set of equations, we see they are equivalent to

z = 3x+ 2y (12)

5x+ 5y = 0 (13)

This tells us that our group is generated by two elements x, y (as z is redundant). We know
that x and y have order 25. So our group has at most 625 elements. But 5x = 20y so 125 of
the elements are redundant leaving us with a 500 element group. �

4.2 Classification of Small Ordered Groups

1. Classify all groups of order 4.

Solution: Let G be a group or order 4. Let a ∈ G\{e}. If |a| = 4 we are done. Otherwise,
|a| = 2 (by Lagrange’s Theorem). Pick a b ∈ G\ < a >. Again |b| = 2 and note that ab! = a
or b or e (otherwise b = e, a = e or a = b−1, all contradictions). So G = {e, a, b, ab} =< a ><
b >. Note that ba must equal (by similar reasoning to above) ab. Hence, elements of < a >
commute with elements of < b > and < a > ∩ < b >= {e}. Thus, by the above exercise (3.),
G ∼=< a > × < b >∼= Z2 × Z2. �

2. Classify all groups of order 6.

Solution: By Cauchy’s theorem (4.8) there exists an element of order 2 and one of order
3 say a and b respectfully. Notice that < a >, < a > b and < a > b2 generate G. So
G = {e, a, b, ab, b2, ab2}. Now, we look at ba. A quick check shows that it must be equal to
ab or ab2. If ab = ba, then the elements of < a > commute with the elements of < b >,
< a > ∩ < b >= {e}, and G =< a >< b > and so by the above exercise (3.), G ∼=< a > × <
b >∼= Z2 × Z3

∼= Z6. If ab2 = ba then ab = b2a. This group is non-abelian. In fact, it can be
shown that this group is isomorphic to S3 by sending a 7→ (12) and b 7→ (123). Hence there
are two groups of order 6, namely Z6 and S3. �

3. Classify all groups of order 8.

Solution: We know there should be 5. Three are abelian and then we have D4 and Q. Let’s
show this directly. If G has an element of order 8, then G ∼= Z8. Suppose that every element
of G has order 2 and let x, y, z ∈ G be distinct nonidentity elements with z 6= xy. Notice here
that xy = yx (as yx = x, yx = y lead to contradictions) and in particular that G is abelian
(since xz = zx and yz = zy by similar reasoning). Then note that H := {e, x, y, xy} is a
subgroup and by the classification above, is isomorphic to Z2 × Z2. Setting K :=< z > and
noting that G = HK, H ∩ K ∼= {e}, and the elements of H and K commute, we see that
from the above exercise (3.) that G ∼= Z2 × Z2 × Z2.

Lastly, assume that G has an element of order 4, say x. let y ∈ G\ < x >. Notice that < x >
and < x > y generate G, that is G = {e, x, x2, x3, y, xy, x2y, x3y}. Looking at yx and noting
that it cannot be e, x, x2, x3, y nor x2y as the last one forces

yx = x2y ⇒ x = y−1x2y ⇒ x2 = y−1x2yy−1x2y = e

62



a contradiction. So yx = xy or yx = x3y. If yx = xy, then G is abelian. If y2 = e, then
sending x 7→ (1, 0) and y 7→ (0, 1) gies an isomorphism with Z4 ×Z2. If y2 = x2 then sending
x 7→ (1, 0) and xy−1 7→ (0, 1) gies an isomorphism with Z4 × Z2(or invoking the structure
theorem for abelian groups (4.9) gives us that it must be isomorphic to Z4×Z2 immediately).
If instead yx = x3y, then if y2 = e we can quickly see an isomorphism with D4. If y2 = x2,
then sending x 7→ i and y 7→ j gies an isomorphism with Q. This completes the classification.
�

4. Classify all groups of order 12.

Solution: Once again there are 5. Two abelian, A4, D6 and a semi-direct product of Z3 and
Z4.

5. Show that a group of order 15 must be cyclic.

Solution: Let G be a group of order 15 = 3 × 5. We use the Sylow Theorems. Note that
n3 | 5 and n3 ≡ 1 so n3 = 1. Hence if P is a Sylow-3 subgroup, then it is normal. Next, note
n5 | 5 and n5 ≡ 1 so n5 = 1 and thus if Q is a Sylow-5 subgroup, then it is normal (recalling
that ni is the index or the normalizer of Pi in G by (4.7)). A quick count shows that there
are 15 distinct elements in PQ, since P ∩Q = {e}, and so G = PQ. The above shows that G
must be abelian. Now, notice that the ordre of ab is 15 and hence G is cyclic as required. �

6. Classify all groups of order 21.

7. Classify all groups of order 30.

8. Classify all groups of order 45.

4.3 Group Actions

Definition 4.11. A group action on a set X is a map φ from G×X → X satisfying

(i) φ(gh, x) = φ(g, φ(h, x))

(ii) φ(e, x) = x

Lemma 4.12. Let G act on a set X. Then the map φ : G → SX defined by φ(g) = τg where
τg(x) = gx is a well defined group homomorphism

Proof. First, we show that for all g ∈ G the map τg is a permutation of X. It suffices to show
that τg is an isomorphism. If τg(x) = τg(y) ⇔ gx = gy ⇔ x = y showing injectivity. Next, if
x ∈ X then so is g−1x and τg(g

−1x) = g(g−1x) = (gg−1)x = x. Hence, τg ∈ SX . Next, it is a
group homomorphism as for all x ∈ X,

φ(gh)(x) = τgh(x) = (gh)x = g(hx) = τg(τh(x))

This completes the proof. �

Theorem 4.13. (Cayley’s Theorem) Every group is isomorphic to a subgroup of Sn for some
sufficiently large n.

Proof. Let G be a group and let it act on the underlying set X = G via left multiplication. TO
BE COMPLETED!!! �

Let G be a group, H a proper subgroup of G and X = {xH | x ∈ G, the set of left cosets. Define
φ : G→ SX via φ(g) = τg where τg(xH) = gxH.
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(i) Show that this is a well defined map, that is that τg actually is a permutation.

(ii) Show if |G| - [G : H]! then G has a nontrivial proper normal subgroup, that is, G is not
simple.

