Warm Up Problem

Let ¢ be a truth valuation, p and ¢ propositional variables with t(p) =T,
and let o be a well-formed formula. Which of the following are written
using the correct notation? What does the equality-type character mean
on each line?

1. =T

2. at =T
3.at=T

4 (pNg)t=(TAq)
5. @A) =(TAGY
6. (pAg)=(qgAp)
7. (pANg) =(qAp)

Semantics 1/31

Propositional Logic: Semantics

Carmen Bruni
With thanks to A. Gao for these slides!

Based on slides by Jonathan Buss, Lila Kari, Anna Lubiw and Steve
Wolfman with thanks to B. Bonakdarpour, A. Gao, D. Maftuleac, C.
Roberts, R. Trefler, and P. Van Beek

Lecture 5

Semantics 2/31

= How can we prove that two formulas have the same meaning?
(Logical equivalence)

= Analyzing dead code.
= Circuit design.

v

«O>» «Fr <= « = = Al

Learning goals

Logical equivalence of formulas:

= Prove that the logical equivalence of formulas using truth tables
and/or logical identities.

= Describe strategies to prove logical equivalence using logical identities.

= Translate a condition in a block of code into a propositional logic
formula.

= Simplify code using truth tables and logical identities.

= Determine whether a piece of code is live or dead using truth tables
and logical identities.

Dead Code:

= Determine whether or not a specific line of code is reachable.

= Give examples of parameters that reach a specific line of code.

Semantics 4/31

Definition of logical equivalence

Two formulas « and 3 are logically equivalent if and only if they have the
same value under any valuation.

» of = 3¢, for every valuation t.
= « and B must have the same final column in their truth tables.

= (a +) is a tautology.

Semantics 5/31

Why do we care about logical equivalence?

= Will | lose marks if | provide a solution that is syntactically different
but logically equivalent to the provided solution?

» Do these two circuits behave the same way?

» Do these two pieces of code fragments behave the same way?

Semantics 6/31

You already know one way of proving logical equivalent. What is it?
Theorem: (((—p) Aq) Vp)=(pVq)

DA

u}
‘ 8
l
it

Commutativity Idempotence
(aAB)=(BANa) (aVa) =«
(aVpB)=(BVa) (aNa) =«

Associativity Double Negation

(@A (BAY) = ((ahB)AY) (~(-a)) =«
(Vv (BVy)=((aVp)Vvy) De Morgan's Laws

Distributivity (=(a A B) = ((ma) vV (—8))

(@Vv(BAY)=({(aVvB)Alavy) (mlavp)=((-a)A(=5)
(an(BV)=((@AB)V(aAy)

Simplification | (Absorption)

(aAT) =«
(aVT)=T
(0 NF)=F
(e VF) =«
Simplification Il
(aV(aAp)) =a
(an(aVp) =a

Implication
(@ —=pB) = ((-a) vV B)
Contrapositive
(a—=B) = ((=8) = (—a))
Equivalence
(@ B)=((a=B)A(B—a)
Excluded Middle
(aV(~a) =T
Contradiction
(A (~a)) =F

Theorem: (((—p) Aq) Vp)=(pV q).
«O>» <Fr «=Z»r «E>» = Q>
- semantics . 10/3

Theorem: (((—p) Aq) Vp)=(pV q).

Proof.

)

Distributivity
Excluded Middle
Simplification |

Commutativity

«O> «F>r «=)r « =

[
S
o
e

"If it is sunny, | will play golf, provided that | am relaxed.”
s: it is sunny. g: | will play golf. r: | am relaxed.
A few translations:
1. (s—=(r—g))

2. (r—=(s—g))

3. ((sAr)—g)

Theorem: All three translations are logically equivalent.
Proof: Done in class.

«O> «F>r «=)r « =) o>

How do you prove non-equivalence?

"If it snows then | won't go to class, but | will do my assignment.”
s: it snows. c: | will go to class. a: | will do my assignment.
2 possible translations:

1. ((s—=(—¢)) Aa)
2. (s = ((=c) Na))

Theorem: ((s — (—¢)) A a) and (s — ((—¢) A a)) are not logically
equivalent.

Semantics

12/31

How do you prove non-equivalence?

"If it snows then | won't go to class, but | will do my assignment.”
s: it snows. c: | will go to class. a: | will do my assignment.
2 possible translations:

1. ((s—=(—¢)) Aa)
2. (s = ((=c) Na))

Theorem: ((s — (—¢)) A a) and (s — ((—¢) A a)) are not logically
equivalent.

Which valuation ¢ can we use to prove this theorem?

a. st =F, (—c)t* =F, at =F
b. st =F, (=)t =T, at =

c. st=T (mc)t =T at =T
d. Two of these.

e. All of these.

