
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Warm-Up Problem

Is the following true or false?

∅ ⊨ (𝑝 → (𝑞 → 𝑝))

1/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Propositional Logic: Resolution

Carmen Bruni
Lecture 6

Based on work by J. Buss, A. Gao, L. Kari, A. Lubiw, B. Bonakdarpour,
D. Maftuleac, C. Roberts, R. Trefler, and P. Van Beek

2/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conjunctive Normal Form
Conjunctive normal form (CNF):

• A literal is a (propositional) variable or the negation of a variable.
• A clause is a disjunction of literals. (literals connected by ∨)
• A formula is in conjunctive normal form if it is a conjunction of

clauses.

In other words, a formula is in CNF if and only if

• its only connectives are ¬, ∨ and/or ∧,
• ¬ applies only to variables, and
• ∨ applies only to subformulas with no occurrence of ∧.

For CNF Formulas, it is usually easier to read by dropping brackets and
only using them around clauses and the whole formula (possible by
associativity since we’re only dealing with ∧ and ∨ binary connectives and
only care up to logical equivalence):

3/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CNF examples

Some CNF formulas:

• ((𝑝 ∨ (¬𝑞)) ∧ (𝑟 ∧ ((¬𝑟) ∨ (𝑝 ∨ 𝑞))))
• ((¬𝑟) ∨ (𝑝 ∨ 𝑞)) (Only one clause.)
• ((¬𝑟) ∧ (𝑝 ∧ 𝑞)) (Three singleton clauses.)

With simpler bracketing:

• ((𝑝 ∨ (¬𝑞)) ∧ 𝑟 ∧ ((¬𝑟) ∨ 𝑝 ∨ 𝑞))
• ((¬𝑟) ∨ 𝑝 ∨ 𝑞) (Only one clause.)
• ((¬𝑟) ∧ 𝑝 ∧ 𝑞) (Three singleton clauses.)

4/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CNF examples

Some formulas not in CNF:

• (¬((¬𝑝) ∧ 𝑞)) (¬ applied to ∧.)
• (𝑝 ∨ (𝑟 ∧ 𝑞)) (∨ applied to ∧.)
• (¬(¬𝑞)) (¬ applied to ¬.)
• (𝑝 → 𝑞) (Uses →.)

5/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Converting to CNF

1. Eliminate implication and equivalence.
Replace (𝛼 → 𝛽) by ((¬𝛼) ∨ 𝛽)
Replace (𝛼 ↔ 𝛽) by ((¬𝛼) ∨ 𝛽) ∧ (𝛼 ∨ (¬𝛽)).

(Now only ∧, ∨ and ¬ appear as connectives.)
2. Apply De Morgan’s and double-negation laws as often as possible.

Replace (¬(𝛼 ∨ 𝛽)) by ((¬𝛼) ∧ (¬𝛽)).
Replace (¬(𝛼 ∧ 𝛽)) by ((¬𝛼) ∨ (¬𝛽)).
Replace (¬(¬𝛼)) by 𝛼.

(Now negation only occurs in literals.)
3. Transform into a conjunction of clauses using distributivity.

Replace (𝛼 ∨ (𝛽 ∧ 𝛾)) by ((𝛼 ∨ 𝛽) ∧ (𝛼 ∨ 𝛾)).
(One could stop here, but….)

4. Simplify using idempotence, contradiction, excluded middle and
Simplification I & II.

6/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Practice

Show that the CNF of

((𝑝 ↔ 𝑞) → ((¬𝑝) ∧ 𝑟))

is
((𝑝 ∨ 𝑞 ∨ 𝑟) ∧ ((¬𝑞) ∨ (¬𝑝)))

7/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Working with CNF Formulas

In a clause, there is no need to have any variable twice. [Why?]
Also, the order of the literals in the clause does not matter.

Thus we can think of a clause as simply a set of literals.

Similarly, in a CNF formula, no clause [set] need appear more than once,
and the order of clauses does not matter.

Thus we can think of a CNF formula as simply a set of clauses.

For example, the formula ((𝑝 ∨ 𝑞) ∧ ((𝑞 ∨ (¬𝑟)) ∧ 𝑠))
can be described by the set of clauses {𝑝, 𝑞}, {𝑞, (¬𝑟)} and {𝑠}.