Solution:

(i) (See above)

(ii) Consider K := ker(φ). I claim that K is not the identity and is not the whole of G. Thus,
K is a proper nontrivial normal subgroup. If K = {e}, then φ is one to one. The first
isomorphism theorem (4.2) gives us that G ∼= im(φ) ≤ SX . Note that |SX | = [G : H]!
and so by Lagrange’s Theorem (4.1), we have that |G| = |im(φ)| | |SX | = [G : H]! a
contradiction. Next, suppose K = G. Then every τg is the identity permutation so
gxH = xH for all g ∈ G and xH ∈ X. In particular, H = gg−1H = g−1H so g−1 ∈ H
and hence g ∈ H for any arbitrary g ∈ G. this implies G = H, a contradiction since H
was chosen to be proper in G. Hence G is not simple.

1. Let G be a group and suppose that H is a subgroup whose index is p, the smallest prime
dividing G. Show that H is normal.

Solution: This solution is ver similar to the solution of the problem where |G| - [G : H]!.
Let X = {xH | x ∈ G, the set of left cosets. Define φ : G → SX via φ(g) = τg where
τg(xH) = gxH. Consider K := ker(φ). Let [H : K] = k and note [G : K] = [G : H][H :
K] = pk The first isomorphism theorem (4.2) gives us that G/K ∼= im(φ) ≤ SX . Note that
|SX | = [G : H]! = p! and so by Lagrange’s Theorem (4.1), we have that pk = |G/K| =
|im(φ)| | |SX | = [G : H]! = p!. This gives k|(p−1)!. However, k has only prime divisors larger
than or equal to p by definition of p. this gives us that k = 1 and hence [H : K] = 1 giving
H = K. Since K is normal, H must be as well as required. �

4.4 Application of Class Equation

1. Let G be a group with |G| = pn. Show that the centre is nontrivial.

Solution: Recall the class equation (4.4).

|G| = |Z(G)|+
∑
a∈R

[G : CG(a)]

Notice that |Z(G)| ≥ 1 as it contains the identity element. Moreover, each [G : CG(a)] divides
the order of the group and is not 1 for any a not in the centre and so p | [G : CG(a)] for each
a. In particular, since p | |G| we must have that p | |Z(G)| and so must be nontrivial.

2. Show that any group of order p2 is abelian.

Solution: Using the class equation (or by the previous problem) we see that the centre of the
group must have order p or p2. If it has order p2 then we are done (as the centre is the entire
group) so suppose the order is p. Then choose x ∈ G\Z(G). Notice that Z(G) ⊆ CG(x) ( G
(the last one holds since x cannot commute with everything as x /∈ Z(G)). Lagrange’s
Theorem tells us that the order of Cg(x) divides the order of G and so must be p or p2. This
forces CG(x) = Z(G) and since x ∈ CG(x), this is a contradiction. Hence G = Z(G) and the
group is abelian.
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3. Prove that every group of order pm with p a prime number can be generated by m elements.

Solution: We proceed by induction. The m = 1 case is trivial. Assume true for all k < m.
Now, let G be a group of order pm. The class equation tells us that the centre is nontrivial.
In particular Z(G) has order pk with k ≤ m. If k = m we are finished. Otherwise Z(G) can
be generated by k elements. Consider the onto projection map

π : G→ G/Z(G)

G/Z(G) is a group of size pl with l < m (since k 6= m) and l+ k = m. This can be generated
by l elements say h1, ..hl . Considering these elements as elements of g, I claim that these
elements along with the generators of Z(G) generate G. Let g ∈ G. Then g ∈ aZ(G) for
some a ∈ G as elements must lie in a coset. Hence g = az for some z in Z(G). Now π(g) = a
and so a can be generated by elements of G/Z(G). Taking the collection of the elements that
generate a and z gives us that g is generated by these elements. Since g was arbitary, we have
that G is generated by l + k = m elements completing the induciton and the proof. �

4. Let p be a prime number and G a group of order p3. Show that for any g, h ∈ G, we have
that gph = hgp.

Solution: One way to solve this is to classify all groups of order p3. Not a bad solution but
a bit tedious. Let’s instead examine the orders of g and h. Firstly, if g has order 1 then g = e
and we win. If g has order p then gp = e and we win. If g has order p3, then the group is
cyclic and we win. So we may assume that g has order p2. Similarly, h has to have either
order p or p2. Consider < g > ∩ < h >. If < g > ∩ < h >= {e} then since < g > and
< h > combine for at least p2 + p − 1 distinct elements. Thus we know that one of gk or
hl are in Z(G). This implies that either gp ∈ Z(G) or h ∈ Z(G). If < g > ∩ < h >6= {e},
then since the intersection is a subgroup (and proper since h /∈< g >), we must have that
gp ∈< g > ∩ < h > (the subgroup has order p and only gp and its powers satisfy the fact that
the elements must have prime order). This means gp ∈< h > and hence gp and h commute
as requires. �

4.5 Application of Sylow’s Theorems

1. Let G be a group of order pq with p and q prime, p < q and p - q − 1. Show G is abelian.
Moreover, prove it is cyclic.

Solution: By Sylow’s Third Theorem (4.7), note that np ≡ 1 (mod P ) and np | q. So np = 1
or q. If np = q then q ≡ 1 (mod p) and so p | q−1 a contradiction. So np = 1. Since p < q and
nq | p we have that nq = 1. So let P be the Sylow p-subgroup and Q be the Sylow q-subgroup.
By the above, we know each is normal in G. Moreover, an element count shows G = PQ and
P ∩Q = {e}. If we show G is abelian, by a previous exercise, we know G ∼= P ×Q and hence
is cyclic as P and Q are two cyclic groups of coprime order. By (5.) we see that G is abelian
as claimed.

