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Warm-Up Problem

Please fill out your Teaching Evaluation Survey! Please comment on the
warm-up problems if you haven’t filled in your survey yet.

Warm up: Given

There is a barber who is said to shave only men who do not
shave themselves.

Question: Does the barber shave themself?

What if the barber must be a man?
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Decidability
Introduction and Reductions to the Halting

Problem

Carmen Bruni
Lecture 22

Based on slides by Jonathan Buss, Lila Kari, Anna Lubiw and Steve
Wolfman with thanks to B. Bonakdarpour, A. Gao, D. Maftuleac, C.

Roberts, R. Trefler, and P. Van Beek

2/21



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Last Time

• Complete the example of reversing an array and prove partial
correctness.

• Show that reversing an array is totally correct.
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Learning Goals

• Define a decidable problem.
• Describe the Halting Problem.
• Show that problems are decidable.
• Give reductions to prove undecidability
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A Question

Given as many resources as you wanted, is every problem solvable with a
computer?

Perhaps an even easier question: What is a computer?
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History of “Computers”

• Human Computers: Earliest recorded use was in 1613 (Oxford
Dictionary).

• WWII: Women participated in the war as human computers since
men were often drafted to the war.

• Alan Turing (1912-1954): Created the Turing machine, a model for
a machine that used a ticker tape that moved left and right (and that
is theoretically infinite in both directions), could write zeroes and
ones, and a table of rules as to how to move from state to state.

• For more on this check out CS 360 (or for a Hollywood version, check
out “The Imitation Game” and “Hidden Figures”).

For us, we can think of a computer as a Turing Machine; A machine that
outputs zeroes and ones according to an list of instructions (an algorithm)
that the machine can follow.
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Decision Problems

We will be discussing decision problems

Definition

A decision problem is a problem which has a yes or no answer on a given
input.

Example

The problem “Is an integer 𝑥 positive’?’ is a decision problem.
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Decidablility
Definition

A decision problem is decidable if and only if there exists an algorithm
that decides it (that is, an algorithm that determines yes or no correctly on
any valid input). Otherwise, we say that the decision problem is
undecidable

Examples; Which of the following are decidable?

• “Given a twice continuously differentiable real function on a closed
interval, does it have a maximum value at a given 𝑥 in the interval?”

• “Given a graph (set of vertices and edges between the vertices), how
many vertices does it have?”

• “Hilbert’s Tenth Problem: Given an integer multivariate polynomial
equation, does it have a solution”

• “Given a program 𝑃 , does 𝑃 terminate on input 𝐼?”

For more information on Hilbert’s Tenth Problem, see Matiyasevich’s
Theorem or the MRDP (Matiyasevich, Robinson, Davis, Putnam)
Theorem.
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An Open Example

Does the following example on an input 𝑛 terminate?

while (n > 1){
if ( (n % 2) == 0){

n = n/2;
} else {

n = 3 * n + 1;
}

}

The problem of “Does this code always terminate on positive integers 𝑛?”
is known as The Collatz Conjecture.
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Theorem

Theorem (Turing, 1936)

The Halting Problem is undecidable. That is, the problem of “Given a
program 𝑃 and an input 𝐼 , determine if 𝑃 halts on input 𝐼” is undecidable.

Normally, I would do the proof now, but we delay this until we see some
uses of this theorem.
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Reduction of Problems:

To show problems are undecidable, there are two common approaches:

• Prove from first principles that the problem is undecidable.
• Prove by reducing the problem to a known undecidable problem.

Typically we use the second approach; Abstractly, we show problem 𝑄1 is
reducible to problem 𝑄2:

• Given an algorithm for deciding 𝑄2, we could use it to decide 𝑄1.
• We prove:

If 𝑄2 is decidable, then 𝑄1 is decidable.
• Taking the contrapositive:

If 𝑄1 is undecidable, then 𝑄2 is undecidable.

Decidability 11/21



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Reduction of problems.

More concretely:

• Assume towards contradiction that there is an algorithm 𝐵 that
decides a new problem 𝑃0.

• Show that we can create a new algorithm 𝐴 such that it decides the
Halting Problem (or another problem we know is undecidable).