We shall use these observations in our next topic, “Resolution”.

8/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What Is a “Proof”?

A proof is a formal demonstration that a statement is true.

• A proof is generally syntactic, rather than semantic.
• Generically, a proof consists of a sequence of formulas.
• Inference rules justify subsequent lines of the proof which are inferred

by the previous lines.

Notions of Proof 9/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Inference Rules

In general, an inference rule is written as
𝛼1 𝛼2 … 𝛼𝑛

𝛽 .

That is, given 𝛼1, 𝛼2, …, 𝛼𝑛, we can infer 𝛽

Examples of possible rules (remember rules are syntactic NOT semantic!):

𝛼 𝛽
(𝛼 ∧ 𝛽)

A kind of definition
of ∧.

(𝛼 ∧ 𝛽)
(𝛼 ∨ 𝛽)

Rules need not be
equivalences.

Notions of Proof 10/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Notation

We notate “there is a proof with premises Σ and conclusion 𝜑” by

Σ ⊢ 𝜑

In this course, we are doing two types of proof systems: Resolution and
Natural Deduction. These will be denoted by

Σ ⊢Res 𝜑 and Σ ⊢ND 𝜑

Notions of Proof 11/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Overview of Resolution

Resolution is one of the most widely used systems for computer-aided
proofs.

It has two distinctive features.

• It applies only to formulas in Conjunctive Normal Form.
Thus we do some preliminary work before starting an actual proof.

• It is used to prove contradictions. That is, a proof aims to conclude a
special “contradiction formula” ⟂.
For this reason, Resolution is sometimes called a “refutation” system.

Resolution 12/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A Note and Warning

In CNF, we treat ⟂ as a clause containing no literals, i.e., the set ∅.
Since it contains no true literal, it is false.

Be forewarned however that this notation only makes sense when dealing
with CNF formulas. In some sense, we really should have a symbol like
⟂Res but we won’t do this. Just keep this slide in mind if you start
replacing ∅ with ⟂ when not dealing with CNF formulas.

Resolution 13/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The “Resolution” System and Rule

The Resolution inference rule:

(𝛼 ∨ 𝑝) ((¬𝑝) ∨ 𝛽)
(𝛼 ∨ 𝛽)

for any Propositional variable 𝑝 and formulas 𝛼 and 𝛽. Special Cases:

Unit resolution:

(𝛼 ∨ 𝑝) (¬𝑝)
𝛼

Contradiction:

𝑝 (¬𝑝)
⟂

Resolution is a refutation system; a proof is finished when one derives a
contradiction ⟂. Remember: proof systems are syntactic NOT semantic!

In this case, the original premises are refuted.

Resolution 14/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example of Using Resolution
To prove: {𝑝, 𝑞, ((¬𝑝) ∨ (¬𝑞))} ⊢Res⟂.

1. 𝑝 premise
2. 𝑞 premise
3. ((¬𝑝) ∨ (¬𝑞)) premise

4. (¬𝑞) 1, 3
5. ⟂ 2, 4

Consider lines 1 and 3….

We have the formulas (1) 𝑝 and (3) ((¬𝑝) ∨ (¬𝑞)).
Apply unit resolution, yielding the formula (¬𝑞).

We have the formulas (2) 𝑞 and (4) (¬𝑞).
Apply the contradiction rule, yielding ⟂.

Done!

Resolution 15/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example of Using Resolution
To prove: {𝑝, 𝑞, ((¬𝑝) ∨ (¬𝑞))} ⊢Res⟂.

1. 𝑝 premise
2. 𝑞 premise
3. ((¬𝑝) ∨ (¬𝑞)) premise
4. (¬𝑞) 1, 3

5. ⟂ 2, 4

Consider lines 1 and 3….

We have the formulas (1) 𝑝 and (3) ((¬𝑝) ∨ (¬𝑞)).
Apply unit resolution, yielding the formula (¬𝑞).
We have the formulas (2) 𝑞 and (4) (¬𝑞).
Apply the contradiction rule, yielding ⟂.

Done!

Resolution 15/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example of Using Resolution
To prove: {𝑝, 𝑞, ((¬𝑝) ∨ (¬𝑞))} ⊢Res⟂.

