Finite State Machines

Dr. Carmen Bruni cbruni@uwaterloo.ca

David R. Cheriton School of Computer Science
University of Waterloo
https://cs.uwaterloo.ca/~cbruni/
With thanks to Troy Vasiga troy.vasiga@uwaterloo.ca

Wednesday May 15th, 2024

A Puzzle - The Wolf Cabbage and Goat problem

You can play this on the River Tests app or at the link below (change cabbage to carrot):
https://www.transum.org/software/River_Crossing/

Solution

What does this have to do with computer science?

Let's try to represent this using a diagram.

Finite State Machines

- You've just created your first finite state machine!
- But what does this have to do with computer science?
- ... and what really is a finite state machine?

Finite State Machines

Finite state machines model...

- ...what we know about the world
- ...what changes in our world with input

Examples of Finite State Machines

Finite State Machine Definition

- A finite state machine consists of:
- A finite set of states
- A finite set of characters belonging to an alphabet
- Transitions between states using the elements of the alphabet
- A starting state
- An accepting state (could be 0,1 , or many such states)

What is a state?

A description of what we know:

What is Input? First Alphabets!

An alphabet is a finite set of symbols

- Alphabets usually denoted by Σ (subscripted if there are multiple alphabets).
- Examples:
- $\Sigma_{1}=\{0,1\}$
- $\Sigma_{2}=\{a, b, \ldots, z\}$
- $\Sigma_{3}=\{$ happy, t, 兮 $\}$

What is Input?

Consists of elements from our alphabet. Comprise our transitions. Let $\Sigma=\{$ bad mark, stub toe, free pie, clap your hands $\}$.

What is a Starting State?

Where to begin

Final Accepting States

How do we know what is accepted/good?

Words

A word consists of a finite sequence of symbols from our finite alphabet.

Special word λ is the empty word.
Recall: $\Sigma_{1}=\{0,1\}, \Sigma_{2}=\{a, b, \ldots, z\}, \Sigma_{3}=\{$ happy, t, 子 $\}$

Example

What words do the following FSM accept over the alphabet $\Sigma=\{0,1\}$? Can we characterize these words nicely?

Regular Expressions

We can express the collection of words accepted by the machine on the previous slide as $01^{*} 00$.

Regular Expressions Examples

$(a b)^{*}$
$(a \mid b)^{*}$

Another Example

Write an FSM that accepts all words over $\Sigma=\{a, b, c\}$ that contain the word $a b c$ inside.

DFA

NFA

λ NFA

What about a FSM that accepts words of the form $\left(\left(a^{*} b^{*}\right) \mid(a b)^{*}\right)$?
Reminder: Concatenation has precedence before alternation similar to how multiplication has precedence over addition. Hint: Think of λ as the glue that glues machines together!

λ NFA Solution

Summary

- Finite state machines helps us to model the world.
- Consist of states and transitions between them.
- Collections of words accepted by a DFA/NFA/ λ-NFA can be written using a regular expression (This isn't obvious but is true!)