2. Let p and q be primes with p < q and p | q − 1. Show that there is a non-abelian group of
order pq.

3. Let G be a group of order p2q with p and q prime. Classify all such groups.

4. Show that a subgroup of index 2 is a normal subgroup.

Solution: If G is a group and H is a subgroup such that [G : H] = 2 then there are only two
distinct left cosets say H and aH (holding for any a ∈ G\H). Moreover there are only two
distinct right cosets H and Ha. So here we must have that aH = Ha showing aHa−1 = H.
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Since a was arbitrary in G\H, we get that H is normal as required (noting of course that
aHa−1 = H holds for all a ∈ H). �

5. Show that a group of order 36 is not simple.

Solution: Note that 36 = 22 × 32 So we consider n3. If n3 = 1 we are done so suppose
n3 6= 1. Then since n3 ≡ 1 (mod 3) and n3 | 4 we have that n3 = 4. So let P and Q be two
Sylow 3-subgroups (note that the order of each is 9). Consider their intersection. We know
|P ∩Q| = 3 for if not then their intersection is trivial and this results in too many elements (as
PQ has size 81 and is contained in G, a contradiction). Take a g ∈ P ∪Q and any a ∈ P ∩Q.
Notice that since the order of P and Q is 9, both are abelian (by (2.)) and hence gag−1 = a
so g ∈ NG(P ∩Q). This means |NG(P ∩Q)| ≥ 3 + 6 + 6 = 15. Since it is a subgroup of G it
divides the order of G and hence must be either 18 or 36. If it is order 18, then its index is
2 in G and hence is normal by (4.). If it is 36, then the index is 1 and thus P ∩Q is normal
in G = NG(P ∩Q) as a group is always normal in its normalizer. This shows that a group of
order 36 has a normal subgroup as claimed. �

6. Show that a group of order 56 has a normal subgroup.

Solution: Note 56 = 23 × 7 so we exploit Sylow’s Third Theorem (4.7). If n7 = 1 we are
done so supose not. Then n7 ≡ 1(mod 7) and n7 | 8 so n7 = 8. Now, the total number of
non identity elements is 6× 8 = 48 this leaves 8 elements (with the identity element) left for
Sylow 2-subgroups. Since a Sylow 2-subgroup has order 8, there can only be one and hence
it is normal in this group. Thus a group of order 56 always has a normal subgroup. �

7. Show that a group of order 105 is not simple.

Solution: By Sylow’s Third Theorem (4.7),

n3 ≡ 1 (mod 3) and n3 | 35

n5 ≡ 1 (mod 5) and n5 | 21

n7 ≡ 1 (mod 7) and n7 | 15

So if G is simple, none of the above numbers can be 1. Thus, n3 = 7, n5 = 21, n7 = 15.
Counting the number of elements gives 7×2+21×4+15×6+1 = 14+84+90+1 = 189 > 105 a
contradiction. Hence one of n3, n5 or n7 is 1 and thus is normal. So G has a normal subgroup
and thus is non-simple. �

8. Show that a group of order 3393 is not simple.

Solution: We see that 3393 = 32 × 13 × 29. By (4.11), we know that the minimal index of
a proper subgroup is 29 as |G| - 28!. Next, by Sylow’s third theorem, n3 ≡ 1(mod 3) and
n3 | 377 = 13 × 29. So if n3 6= 1 then n3 = 13. But this is the index of the normalizer of
a Sylow 3-subgroup contradicting the fact that the minimal index is at least 29. Hence this
group is not simple. �

9. Show if G is a group of order 105 and n3 = 1, then G is abelian (and hence is isomorphic to
Z3 × Z5 × Z7).

10. Show that a group of order pqr for distinct primes p, q, r is not simple.
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Solution: Assume without loss of generality that p < q < r. Sylow’s Third Theorem (4.7)
tells us that

nr ≡ 1 (mod r) nr | pq
nq ≡ 1 (mod q) nr | pr
np ≡ 1 (mod p) nr | qr

and so in particular, if none of np, nq, nr equal 1, then

nr = pq nq ≥ r np ≥ q

By an element counting argument, we have

pqr ≥ pq(r − 1) + r(q − 1) + q(p− 1) = pqr + rq − r − q > pqr

as rq > r+ q. This is a contradiction. Hence one of np, nq, nr must be 1 as required and thus
our group is not simple as required. �

11. Let F be a field. Show that every finite subgroup of the multiplicative group F ∗ is cyclic.

Solution: We prove this by induction on the size of the finite subgroup H ≤ F ∗. If |H| = 1
then this is trivial. Assume the claim is true for all |H| ≤ n. For |H| = n consider a Sylow
p-subgroup P where p|n and |P | = pk. Since F is a field, H is abelian and hence P is a
normal subgroup. If H = P then notice that all subgroups of P are cyclic which can only
happen if P ∼= Zpk−1 × Zp or P ∼= Zpk using the abelianness and the Fundamental Structure
Theorem for Abelian Groups (4.9) (and using the induction fact that all proper subgroups
are cyclic). If the first case is true, then P ∼=< a > × < b >. Notice that < ap >< b > is
a proper subgroup (as both subgroups are abelian and hence normal) but this group is not
cyclic contradicting the induction assumption. Hence H ∼= Zpk . If H 6= P then H is the
product of its Sylow p-subgroups all of which are cyclic and normal. Hence H is the product
of Zpaii and thus H is cyclic completing the induction. Note this proof actually only requires

an integral domain. �

5 Ring Theory

Theorem 5.1. (Eisenstein’s Criterion) Suppose that f(x) = anx
n + ...+ a1x+ a0 is such that

there exists a prime number p satisfying

(i) p|ai for all i 6= n

(ii) p doesn’t divide an

(iii) p2 doesn’t divide a0

the f(x) is irreducible over Q.