1. 𝑝 premise
2. 𝑞 premise
3. ((¬𝑝) ∨ (¬𝑞)) premise
4. (¬𝑞) 1, 3
5. ⟂ 2, 4

Consider lines 1 and 3….

We have the formulas (1) 𝑝 and (3) ((¬𝑝) ∨ (¬𝑞)).
Apply unit resolution, yielding the formula (¬𝑞).
We have the formulas (2) 𝑞 and (4) (¬𝑞).
Apply the contradiction rule, yielding ⟂.

Done!
Resolution 15/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Resolution Using Set Notation
In a Resolution proof, we consider only CNF formulas.

Each step of the proof produces one clause from two previous clauses.

Implicitly, all clauses together can be considered a single CNF formula
(join the clauses by ∧s).

Often, one writes clauses as sets. That is, the formula

((𝑝 ∨ 𝑞) ∧ (((¬𝑝) ∨ 𝑟) ∧ ((¬𝑞) ∨ ((¬𝑟) ∨ 𝑝))))

has the set of clauses

{(𝑝 ∨ 𝑞), ((¬𝑝) ∨ 𝑟), ((¬𝑞) ∨ ((¬𝑟) ∨ 𝑝))}
which become the three sets of literals

{𝑝, 𝑞}, {(¬𝑝), 𝑟}, and {(¬𝑞), (¬𝑟), 𝑝} .

Set notation works due to associativity, commutativity and idempotency.
Resolution 16/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Set-Notation Example

Expressed using the set notation, the previous example becomes

1. {𝑝} premise
2. {𝑞} premise
3. {(¬𝑝), (¬𝑞)} premise
4. {(¬𝑞)} 1, 3
5. ⟂ 2, 4

(Note that {} and ⟂ are the same thing.)

Resolution 17/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preparing for a Resolution Proof

To use Resolution successfully, we must account for two features.

• Resolution only yields contradictions.
→ Rather than proving Σ ⊢Res 𝜑, prove Σ ∪ {¬𝜑} ⊢Res⟂ instead.

• The resolution rule only applies to disjunctions (∨).
→ Before applying resolution, first

• convert each formula to CNF, and
• separate all formulas at the ∧s.

Resolution 18/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Resolution Example II
To prove: {𝑝, 𝑞} ⊢Res (𝑝 ∧ 𝑞).
Preliminary step 1: move the conclusion to the premises, negating it. This
gives premises

{𝑝, 𝑞, ¬(𝑝 ∧ 𝑞)}

Preliminary step 2: Convert the premises to CNF.

{𝑝, 𝑞, ((¬𝑝) ∨ (¬𝑞))}

Step 3: Write down the list of premises

1. 𝑝 premise
2. 𝑞 premise
3. ((¬𝑝) ∨ (¬𝑞)) premise (from negated goal)

and then do the actual resolution, as above.

Resolution 19/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Resolution Example II
To prove: {𝑝, 𝑞} ⊢Res (𝑝 ∧ 𝑞).
Preliminary step 1: move the conclusion to the premises, negating it. This
gives premises

{𝑝, 𝑞, ¬(𝑝 ∧ 𝑞)}

Preliminary step 2: Convert the premises to CNF.

{𝑝, 𝑞, ((¬𝑝) ∨ (¬𝑞))}

Step 3: Write down the list of premises

1. 𝑝 premise
2. 𝑞 premise
3. ((¬𝑝) ∨ (¬𝑞)) premise (from negated goal)

and then do the actual resolution, as above.

Resolution 19/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Resolution Example II
To prove: {𝑝, 𝑞} ⊢Res (𝑝 ∧ 𝑞).
Preliminary step 1: move the conclusion to the premises, negating it. This
gives premises

{𝑝, 𝑞, ¬(𝑝 ∧ 𝑞)}

Preliminary step 2: Convert the premises to CNF.