Semantics

12/31

Collected Wisdom

Try getting rid of — and «.
Try moving negations inward. —(p V q) = (—p) A (—q).
Work from the more complex side first, BUT

Switch to different strategies/sides when you get stuck.

In the end, write the proof in clean ‘ one-side-to-the-other’

and double-check steps.

Semantics

form

13/31

A piece of pseudo code

if ((input > 0) or (mot output)) {
if (not (output and (queuelength < 100))) {
Py
} else if (output and (not (queuelength < 100))) {
Py
}else { P; }
}else { P, }

When does each piece of code get executed?

Let ¢: input > 0,
u: output,
q: queuelength < 100.

Semantics Conditional Code 14/31

i uoq| @iV () ((ung) (uA(-q)

T T T T

T T F T

T F T T

T F F T

F T T F P,
FTF F P,
F F T T

F F F T

«O» «Fr «=Er «=E» E DACX

~.

—
B
<
n
£
~—
—
A
S
>
=
~—
—
S
>
n
=
~—

T R R R TS RS R
TR R R R T T T
T R R R T S
G T G e

e e

«O> A Fr «=)r «=)»

DA

satisfiable.
'{heorem:

Prove that Py is live code. That is, the conditions leading to Pj is

Proof: In class

(i v (=) A ((=(~(u A @) A (=(uA (-0))))) = (G Au) Ag)

<O 4 Fr <= « = = Al

v

Two pieces of code: Are they equivalent?

Prove that the two code fragments are equivalent.

Listing 1: Your code Listing 2: Your friend's code
if (2 1] tu) Ao if ((4 && u) && q) {
if (1 (u && q)) { P3
P1 } else if ('i && u) A{
} else if (u && 'q) { P4
P2 } else {
} else { P3 } P1
} else { P4 } }

Semantics Conditional Code 17/31

Simplifying Code

To prove that the two fragments are equivalent, show that each block of
code P, P,, P5, and P, is executed under equivalent conditions.

Block Fragment 1 Fragment 2

Py (i V(W) A(=(wng) (= AuAg)A (i) Aw))

Py (i V(=) A (=(=(uAq))) F
A (u A (=)
Py (iV(-uw) A ((—(uAq))) (i AuAq)
A (=(u A (—q)))
P, (=@ V (—u))) (=@ AuAg) A ((—i) Au)

Semantics Conditional Code 18/31

Another logic puzzle

A very special island is inhabited only by knights and knaves. Knights
always tell the truth, and knaves always lie.

You meet three inhabitants: Alice, Rex and Bob.
Alice says, “Rex is a knave.”

Rex says, “It is false that Bob is a knave.”

Bob claims, “l am a knight or Alice is a knight.”

Can you determine who is a knight and who is a knave?

Semantics Conditional Code 19/31

= An electronic computer is made up of a number of circuits.
= The basic elements of circuits are called logic gates.

= A gate is an electronic device that operates on a collection of binary
inputs and produces a binary output.

«O> «F>r «=)r « =) = o>

AND

40> «4F>r «=)» 4

[
S
o
e

A circuit design problem

Your instructors, Alice, Carmen, and Collin, are choosing questions to be
put on the midterm. For each problem, each instructor votes either yes or
not. A question is chosen if it receives two or more yes votes. Design a
circuit, which outputs yes whenever a question is chosen.

Semantics Circuit Design 22/31

output

4

[l = PO e T PR R € P B M

[T = I S R I

[e T e T e T S R € R PR

output

4

y

Design the circuit

1. Convert the truth table a propositional formula.

For convenience, we will use the symbol & to represent an exclusive
OR connective. This is a temporary convenience only. You are not
allowed to use this connective unless otherwise specified in the
problem.

2. Then, convert the formula to a circuit.

Semantics Circuit Design 25/31

1. Convert each row of the truth table to a conjunction.

2. Connect all formulas to form a disjunction. (Below is not well formed
to save confusion)

(@AY A2)V (@ Ay)A(=2) V(@A (7y) Az) VI(((-2) Ay) A z)
3. Draw the circuit.

v

«O> «F>r «=)r « = = o>

y
m

L

@

J

[o!
utput

1. Converts rows 1-3 to a propositional formula.
(A (yV2))

2. Convert row 5 to a propositional formula.
(((—z) Ay) A 2)

3. Connect all formulas into a disjunction.
(A (yV2)V(((-x) Ay) Az))

4. Draw the circuit.

«O>» <Fr «=Z»r «E>» Q>

Output

1. Convert rows 1 and 5 into a propositional formula.
(yAz)

2. Convert rows 2 and 3 into a propositional formula.
(A (yoz))

3. Connect all formulas into a disjunction.
(yA2z)V(zA(y®2)))

4. Draw the circuit.

«O>» <Fr «=Z»r «E>» Q>

@

=
@

Qutput

e e

Da

	Semantics of Propositional Logic
	Application: Analysis of Conditional Code
	Circuit Design