Theorem 5.2. (Gauss’ Lemma)

1. Show that the sum of an invertible element and a nilpotent element of a commutative ring R
is invertible.

Solution: Let a ∈ R be invertible with ab = 1, b ∈ R and suppose r ∈ R is nilpotent so that
rn = 0. Then consider

(a+ r) = a(1 + br)
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and note:

1

1 + br
=

1

1− (−br)
= (1− br + b2r2 − b3r3 + ...± bn−1rn−1)

as rn = 0 so we do not use terms beyond rn. Hence setting c = b(1− br + b2r2 − b3r3 + ...±
bn−1rn−1), we see that

(a+ r)c = a(1 + br)c = a(1 + br)b(1− br + b2r2 − b3r3 + ...± bn−1rn−1)

= ab(1 + br)(1− br + b2r2 − b3r3 + ...± bn−1rn−1) = 1

�

2. Show that the sum of finitely many nilpotent elements of a commutative ring R is nilpotent.

Solution: We prove this by induction on the nummber of summands. The result is trivial
for n = 1. If we have two nilpotent elements a1, a2 with ai11 = 0 and ai22 = 0 (with ij minimal
and WLOG i1 < i2), then note that

(a1 + a2)i1+i2 =

i1+i2∑
j=0

(
i1 + i2
j

)
aj1a

i1+i2−j
2

Notice that for 0 ≤ j ≤ i1 then ai1+i2−j
2 = ai22 a

i1−j
2 = 0 and for i1 ≤ j ≤ i2 then aj1 =

ai11 a
j−i1
2 = 0 . Hence the above is equal to 0 and thus the sum is nilpotent. Induction takes

us home. �

3. Denote N(R) to be the collection of all nilpotent elements in a commutative ring R. Show
this is an ideal.

Solution: The sum property is shown above. Zero is in this ideal clearly and moreover, if
r ∈ N(R) with rn = 0 then for any a ∈ R, then (ar)n = anrn = 0 so ar ∈ N(R) (where in
the previous step, we used commutativity).

4. Let R be a commutative ring. Show that N(R) is the intersection of all prime ideals.

Solution: We proceed by double inclusion. Assume N(R) is non empty (or else this inclusion
is done) and let r ∈ N(R) and let P be a prime ideal of the ring R. We note that rn = rn−1r =
0 ∈ P and so by definition of prime either r ∈ P and we’re done or rn−1 ∈ P and we repeat
inductively to get that r ∈ P . Since P was arbitrary, every element of N(R) lies in every
prime ideal and hence in their intersection.

Next, suppose that x is not a nilpotent element (so x ∈ R\N). I show that x is not in the
intersection of all prime ideals finishing the proof. Consider

S := {I is an ideal of R | xk /∈ I for all k ≥ 1}

a set of ideals. Notice that S is nonempty as it contains the zero ideal. Moreover, it is a
poset with respect to inclusion and every chain has an upper bound (namely the union of all
elements of S) so by Zorn’s Lemma, it must contain a maximal element say P . I claim that
P is prime. Suppose for two elements a, b ∈ R that ab ∈ P with neither a nor b in P and seek
a contradiction. Then note that P is a proper subset of both P + aR and P + bR. Hence by
definition of S, we must have that xk ∈ P + aR and xl ∈ P + bR for some positive integers k
and l. This implies that xk+l ∈ P + abR that is, P + abR /∈ S. However, P = P + abR since
ab ∈ P so P /∈ S a contradiction. Hence P is prime. Since x /∈ P we have that x is not in the
intersection of all prime ideals. thus, N(R) is the intersection of all prime ideals. �
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5. Let R be a commutative integral domain and suppose f(x) = a0 + a1x + ... + anx
n ∈ R[x].

Show that f is invertible if and only if a0 is invertible and each ai is zero for 1 ≤ i ≤ n.

Solution: The reverse direction is clear. Suppose f is invertible. Then notice that there is
a g = b0 + b1x + ... + bmx

m ∈ R[x] with bm 6= 0 and fg = 1. If n and m are both greater
than 1, then we have that anbm = 0. Thus both n and m must be 1. Here, we have that
1 = fg = a0b0. and so a0 is invertible. �

6. Let R be a commutative ring and suppose f(x) = a0 + a1x+ ...+ anx
n ∈ R[x]. Show that f

is invertible if and only if a0 is invertible and each ai is nilpotent for 1 ≤ i ≤ n.

Solution: Assume f is invertible. Notice that there is a g = b0 + b1x + ... + bmx
m ∈ R[x]

with bm 6= 0 and fg = 1. This gives us that a0b0 = 1 and so a0 is invertible. Next, consider
a prime ideal of R say P and examine f reduced modulo P . Notice that R/P is an integral
domain and hence the previous proposition implies that ai is zero in R/Pm that is each ai
lies in P . But P was arbitrary so this means ai lies in each prime ideal. A previous exercise
shows that this means ai is in the nilradical and hence is nilpotent.

For the other direction, note that a0 is invertible and a1x, ..., anx
n are nilpotent thus the above

propositions show us that a1x+ ...+ anx
n is nilpotent and also that a0 + a1x+ ...+ anx

n is
invertible. �

7. Let R be a commutative ring and suppose f(x) = a0 + a1x+ ...+ anx
n ∈ R[x]. Show that if

f is a zero divisor then there is a nonzero element b ∈ R so that bf = 0.

Solution: Let 0 6= g = b0 + b1x+ ...+ bmx
m ∈ R[x] so that fg = 0 with g of minimal degree.

Expanding this gives anbm = 0. Now ang = 0 for otherwise, we note that deg(ang) < deg(g)
and hence since anfg = 0 ⇒ f(ang) = 0, that is, g was not minimal, a contradiction. Thus,
consider

fg = (a0 + a1x+ ...+ an−1x
n−1 + anx

n)g

= (a0 + a1x+ ...+ an−1x
n−1)g + (anx

n)g

= (a0 + a1x+ ...+ an−1x
n−1)g

and thus, an−1bm = 0. Procceding as before, we see an−1g = 0 and moreover, inductively, we
continue this argument to show an−rg = 0 for all 0 ≤ r ≤ n. Thus, akg = 0 for all 0 ≤ k ≤ n.
It is clear then that taking b = bm gives

bmf = bm(a0 + a1x+ ...+ anx
n) = a0bm + a1bmx+ ...+ anbmx

n = 0

as required �

8. Factor 143 into prime elements in Z[i]

Solution: Notice that 143 = 11× 13. We make two claims:

Claim: If p ≡ 3 (mod 4), then p is prime in Z[i].

