
Creating Finite State Machines using JFLAP

Carmen Bruni (cbruni@uwaterloo.ca) with thanks to Troy Vasiga

1 Exercises

Try the following. See how far you get. Write down your answers (and save them to a file,
if you wish). The questions are relatively ranked from easier questions at the beginning to
trickier questions at the end.

1. Construct a FSM for the following regular expression:

(ab)∗

2. Construct a FSM for the following regular expression:

a∗b∗

3. Construct a FSM over the alphabet Σ = {0, 1} which accepts only the words which
have exactly three 1’s. That is, 01010001 should be accepted, but 1111 and 010100

should be rejected.

4. What is the regular expression given by this machine?

5. Give a FSM for your postal code. For example, the postal code for the University
of Waterloo is N2L 3G1. However, people write this a whole bunch of different ways.
That is:

• n2l3g1

• N2L-3G1

• N2L 3g1

• N2L 3G1

are all valid. Write a postal code recognizer which accepts these variations on your
postal code (HINT: you may want to use λ-transitions.)

6. Construct a FSM which accepts even base-10 positive integers. For example 1020 and
2 should be accepted, but 1111 should be rejected. (HINT: Non-determinism will be
your friend. You can do this with 2 states and 2 transition arcs nondeterministically,
or with 2 states and 4 transition arcs deterministically.)

1

7. Repeat the previous question, except accept only odd base-10 positive integers. That
is, you should accept 3 and 333433, but 1110 should be rejected. What has changed
from your answer to the previous question?

8. Speaking of threes, construct a FSM which accepts decimal numbers which are divisible
by 3. Note that 0, 3, 21, 33960210 are divisible by 3. (HINT: You should need exactly
4 states to do this, and think about what it means to be divisible by 3). Try it on
some numbers which are divisible by 3 (like 3 and 27) and other numbers which are
not divisible by 3 (like 4 and 83).

9. Construct a DFA which accepts all words having the subword abba within them. You
should check to make sure that abbba and ababa are rejected and that abbbabba is
accepted.

10. What is the regular expression which is equivalent to the language accepted by this
machine?

11. Construct a FSM over the alphabet Σ = {a, b, c} which accepts words which contain
an even number of a’s. There are no restrictions on the number of b’s or c’s. You
should verify that aabaacc, b and abacababc are accepted and that aaacacac and
abb are rejected. Hint: You should use two states and keep track of the “parity” (even
or odd) of the number of a’s you have read in.

12. Find a regular expression for the FSM in Question 11.

13. Construct a FSM over the alphabet Σ = {a, b, c} which accepts words which contain
an even number of a’s and an odd number of b’s. There are no restrictions on the
number of c’s. You should verify that aabaacc, b and abacababc are accepted and
that aaaacacac and bb are rejected. Hint: You need 4 states, and you should keep
track of the parity of both a’s and b’s.

14. Find a regular expression for the FSM in Question 13. Hint: this is really hard to do
by hand. Use JFLAP to do this work for you, which should convince you how hard it
is.

15. Construct the FSM for the following regular expression:

a∗bc∗|a(bc)∗|(abc)∗

(Hint: you should think about creating three distinct FSMs, for each part of the regular
expression. Then, connect them using a λ-transition from the start state.)

2

