Finite State Machines

Dr. Carmen Bruni cbruni@uwaterloo.ca

David R. Cheriton School of Computer Science University of Waterloo https://cs.uwaterloo.ca/~cbruni/ With thanks to Troy Vasiga troy.vasiga@uwaterloo.ca

Wednesday May 15th, 2024

A Puzzle - The Wolf Cabbage and Goat problem

You can play this on the *River Tests* app or at the link below (change cabbage to carrot):

https://www.transum.org/software/River_Crossing/

Solution

What does this have to do with computer science?

Let's try to represent this using a diagram.

Finite State Machines

- You've just created your first finite state machine!
- But what does this have to do with computer science?
- ... and what really is a finite state machine?

Finite State Machines

Finite state machines model...

- ...what we know about the world
- ...what changes in our world with input

Examples of Finite State Machines

Finite State Machine Definition

- A finite state machine consists of:
 - A finite set of states
 - A finite set of characters belonging to an alphabet
 - Transitions between states using the elements of the alphabet
 - A starting state
 - An accepting state (could be 0, 1, or many such states)

What is a state?

A description of what we know:

What is Input? First Alphabets!

An alphabet is a finite set of symbols

- Alphabets usually denoted by Σ (subscripted if there are multiple alphabets).
- Examples:

•
$$\Sigma_1 = \{0, 1\}$$

•
$$\Sigma_2 = \{a, b, ..., z\}$$

•
$$\Sigma_3 = \{happy, t, \widehat{+}\}$$

What is Input?

Consists of elements from our alphabet. Comprise our transitions. Let $\Sigma = \{ bad mark, stub toe, free pie, clap your hands \}.$

What is a Starting State?

Where to begin

Final Accepting States

How do we know what is accepted/good?

Words

A **word** consists of a finite sequence of symbols from our finite alphabet.

Special word λ is the *empty word*.

Recall:
$$\Sigma_1 = \{0,1\}$$
, $\Sigma_2 = \{a, b, ..., z\}$, $\Sigma_3 = \{happy, t, \clubsuit\}$

Example

What words do the following FSM accept over the alphabet $\Sigma=\{0,1\}?$ Can we characterize these words nicely?

Regular Expressions

We can express the collection of words accepted by the machine on the previous slide as 01^*00 .

Regular Expressions Examples

(*ab*)*

 $(a|b)^*$

Another Example

Write an FSM that accepts all words over $\Sigma = \{a, b, c\}$ that contain the word *abc* inside.

DFA

NFA

λ NFA

What about a FSM that accepts words of the form $((a^*b^*)|(ab)^*)$?

Reminder: Concatenation has precedence before alternation - similar to how multiplication has precedence over addition. **Hint:** Think of λ as the glue that glues machines together!

λ NFA Solution

Summary

- Finite state machines helps us to model the world.
- Consist of states and transitions between them.
- Collections of words accepted by a DFA/NFA/λ-NFA can be written using a regular expression (This isn't obvious but is true!)