Solution: Suppose otherwise. Consider the quadratic norm N(a+ bi) = a2− d ∗ b2 = a2 + b2

(To show it is a norm only the multiplicative property needs to be checked which is routine).
Suppose p = (a+bi)(c+di). Notice that p2 = N(p+0i) = N(a+bi)N(c+di) = (a2+b2)(c2+d2).
We make another claim,

Claim: Let d be a square free nonzero integer. In Z[
√
d] unital elements correspond to

elements of norm 1. Also, the unital elements when d < 0 are ±1 or ±1,±i when d = −1.

69



Solution: If N(a+ b
√
d) = 1 then a2 − db2 = 1. If d ≤ −2 then clearly b = 0 and a = ±1. If

d = −1 then either a = ±1 and b = 0 or a = 0 and b = ±1. This corresponds to 1,−1, i,−i,
each of which are units. In general, if N(a + b

√
d) = 1 then a2 − db2 = 1 so consider the

following:

(a+ b
√
d)(a− b

√
d) = a2 − db2 = 1

hence (a+ b
√
d) is a unit. �

So we note that if p factors nontrivially, then we must have that N(a+ bi) = N(c+ di) = p,
that is, p can be written as the sum of two squares, say p = a2 + b2. However, consider this
(mod 4). We get 3 ≡ a2 + b2 (mod 4), which is a contradiction since a2, b2 ∈ {0, 1} (mod 4).
So p is (a Gaussian) prime if p ≡ 3 (mod 4). �

Claim: If p ≡ 1 (mod 4), then p factors in Z[i].

Solution: By Fermat’s two squares theorem, we can write p as a sum of two squares say
p = a2 + b2 = (a + bi)(a − bi). Notice here that each element has prime norm and hence if
a+ bi = (c+ di)(e+ fi) taking the norm yields that one of (c+ di) or (e+ fi) is unital (since
it must have norm one adn the other element has norm p as p is prime). Hence p factors into
two exactly two prime elements. �

As a side note, 2 = (1 + i)(1− i) both elements on the right are prime. So we have:

143 = 11× 13 = 11× (9 + 4) = 11(3 + 2i)(3− 2i)

giving the prime factorization. �

9. Show that 2 is irreducible but not prime in Z[
√
−5].

Solution: Suppose that 2 = (a+ b
√
−5)(c+ d

√
−5). I claim one of these elements is a unit.

Look at the quadratic norm N(a+ b
√
−5) = a2 + 5b2. Notice that

4 = N(2) = N((a+ b
√
−5)(c+ d

√
−5)) = N(a+ b

√
−5)N(c+ d

√
−5) = (a2 + 5b2)(c2 + 5d2)

thus since elements of norm 1 are units, we must have that a2 + 5b2 = 2, a contradiction. So
one ofa + b

√
−5 or c + d

√
−5 is a unit as claimed. Hence 2 is irreducible. Next, note that

2 · 3 = 6 = (1 +
√
−5)(1 −

√
−5) and so if 2 is prime, then 2 | (1 +

√
−5) or 2 | (1 −

√
−5).

In the first case, we get that 2 ∈ (1 +
√
−5) and so there is an element such that 2 =

(a+ b
√
−5)(1 +

√
−5) = a− 5b+ (a+ b)

√
−5 and so a = −b and 2 = a− 5b = 6a ao a = 1

3 ,
a contradiction. Similarly, the second case yields 2 ∈ (1 −

√
−5) and so there is an element

such that 2 = (a+ b
√
−5)(1−

√
−5) = a+ 5b+ (a− b)

√
−5 and so a = b and 2 = a+ 5b = 6a

ao a = 1
3 , a contradiction. Hence 2 is not prime. �

10. Show that (2, 1 +
√
−5) is not principal in Z[

√
−5].

Solution: Assume that it is principal so (a) = (2, 1 +
√
−5) for some a ∈ Z[

√
−5]. This

implies that a | 2 and a | (1 +
√
−5) so N(a) | N(2) = 4 and N(a) | N(1 +

√
−5) = 6. This

means that N(a) = 1 or 2. Previously, we showed that N(a) = 2 leads to a contradiction
(recalling that x2 + 5y2 = 2 has no integer solutions) so we must have that a is a unit. By a
previous exercise, a = ±1 and these ideals are the same so we show that a = 1 is impossible.
Otherwise, there are elements such that
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1 = 2(w + x
√
−5) + (1 +

√
−5)(y + z

√
−5) = 2w + y − 5z + (2w + y + z)

√
−5

So 2w + y + z = 0 and thus 2 | (y + z) so y and z have the same parity. The above also says
that 1 = 2w + y − 5z. Since 2 | 2w and y and z have the same parity so 2 | (y − 5z) which
implies 2 | 1 a contradiction. Hence this ideal is not principal. �

11. Show that the only ring automorphism of R is the identity automorphism.

Solution: Let φ : R→ R be a ring automorphism. First note φ(0) = 0 and φ(1) = 1 as ring
automorphisms preserve the additive and multiplicative elements. Next, note for all n ∈ N,

φ(n) = φ(1 + 1 + ...+ 1︸ ︷︷ ︸
n times

) = φ(1) + φ(1) + ...+ φ(1)︸ ︷︷ ︸
n times

) = nφ(1) = n

Also, note 0 = φ(0) = φ(1− 1) = φ(1) +φ(−1) = 1 +φ(−1)→ −1 = φ(−1) and so arguing as
before (or we can use φ(−n) = φ(−1)φ(n) = −n), we have that φ(−n) = −n. Hence φ(n) = n
for all n ∈ Z. As well, if n 6= 0,

1 = φ(1) = φ(
n

n
) = φ(

1

n
+

1

n
+ ...+

1

n︸ ︷︷ ︸
n times

) = φ(
1

n
) + φ(

1

n
) + ...+ φ(

1

n
)︸ ︷︷ ︸

n times

) = nφ(
1

n
)

and so φ( 1
n) = 1

n giving for all n,m ∈ Z with n 6= 0, φ(mn ) = φ(m)φ( 1
n) = m

n and so φ(q) = q
for all q ∈ Q. Next, we make a claim.

Claim: If a < b then φ(a) < φ(b).