• Conclude by Turing’s theorem that such a 𝐵 should not have existed
since the Halting Problem is undecidable and hence 𝑃0 is undecidable.
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Pictorially

As a diagram, we can view this as the following black box picture:

Note above, 𝐼𝐴 is 𝑃 and 𝐼 if reducing to the Halting Problem as we will
typically do.
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Halting-No-Input Problem
Problem: Given a program 𝑃 that requires no input, does 𝑃 halt?

Theorem: The Halting-No-Input Problem is undecidable.

Proof: Assume towards a contradiction that there is an algorithm 𝐵 such
that when the program 𝑃 halts it returns “yes”. We claim that we can
construct an algorithm 𝐴 to decide the Halting Problem. Let 𝑃 and 𝐼 be
a program and input pair. Construct program 𝑄 that

• Takes no input
• Runs 𝑃 on 𝐼 . If it halts, it returns the output.

Algorithm 𝐴 is given by

• Run algorithm 𝐵 on program 𝑄.
• Return the result of 𝐵 run on 𝑄.

(continued on next slide)
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Halting-No-Input Problem
Problem: Given a program 𝑃 that requires no input, does 𝑃 halt?

Theorem: The Halting-No-Input Problem is undecidable.

Proof: Assume towards a contradiction that there is an algorithm 𝐵 such
that when the program 𝑃 halts it returns “yes”. We claim that we can
construct an algorithm 𝐴 to decide the Halting Problem. Let 𝑃 and 𝐼 be
a program and input pair. Construct program 𝑄 that

• Takes no input
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(continued on next slide)
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Halting-No-Input Problem
Problem: Given a program 𝑃 that requires no input, does 𝑃 halt?

Theorem: The Halting-No-Input Problem is undecidable.

Proof: (Continued...) Now, by construction, 𝐴 halts and returns “yes” if
and only if program 𝑃 halts on input 𝐼 . Thus if algorithm 𝐵 exists, then
the Halting Problem is decidable. This is a contradiction. Thus the
Halting-No-Input problem is undecidable.
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Both Halt Problem
Problem: Given two programs 𝑃1 and 𝑃2, do both halt on a given input
𝐼?

Theorem: The Both Halt Problem is undecidable.

Proof: Assume towards a contradiction that there is an algorithm 𝐵 such
that it return “yes” if and only if 𝑃1 and 𝑃2 both halt on a given input 𝐼 .
We claim that we can construct an algorithm 𝐴 to decide the Halting
Problem. Let 𝑃 and 𝐼 be a program and input pair. Construct program 𝑄
that does nothing and halts.

Algorithm 𝐴 is given by

• Run algorithm 𝐵 on programs 𝑃 , 𝑄 and input 𝐼 .
• Return the result of 𝐵 run on this triple 𝑃 , 𝑄 and 𝐼 .

(continued on next slide)
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Both Halt Problem
Problem: Given two programs 𝑃1 and 𝑃2, do both halt on a given input
𝐼?

Theorem: The Both Halt Problem is undecidable.

Proof: Assume towards a contradiction that there is an algorithm 𝐵 such
that it return “yes” if and only if 𝑃1 and 𝑃2 both halt on a given input 𝐼 .
We claim that we can construct an algorithm 𝐴 to decide the Halting
Problem. Let 𝑃 and 𝐼 be a program and input pair. Construct program 𝑄
that does nothing and halts.

Algorithm 𝐴 is given by

• Run algorithm 𝐵 on programs 𝑃 , 𝑄 and input 𝐼 .
• Return the result of 𝐵 run on this triple 𝑃 , 𝑄 and 𝐼 .

(continued on next slide)
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Both Halt Problem
Problem: Given two programs 𝑃1 and 𝑃2, do both halt on a given input
𝐼?

Theorem: The Both Halt Problem is undecidable.

Proof: (Continued...) Now, by construction, 𝐴 halts and returns “yes” if
and only if program 𝑃 halts on input 𝐼 . Thus if algorithm 𝐵 exists, then
the Halting Problem is decidable. This is a contradiction. Thus the Both
Halt problem is undecidable.
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Partial Correctness Problem

Problem: Given a Hoare triple ⦇ 𝑃1 ⦈ 𝐶 ⦇ 𝑄1 ⦈, does 𝐶 satisfy the triple
under partial correctness?

Theorem: The Partial Correctness Problem is undecidable.