{𝑝, 𝑞, ((¬𝑝) ∨ (¬𝑞))}

Step 3: Write down the list of premises

1. 𝑝 premise
2. 𝑞 premise
3. ((¬𝑝) ∨ (¬𝑞)) premise (from negated goal)

and then do the actual resolution, as above.
Resolution 19/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Resolution Proof Procedure

To prove 𝜑 from Σ, via a Resolution refutation:

1. Convert each formula in Σ to CNF.
2. Convert (¬𝜑) to CNF.
3. Split the CNF formulas at the ∧s, yielding a set of clauses.
4. From the resulting set of clauses, keep applying the resolution

inference rule until either:
• The empty clause ⟂ results.

In this case, 𝜑 is proven from Σ.
• The rule can no longer be applied to give a new formula.

In this case, 𝜑 cannot be proven from Σ.

Resolution 20/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example: Resolution

To show: {(𝑝 → 𝑞), (𝑞 → 𝑟)} ⊢Res (𝑝 → 𝑟).

Convert each premise formula to CNF.

We get ((¬𝑝) ∨ 𝑞) and ((¬𝑞) ∨ 𝑟).

Convert the negation of the goal formula to CNF:

Replacing the → yields ¬((¬𝑝) ∨ 𝑟); then
De Morgan yields (𝑝 ∧ (¬𝑟)).

Splitting the ∧ yields four clauses: ((¬𝑝) ∨ 𝑞), ((¬𝑞) ∨ 𝑟), 𝑝 and (¬𝑟).

Resolution 21/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example: Resolution

To show: {(𝑝 → 𝑞), (𝑞 → 𝑟)} ⊢Res (𝑝 → 𝑟).

Convert each premise formula to CNF.

We get ((¬𝑝) ∨ 𝑞) and ((¬𝑞) ∨ 𝑟).

Convert the negation of the goal formula to CNF:

Replacing the → yields ¬((¬𝑝) ∨ 𝑟); then
De Morgan yields (𝑝 ∧ (¬𝑟)).

Splitting the ∧ yields four clauses: ((¬𝑝) ∨ 𝑞), ((¬𝑞) ∨ 𝑟), 𝑝 and (¬𝑟).

Resolution 21/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example, cont’d

Now we can make inferences, starting from our premises.

1. ((¬𝑝) ∨ 𝑞) premise
2. ((¬𝑞) ∨ 𝑟) premise
3. 𝑝 premise (from negated conclusion)
4. (¬𝑟) premise (from negated conclusion)

5. 𝑞 1, 3 (variable 𝑝)
6. 𝑟 2, 5 (variable 𝑞)
7. ⟂ 4, 6 (variable 𝑟)

Refutation complete!

Resolution 22/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example, cont’d

Now we can make inferences, starting from our premises.

1. ((¬𝑝) ∨ 𝑞) premise
2. ((¬𝑞) ∨ 𝑟) premise
3. 𝑝 premise (from negated conclusion)
4. (¬𝑟) premise (from negated conclusion)
5. 𝑞 1, 3 (variable 𝑝)

6. 𝑟 2, 5 (variable 𝑞)
7. ⟂ 4, 6 (variable 𝑟)

Refutation complete!

Resolution 22/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example, cont’d

Now we can make inferences, starting from our premises.

1. ((¬𝑝) ∨ 𝑞) premise
2. ((¬𝑞) ∨ 𝑟) premise
3. 𝑝 premise (from negated conclusion)
4. (¬𝑟) premise (from negated conclusion)
5. 𝑞 1, 3 (variable 𝑝)
6. 𝑟 2, 5 (variable 𝑞)

7. ⟂ 4, 6 (variable 𝑟)

Refutation complete!

Resolution 22/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example, cont’d

Now we can make inferences, starting from our premises.

1. ((¬𝑝) ∨ 𝑞) premise
2. ((¬𝑞) ∨ 𝑟) premise
3. 𝑝 premise (from negated conclusion)
4. (¬𝑟) premise (from negated conclusion)
5. 𝑞 1, 3 (variable 𝑝)
6. 𝑟 2, 5 (variable 𝑞)
7. ⟂ 4, 6 (variable 𝑟)

Refutation complete!

Resolution 22/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Questions About Proofs

Given a sequence of formulas, is it a proof?

Determined by examining the sequence, formula by formula.
If the sequence always follows the rules, it is a proof; if it ever
does not, then it is not a proof.

Why might we want a proof?