Solution: By considering 0 < b−a and showing 0 < φ(b−a) it suffices to show 0 < a⇒ 0 <
φ(a). Since 0 < a, by the properties of the real numbers, there is a b ∈ R such that b2 = a.
Hence φ(a) = φ(b2) = φ(b)2 > 0 as claimed. �

Now, suppose there is an x ∈ R such that φ(x) 6= x. Without loss of generality, we may
assume x is positive (otherwise use −x). Without loss of generality, suppose x < φ(x). The
density of the rational implies that there is a rational say q between x and φ(x). Thus,
x < q = φ(q) < φ(x) contradicting the claim. Hence, all real numbers map to themselves and
thus φ is the identity automorphism as required. �

12. Let a, b ∈ C and consider I = {f ∈ C[x, y] | f(a, b) = 0}. Show that I is a maximal ideal in
C[x, y] and find a minimal set of generators.

Solution: First, it is clear that I is an ideal for if f, g ∈ I then f(a, b)+g(a, b) = 0 so f+g ∈ I
and for all h ∈ C[x, y], h(a, b)f(a, b) = 0 so hf ∈ I. Now I claim that I =< x−a, y−b >. It is
clear that < x−a, y−b >⊆ I. Now, since C[x, y]\ < x−a, y−b >∼= C, the ideal < x−a, y−b >
is maximal. Since I 6= C[x, y] (for example 1 /∈ I), we have that I =< x−a, y−b > as required.
Next, notice that this is a minimal set of generators. For if only one element generated I, we
know that both x − a and y − b must divide it. Neither x − a nor y − b generate I on their
own and this leads to a contradiction. �

13. Let C = C0([0, 1],R). For a ∈ [0, 1], define Ia = {f ∈ C|f(a) = 0}.

(i) Show that Ia is a maximal ideal of C.

(ii) Show that every maximal ideal of C is of the form Ia for some a ∈ [0, 1].

71



(iii) Show that the previous part fails if [0, 1] is replaced by (0, 1).

Solution:

(i) Let Ia ⊆ I ⊆ C where I is an ideal of C. If I 6= Ia, then there is an f ∈ I such
that f(a) 6= 0. Consider the function −(f(x) − f(a)). This function lies in Ia. Hence
f(x)− (f(x)− f(a)) = f(a) ∈ I. Thus, I contains a constant function so multiplying by
the inverse shows that the constant function 1 ∈ I and hence I = C showing that Ia is
maximal. �

(ii) Seriously this question is way too large for a comp problem. Please refer to

http://www.math.washington.edu/ greenber/MATH403-MaxIdeals.pdf

(iii) Let I = {f |f vanishes on a compact set }. Notice that this is not contained in any Ia.
Using Zorn’s lemma, we can get a maximal ideal that contains I. This cannot be any of
the Ia as I cannot be contained in any of these ideals. �

14. Let R = Z[
√
−3].

(i) Show that 2R ⊆ R is not a prime ideal

(ii) Show that 2 is an irreducible element of R.

(iii) Is R a PID?

Solution:

(i) Notice that (1 −
√
−3)(1 +

√
−3) ∈ 2R but clearly neither element is in 2R otherwise

1
2 ±

√
−3
2 ∈ R, which is absurd.

(ii) Suppose 2 = uv with u, v ∈ R. LetN be the usual quadratic norm, that isN(a+b
√
−3) =

a2 + 3b2. Then we have that 4 = N(u)N(v). if one of the norms is 1 then we are done.
Otherwise both elements have norm 2. That is, there is an element such that a2+3b2 = 2
a contradiction. Hence one of u, v has norm 1 and thus one of u, v is ±1 showing 2 is
irreducible as claimed.

(iii) R is not a PID for all PIDs are UFDs and since 2 is irreducible we have that 2 =
(1 −

√
−3)(1 +

√
−3) = (2)(1), that is, we have two different factorizations into irre-

ducible elements (the left hand elements are reducible as they have norm 4 so the same
argument that showed 2 is irreducible works for the other elements) ocntradicting the
UFD property.

15. Let R be a PID and I ⊆ R a non-zero ideal. Show that only finitely many ideals J in R
contain I.

Solution: Let I = (a). Then since every PID is a UFD, a = ua1...an and this is unique up
to multiplication by a unit u. Hence, if J contains I, then since J = (b), we have that there
is an r such that a = br. But a = a1...an uniquely and so b has only 2n many choices as
required. �

6 Galois Theory

1. Let E be the splitting field of (x2 − 3)(x2 − 5) over Q.

(i) Find [E : Q]

(ii) Find an α such that E = Q(α)

(iii) Find Gal(E/Q)
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Solution:

(i) First I claim that E = Q(
√

3,
√

5). The roots of our polynomial are ±
√

3 and ±
√

5 Note
that

√
3 /∈ Q and so Q(

√
3) 6= Q and it has degree 2 over Q since x2 − 3 is a monic

polynomial with
√

3 as a root. Next, I claim that
√

5 /∈ Q(
√

3). If not then

√
5 = a+ b

√
3⇒ 5 = a2 + 3b2 + 2ab

√
3⇒ 5 = a2 + 3b2

which is a contradiction. As an aside, note that
√

3 /∈ Q(
√

5) since

√
3 = a+ b

√
5⇒ 3 = a2 + 5b2 + 2ab

√
5⇒ 3 = a2 + 5b2

also a contradiction. Hence, our lattice looks like the following

Q(
√

3,
√

5)

Q(
√

3) Q(
√

5)

Q

Since the polynomial splits in Q(
√

3,
√

5) and it is the smallest field our polynomial splits
in, we have that this is our field E. Note that [E : Q(

√
3)] = 2 as x2 − 5 is a minimum

polynomial (and it is not degree 1) and that [Q(
√

3) : Q] = 2 also by the above. Hence,
by the KLM theorem, [E : Q] = [E : Q(

√
3)][Q(

√
3) : Q] = 2 · 2 = 4 as required. �

(ii) I claim that α =
√

3 +
√

5 suffices. It is clear that Q(α) ⊇ E. For the other direction, it
suffices to show that

√
3 ∈ Q(α). Consider the following:

(
√

3 +
√

5)2 ∈ Q(α)