Proof: Assume towards a contradiction that there is an algorithm 𝐵 such
that when ⦇ 𝑃1 ⦈ 𝐶 ⦇ 𝑄1 ⦈, is satisfied under partial correctness it returns
“yes”. We claim that we can construct an algorithm 𝐴 to decide the
Halting-No-Input Problem. Let 𝑃 be a program. Algorithm 𝐴 is given by

• Run algorithm 𝐵 on program ⦇ true ⦈ 𝑃 ⦇ false ⦈ and return the
negated answer.

(continued on next slide)
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Proof: Assume towards a contradiction that there is an algorithm 𝐵 such
that when ⦇ 𝑃1 ⦈ 𝐶 ⦇ 𝑄1 ⦈, is satisfied under partial correctness it returns
“yes”. We claim that we can construct an algorithm 𝐴 to decide the
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Partial Correctness Problem

Problem: Given a Hoare triple ⦇ 𝑃1 ⦈ 𝐶 ⦇ 𝑄1 ⦈, does 𝐶 satisfy the triple
under partial correctness?
Theorem: The Partial Correctness Problem is undecidable.
Proof: (Continued...) Now, by construction, 𝐴 halts and returns “yes” if
and only if program 𝑃 halts. This is true since the Hoare triple ⦇ true ⦈ 𝑃
⦇ false ⦈ is never satisfied and so by the definition of partial correctness,
this triple satisfies partial correctness if and only if 𝑃 does not halt. Thus
algorithm 𝐵 will return “no” if and only if program 𝑃 halts. This is the
negation of what we want our program do so flip the answer. Thus if
algorithm 𝐵 exists, then the Halting-No-Input Problem is decidable. This
is a contradiction. Thus the Partial Correctness problem is undecidable.
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Specific Input Run Forever Problem
Problem: Given a program 𝑃 , does it run forever on input 𝑛 = 0?

Theorem: The Specific Input Run Forever Problem is undecidable.

Proof: Assume towards a contradiction that the specific input problem is
decidable. That is, there is an algorithm 𝐵 such that when I give it a
program 𝑃 ′, it returns “yes” if and only if it runs forever on the input
𝑛 = 0.
Given a program 𝑃 and an input 𝐼 , construct a program 𝑄 that:

• Ignores the input and runs 𝑃 on 𝐼 .
• If 𝑃 when run on 𝐼 halts, then halt and return 0.

Note that this 𝑄 halts at 0 [in fact it halts on all inputs!] if and only if 𝑃
halts on 𝐼 . We now show we can decide the Halting Problem. (Continued
on next slide)
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Specific Input Run Forever Problem
Problem: Given a program 𝑃 , does it run forever on input 𝑛 = 0?

Theorem: The Specific Input Run Forever Problem is undecidable.

Proof: Assume towards a contradiction that the specific input problem is
decidable. That is, there is an algorithm 𝐵 such that when I give it a
program 𝑃 ′, it returns “yes” if and only if it runs forever on the input
𝑛 = 0.
Given a program 𝑃 and an input 𝐼 , construct a program 𝑄 that:

• Ignores the input and runs 𝑃 on 𝐼 .
• If 𝑃 when run on 𝐼 halts, then halt and return 0.

Note that this 𝑄 halts at 0 [in fact it halts on all inputs!] if and only if 𝑃
halts on 𝐼 . We now show we can decide the Halting Problem. (Continued
on next slide)
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Specific Input Problem
Problem: Given a program 𝑃 , does it run forever on input 𝑛 = 0?

Theorem: The Specific Input Problem is undecidable.

Proof: (Continued...) We now find an algorithm that decides the Halting
Problem. Consider an algorithm 𝐴:

• It consumes 𝑃 and 𝐼
• It creates 𝑄
• It runs algorithm 𝐵 on 𝑄 and then negates the output.

Now, algorithm 𝐵 on 𝑄 returns “yes” if and only if 𝑄 runs forever on
input 𝑛 = 0. But, this can happen by construction if and only if 𝑃 does
not halt on 𝐼 . So negating the final answer means that if we get “no”
from the above algorithm, then we have that 𝑃 does not halt on input 𝐼 ,
a contradiction. Hence algorithm 𝐵 cannot exist, that is, the Specific
Input Run Forever Problem is undecidable.
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