For some (carefully constructed) proof systems, the existence of
a proof implies that the conclusion is a logical consequence of
the premises.
Such a system is called sound. If 𝑆 is a sound proof system,

Σ ⊢S 𝜑 implies Σ ⊨ 𝜑 .

Soundness and Completeness of Resolution 23/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Resolution Is Sound

For resolution to be meaningful, we need the following.

Theorem. Suppose that {𝛼1, … , 𝛼𝑛} ⊢Res⟂; that is, there is a
resolution refutation with premises 𝛼1, … , 𝛼𝑛 and conclusion ⟂.
Then the set {𝛼1, … , 𝛼𝑛} is unsatisfiable (contradictory).

That is, if Σ ∪ {(¬𝜑)} ⊢Res⟂, then Σ ∪ {(¬𝜑)} is a contradiction.
Therefore, Σ ⊨ 𝜑.

In other words, the Resolution proof system is sound.
(If we prove something, it is true.)

We prove the theorem by induction on the length of the refutation.

Soundness and Completeness of Resolution 24/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Soundness: The central argument

Claim: Suppose that a set Γ = {𝛽1, … , 𝛽𝑘} is satisfiable. Let 𝛽𝑘+1 be a
formula obtained from Γ by one use of the resolution inference rule. Then
the set Γ ∪ {𝛽𝑘+1} is satisfiable.

Proof: Let valuation 𝑣 satisfy Γ; that is, 𝛽𝑣
𝑖 = T for each 𝑖.

Let 𝛽𝑘+1 be (𝛾1 ∨ 𝛾2), obtained by resolving 𝛽𝑖 = (𝑝 ∨ 𝛾1) and
𝛽𝑗 = ((¬𝑝) ∨ 𝛾2).

Case I: 𝑣(𝑝) = F. Since 𝛽𝑣
𝑖 = T, we must have 𝛾𝑣

1 = T. Thus 𝛽𝑣
𝑘+1 = T.

Case II: 𝑣(𝑝) = T. Since 𝛽𝑣
𝑗 = T, we must have 𝛾𝑣

2 = T. Thus 𝛽𝑣
𝑘+1 = T.

In either of the two possible cases, we have 𝛽𝑣
𝑘+1 = T, as claimed.

Soundness and Completeness of Resolution 25/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Claim Implies the Theorem

Using induction on 𝑛, the previous claim implies

Claim II: Suppose that the set Γ = {𝛽1, … , 𝛽𝑘} is satisfiable.
Let 𝛼 be a formula obtained from Γ by 𝑛 uses of the resolution
inference rule. Then the set Γ ∪ {𝛼} is satisfiable.

(The previous claim is the inductive step of this one.)

Therefore, if a set of premises leads to ⟂ after any number 𝑛 of resolution
steps, the set must be unsatisfiable—since any set containing ⟂ is
unsatisfiable.

Thus Resolution is a sound refutation system, as required.

Soundness and Completeness of Resolution 26/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Can Resolution Fail?

In some cases, there may be no way to obtain ⟂, using any number of
resolution steps. What then?

Definition. A proof system 𝑆 is complete if every entailment has a proof;
that is, if

Σ ⊨ 𝛼 implies Σ ⊢S 𝛼 .

Theorem. Resolution is a complete refutation system for CNF formulas.
That is, if there is no proof of ⟂ from a finite set Σ of premises in CNF,
then Σ is satisfiable.

Soundness and Completeness of Resolution 27/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Resolution Is Complete (Outline)

Claim. Suppose that a resolution proof “reaches a dead end”—that is, no
new clause can be obtained, and yet ⟂ has not been derived. Then the
entire set of formulas (including the premises!) is satisfiable.

Proof (outline): We use induction again. However, it is not an induction
on the length of the proof, nor on the number of formulas. Instead, we use
induction on the number of variables present in the formulas.

Basis: there are no variables at all—that is, the set of clauses is the empty
set. The empty set of clauses is satisfiable, by definition.

Soundness and Completeness of Resolution 28/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Completeness Proof, part II

Inductive hypothesis: The claim holds for sets having at most 𝑘 variables.

Consider a set of clauses using 𝑘 + 1 variables, from which no additional
clause can be derived via the resolution rule. Suppose that it does not
contain ⟂. Select any one variable, say 𝑝, and separate the clauses into
three sets:

𝑆𝑝: the clauses that contain the literal 𝑝.
𝑆(¬𝑝): the clauses that contain the literal (¬𝑝).