⇒(3 + 5 + 2
√

15) ∈ Q(α)

⇒
√

15 ∈ Q(α)

⇒
√

15(
√

3 +
√

5) ∈ Q(α)

⇒3
√

5 + 5
√

3 ∈ Q(α)

⇒2
√

3 ∈ Q(α)

⇒
√

3 ∈ Q(α)

This completes the proof. �

(iii) By the lattice diagram above and the Fundamental theorem of Galois Theory, we have
that Gal(E/Q) ∼= Z2×Z2 as required (it is a size 4 group so there are only 2 possibilities
and Z2 only has one subgroup of size 2). �

2. Find a cubic polynomial with integer coefficients such that p(2 cos(40◦)) = 0. Then compute
the Galois group of p(x).

Solution: Notice that

2 cos(40◦) = 2 cos(
360◦

9
) = cis(

360◦

9
) + cis(

−360◦

9
) = ζ9 + ζ−1

9
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Next note that x9 − 1 = (x3 − 1)(x6 + x3 + 1) the latter is the cyclotomic polynomial cor-
responding to ζ9 so ζ6

9 + ζ3
9 + 1 = 0 ⇒ ζ−3

9 + ζ3
9 = −1. Next note that (ζ9 + ζ−1

9 )3 =
ζ3

9 + 3ζ9 + 3ζ−1
9 + ζ−3

9 = 3ζ9 + 3ζ−1
9 − 1. Thus, if p(x) := x3 − 3x+ 1 we must have

p(2 cos(40◦)) = p(ζ9 + ζ−1
9 ) = (ζ9 + ζ−1

9 )3 − 3(ζ9 + ζ−1
9 ) + 1

= 3ζ9 + 3ζ−1
9 − 1− 3(ζ9 + ζ−1

9 ) + 1 = 0

Notice that the conjugates of ζ9 + ζ−1
9 are ζ2

9 + ζ−2
9 and ζ4

9 + ζ−4
9 as can be seen by plugging

them in and checking. Notice that (ζ9 + ζ−1
9 )2−2 = ζ2

9 + ζ−2
9 and so ζ2

9 + ζ−2
9 ∈ Q(ζ9 + ζ−1

9 ) =
Q(2 cos(40◦)). As a result, this field contains two of the conjugates and hence contains the
third. Thus Q(2 cos(40◦)) is a normal extension and hence a splitting field for p(x). Therefore,
the Galois group has size 3. Since 3 is prime, we know that the Galois group must be
isomorphic to Z3.

3. Suppose E is an algebraic extension of F and suppose that R is a subring of E containing F .
Show that R is a field.

Solution: Let 0 6= α ∈ R. We show that α has an inverse and explicitly compute it. Let
p(x) :=

∑n
i=0 fix

i be the minimal polynomial of α (which exists since E is an algebraic
extension of F ) where fi ∈ F and f0 6= 0 otherwise we can divide p(α) by at least one power
of α contradicting the minimality of p. Next, since p(α) = 0 we can multiply by α−1 and f−1

0

to see that

α−1 =
1

f0

n∑
i=i

fiα
i−1 ∈ R

and hence R is a field as required. �

4. Show that α = cos(72◦) is algebraic and find the minimal polynomial.

Solution: Notice that cos(72◦) = cos(π5 ) = 1
2(ζ5 + ζ−1

5 ). We know that [Q(ζ5) : Q] =
φ(5) = 4. Now I claim that [Q(α) : Q] = 2. First I show α /∈ Q. Suppose it were. Then
consider p(x) := x2− 2αx+ 1. This polynomial has the property that p(ζ5) = 0 contradicting
[Q(ζ5) : Q] = 4. So α /∈ Q. Next, consider q(x) := x2 + x − 1. Evaluating yields q(ζ5) = 0.
This is exactly what we required (note: To compute q notice that 1+ζ5 + ...+ζ4

5 so the x2 +x
term kills more of α off) . �

5. Show that sin(πr) is algebraic for all r ∈ Q.

Solution: This is in a sense a generalization of the previous problem. Let r = p
q . Notice

that if z = cos(πpq ) + i sin(πpq ) = e
piπ
q then it is clear that z2q = 1 and so z is algebraic. Now,

notice that

cos(
πp

q
) =

z + z−1

2
and sin(

πp

q
) =

z − z−1

2i

Since the set of algebraic numbers is a field, we have that both cos(πpq ) and sin(πpq ) are
algebraic as required. �

6. Let F be a finite field, f(x) ∈ F [x] an irreducible polynomial of degree n and suppose that E
is an extension of F . Show that if E contains one root of f(x), then it contains every root of
f(x).
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Solution: Let α be a root of f(x). It suffices to show that f(x) splits in F (α). Let F =
Fq = Fpe where p is a prime and e ∈ N. Consider the Frobenius homomorphism φ : xp

e
.

Since the kernel is trivial, this map must be an injective. Since F is a finite field, this
is an isomorphism (as any finite field automorphism that is an injection is automatically
surjective). Now, since the non-zero elements of F form a group under multiplication of order
q− 1 we have that aq−1 = 1 by Lagrange’s Theorem (4.1). Thus, every element of F satisfies
aq = a. This means that F is fixed by φ. In particular, φ(f(x)) = f(φ(x)). Thus, we have

f(φ(α)) = φ(f(α)) = φ(0) = 0. Continuing this iterative procedure shows that αq
l

are all
roots of f for all l ∈ N. Now, we know that there are only finitely many of these elements
are distinct. In fact, since F (α) is a finite extension of a finite field, F (α) ∼= Fqn and thus
αq

n
= α by the above argument. I claim the list α, αq, .., αqn−1 is a distinct list of roots of f .

Suppose that αq
a

= αq
b

where a ≥ b and 0 ≤ a, b ≤ n− 1. Applying φ a total of n− a times
yields α = αq

n
= αq

n−a+b
with 0 < n − a + bleqn. This argument tells us that α ∈ Fqn−a+b

and thus n− a+ b = n or a = b giving that our list is unique. Hence

f(x) =
n−1∏
i=0

(x− αpi) ∈ F (α)[x]

as required. �

7. Let α ∈ C be an algebraic number and p a prime. Show that there exist field extensions of
finite degree Q ⊆ F ⊆ K such that α ∈ K, the degree [K : F ] is a power of p, and [F : Q] is
prime to p.