𝑅: the remaining clauses, which do not contain 𝑝 at all.

The “remainder” set 𝑅 has at most 𝑘 variables.
Thus the hypothesis applies: the set 𝑅 has a satisfying valuation 𝑣.

Soundness and Completeness of Resolution 29/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Completeness Proof, part III
We have a valuation 𝑣, on the variables other than 𝑝, that satisfies set 𝑅.

Case I: Every clause in 𝑆𝑝, of the form (𝑝 ∨ 𝛼), has 𝛼𝑣 = T.
In this case, the set 𝑆𝑝 is already satisfied. Define 𝑣(𝑝) = F,
which additionally makes every clause in 𝑆(¬𝑝) true.

Case II: 𝑆𝑝 has some clause (𝑝 ∨ 𝛼) with 𝛼𝑣 = F.
In this case, set 𝑣(𝑝) = T; this satisfies every formula in 𝑆𝑝.
What about a clause ((¬𝑝) ∨ 𝛽) in 𝑆(¬𝑝)?
Consider the formula (𝛼 ∨ 𝛽), obtained by resolution from
(𝑝 ∨ 𝛼) and ((¬𝑝) ∨ 𝛽). It must lie in 𝑅; thus 𝛽𝑣 = T. Thus
also ((¬𝑝) ∨ 𝛽)𝑣 = T, as required.

Thus the full set of clauses 𝑆𝑝 ∪ 𝑆(¬𝑝) ∪ 𝑅 is satisfiable.

By induction, every set that cannot produce ⟂ is satisfiable.
Soundness and Completeness of Resolution 30/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Resolution Provides an Algorithm

The resolution method yields an algorithm to determine whether a given
formula, or set of formulas, is satisfiable or contradictory.

• Convert to CNF. (A well-specified series of steps.)
• Form resolvents, until either ⟂ is derived, or no more derivations are

possible. (Why must this eventually stop?)
• If ⟂ is derived, the original formula/set is contradictory. Otherwise,

the preceding proof describes how to find a satisfying valuation.

Soundness and Completeness of Resolution 31/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Algorithm Can Be Very Slow

The algorithm can be “souped up” in many ways.

• Choosing a good order of doing resolution steps. (It matters!)
• Sophisticated data structures, to handle large numbers of clauses.
• Additional techniques: setting variables, “learning”, etc.

However, it still has limitations.

Theorem (Haken, 1985): There is a number 𝑐 > 1 such that
For every 𝑛, there is an unsatisfiable formula on 𝑛 variables (and
about 𝑛1.5 total literals) whose smallest resolution refutation
contains more than 𝑐𝑛 steps.

Resolution is an exponential-time algorithm!
(And you thought quadratic was bad….)

Soundness and Completeness of Resolution 32/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Resolution in Practice: Satisfiability (SAT) solvers

Determining the satisfiability of a set of propositional formulas is a
fundamental problem in computer science.

Examples:

• software and hardware verification
• automatic generation of test patterns
• planning
• scheduling

…many problems of practical importance can be formulated as determining
the satisfiability of a set of formulas.

Soundness and Completeness of Resolution 33/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Resolution in practice: “SAT Solvers”

Modern SAT solvers can often solve hard real-world instances with over a
million propositional variables and several million clauses.

Annual SAT competitions:

http://www.satcompetition.org/

Many are open source systems.

Currently, the best SAT solvers use “backtracking search” to find
resolvable clauses.

Soundness and Completeness of Resolution 34/35



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Satisfiability in Theory

If a formula is satisfiable, then there is a short demonstration of that:
simply give the valuation. Anyone can easily check that it is correct.

The class of problems with this property is known as NP .

The class of problems for which one can find a solution efficiently is
known as 𝑃 .

(For a precise definition, we need to define “efficiently.” We won’t, here.)

A Fundamental Question: Is 𝑃 = NP?

A partial answer: If SAT is in 𝑃 (by any algorithm), then 𝑃 = NP .

Soundness and Completeness of Resolution 35/35


	Notions of Proof
	Resolution
	Soundness and Completeness of Resolution