Solution: Let p(x) be the min poly of α and n its degree. If gcd(n, p) = 1, then take
F = Q(α) and K = Q(α, p

√
2) and this will work as [K : F ] = p and [F : Q] = n. Otherwise,

let K = Q(α) and let L be the splitting field of p(x). By the Fundamental Theorem of
Galois Theory, we have that Gal(L/K) is a group of order n = plm where gcd(p,m) = 1. By
Sylow’s First Theorem (4.5), there is a Sylow p subgroup H of Gal(L/K). Again invoking
the Fundamental Theorem of Galois Theory, we have that this subroup H corresponds to a
subfield of K. Setting this to be F we know that [F : Q] = |H| = pl and further by the

KLM Theorem that [K : F ] = [K:Q]
[[F :Q] = plm

pl
= m and this meets the criteria as required. I

have summarized the proof in the following lattice where G = Gal(L/Q), I = Gal(L/F ) and
H = Gal(L/K) (notice how the diagram flips).

L G

K I

F H

Q {e}

Done! �

8. Factor p(x) = x3 − 3x+ 3 and find the Galois group of its splitting field if the ground field is

(i) R
(ii) Q

Solution:
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(i) Notice that p(−3) < 0 < p(−2) so the Intermediate Value Theorem (1.1) says that there
is a real root α between −2 and −3. notice that p′(x) = 3x2 − 3. This tells us that
the function is increasing up to −1, decreasing to 1 and increasing there out. Since
f(−1) = 5 > f(1) = 1 > 0, we know that there is only one real root. This function
hence has one real root and two complex roots that are conjugates. Thus, we know that
the splitting field of this polynomial over R is a degree two splitting field and hence its
Galois group isomorphic to Z2. �

(ii) By Eisenstein’s Criteria (5.1) using 3, this polynomial is irreducible over the rationals.
By the above, it has one real root and two complex roots. Let β be one of the complex
roots. Then [Q(α) : Q] = 3 and [Q(β) : Q] = 2. this means that the splitting field
E = Q(α, β) has degree 6. Since the Galois group is a subgroup of S3 (remember
elements of the Galois group are simply root permutations), it must be that it is equal
to S3 as required. �

9. Let F be a field and let f(x) :=
∏n
i=1(x−αi) ∈ F [x] be a polynomial. Define the discriminant

of f by

D(f) =
∏
i<j

(αi − αj)2

(i) Suppose f(x) = x3 + ax+ b. Show that D(f) = −4a3 − 27b2.

(ii) Show that the polynomial f(x) = x3 − 48x+ 64 is irreducible over Q.

(iii) Compute the Galois group over Q of x3 − 48x+ 64.

Solution:

(i) Notice that

f ′(x) = (x− α1)(x− α2) + (x− α1)(x− α3) + (x− α2)(x− α3)

In particular,

f ′(α1) = (α1 − α2)(α1 − α3)

f ′(α2) = (α2 − α1)(α2 − α3)

f ′(α3) = (α3 − α1)(α3 − α2)

D(f) = −f ′(α1)f ′(α2)f ′(α3)

In this light, notice that f ′(x) = 3x2 + a and hence

−f ′(α1)f ′(α2)f ′(α3) = −(3(α1)2 + a)(3(α2)2 + a)(3(α3)2 + a)

= −27α2
1α

2
2α

2
3 − 9a(α2

1α
2
2 + α2

1α
2
3 + α2

2α
2
3)− 3a2(α2

1 + α2
2 + α2

3)− a3

By expanding f(x) :=
∏n
i=1(x− αi) and comparing coefficients, we see that

−α1α2α3 = b

α1α2 + α1α3 + α2α3 = a

α1 + α2 + α3 = 0

Squaring all three equations yields (after simplification)

α2
1α

2
2α

2
3 = b2

α2
1α

2
2 + α2

1α
2
3 + α2

2α
2
3 = a2

α2
1 + α2

2 + α2
3 = −2a
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Substituting for D(f) finally gives

D(f) = −27α2
1α

2
2α

2
3 − 9a(α2

1α
2
2 + α2

1α
2
3 + α2

2α
2
3)− 3a2(α2

1 + α2
2 + α2

3)− a3

= −27b2 − 9a(a2)− 3a2(−2a) + a3 = −4a3 − 27b2

as required. �

(ii) Consider this equation in Z5. It becomes p(x) ≡ x3 − 3x + 4(mod 5). Now, if the
polynomial is reducible, then it has a linear factor and by the factor theorem, evaluating
the polynomial at this root must give you zero. In particular, when reduced modulo 5,
then we must get that one of the numbers from 0, ..4 must be such that p(i) ≡ 0. Notice

p(0) ≡ 4 p(1) ≡ 2 p(2) ≡ 1 p(3) ≡ 2 p(4) ≡ 1

Notice that none of these are zero and hence f(x) cannot have a linear factor. Hence
f(x) is ireducible over Q (I’ve probably implicitly used Gauss’ Lemma here as well). �

(iii) Notice that the discriminant is equal to

D(f) = −4a3 − 27b2 = −4(−48)3 − 27(64)2 = 22(243)3 − 33(26)2 = 21433 − 33212

= 21233(4− 1) = 21234

This is a perfect square. Thus,
√
D(f) ∈ Q. Notice that since f(x) is irreducible, this

means that the Galois group has order either 3 or 6 and since it is isomorphic to a
subgroup of S3, we have that it equals either A3 or S3. Notice that the permutation σ
that fixes Q (and hence

√
D(f) as it is rational) and that changes only two roots (say

α1 and α2) gives

D(f) = σ(
√
D(f)) = σ((α1 − α2)(α1 − α3)(α2 − α3))

= (α2 − α1)(α2 − α3)(α1 − α3)

= −
√
D(f)

Which is a contradiction. Hence there can only be 3 elements in the Galois group and
thus the Galois group is isomorphic to A3. �
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