Warm Up Problem

What was the issue with storing the offset of variables with respect
to $307

Write any equivalent MIPS program corresponding to the
following code:

int wain(int a, int b){
int ¢ = a + b;
return c*a;

}

Rewrite the above fixing our offset problem.

CS 241 Lecture 17

Type Checking Continued and Code Generation
With thanks to Brad Lushman, Troy Vasiga and Kevin Lanctot

Code Generated

int wain(int a, int b){ int ¢ = 0; return a;}

sw $1, -4($30)

sw $2, -8($30)

lis $4

.word 4

sub $30, $30, $4

sub $30, $30, $4

sw $0, -4($30) ; For int c = 0
sub $30, $30, $4 ;For int c
lw $3, 8($30) ;8 from the symbol table
add $30, $30, $4

add $30, $30, $4

add $30, $30, $4

jr $31

New Variables

Variables also have to go on the stack but we don't know what the
offsets should be until we process all of the variables and
parameters! For example,

int wain(int a, int b){ int ¢ = 0; return a;}

‘ Symbol ‘ Type ‘ Offset (from $30) ‘

a int 8
b int 4
c int 0

As we process the code, we need to be able to compute the offset
as we see the values. Also, we need to handle intermediate values
of complicated arithmetic expressions by storing on the stack! We
cannot do this from $30.

In Search of a Fix

How then do we arrange it so that when we see the variable, we
know what the offset is?

In Search of a Fix

How then do we arrange it so that when we see the variable, we
know what the offset is?

Remember that the key issue here is that $30, the top of stack
frame changes.

In Search of a Fix

How then do we arrange it so that when we see the variable, we
know what the offset is?

Remember that the key issue here is that $30, the top of stack
frame changes. Reference the offset from the bottom of the stack
frame! This is the value we will store in $29 (Please note that often
times $30 represents this value in standard MIPS conventions).

If we calculate offsets from $29, then no matter how far we move
the top of the stack, the offsets from $29 will be unchanged!

Code Generated

int wain(int a, int b){ int ¢ = 0; return a;}

lis $4

.word 4

sub $29, $30, $4
sw $1, -4(3$30)
sub $30, $30, $4
sw $2, -4($30)
sub $30, $30, $4

sw $0, -4($30) ;For int ¢ = 0
sub $30, $30, $4
1w $3, 0($29) ;0ffset in symbol table

add $30, $30, $4
add $30, $30, $4
add $30, $30, $4
jr $31

New Variables with $29

int wain(int a, int b){ int ¢ = 0; return a;}

‘ Symbol ‘ Type ‘ Offset (from $29) ‘

a int 0
b int -4
c int -8

This is easier with $29.

Something Harder

What about a more complicated program:

int wain(int a, int b){
return a-b;

}

How do we handle this?

Something Harder

What about a more complicated program:

int wain(int a, int b){
return a-b;

}

How do we handle this?

Well, we already have the convention that $3 stores the output so
let's use this for scratch work in between.

This still isn't enough - we would need to load both a and b.

Something Harder

What about a more complicated program:

int wain(int a, int b){
return a-b;

}

How do we handle this?

Well, we already have the convention that $3 stores the output so
let's use this for scratch work in between.

This still isn't enough - we would need to load both a and b.

Use the convention that $5 also stores intermediate work!

lis $4

.word 4

sub $29, $30, $4
sw $1, -4($30)
sub $30, $30, $4
sw $2, -4($30)
sub $30, $30, $4
lw $3, 0($29)
add $5, $3, $0
1w $3, -4($29)
sub $3, $5, $3
add $30, $30, $4
add $30, $30, $4
jr $31

More Code

;0ffset in symbol table (a)

;Store a in $5

;0ffset in symbol table (b)

;0ptional to restore stack

Still Have Problems

Where does this approach break down?

Still Have Problems

Where does this approach break down?

Consider adding something like a+ (b — ¢). Would need to load a,
load b, load ¢ compute b — ¢, then compute the answer. This
would require a third register. (Remember, we want to process
code scanning left to right).

Where should we store these values instead?

Still Have Problems

Where does this approach break down?

Consider adding something like a+ (b — ¢). Would need to load a,
load b, load ¢ compute b — ¢, then compute the answer. This
would require a third register. (Remember, we want to process
code scanning left to right).

Where should we store these values instead? On the stack again!
This way we only will ever need two registers for scratch work!

Modify the previous code

int wain(int a,

lis $4

.word 4

sub $29, $30, $4
sw $1, -4($30)
sub $30, $30, $4
sw $2, -4($30)
sub $30, $30, $4
1w $3, 0($29)

sw $3, -4($30)
sub $30, $30, $4
1w $3, -4($29)
add $30, $30, $4
lw $5, -4($30)
sub $3, $5, $3
jr $31

;0ffset in

;Push a on
;0ffset in

;Pop from

int b){ return a-b;}

symbol table (a)

stack
symbol table (b)

stack

Simplicity

We will use some short hands for our code. Define code(a) by
1w $3, N($29)

where N is the offset in the symbol table. Further, define
push($3) by

sw $3, -4($30)
sub $30, $30, $4

and pop($5) by

add $30, $30, $4
lw $5, -4($30)

We are trying to find a function code(s) for every possible value
in our grammar.

Example

Try to compute the MIPS code for
int wain(int a, int b){
int ¢ = 3;
return a + (b - c);

}

using these commands.

lis $4

.word 4

sub $29, $30,
push ($1)

push ($2)

lis $5

.word 3

push ($5)

code (a)

push ($3)

code (b)

push ($3)

code (c)

pop ($5)

sub $3, $5, $3
pop ($5)

add $3, $5, $3
ir $31

$4

Solution

;Load a in $3

;$43 <- b
;$3 <- ¢
;$5 <- b
;$3 <- b-c
;a <-$5

;$3<- a + (b-c)

Notice

e With the previous slide, we can generalize this technique so
that we only need one extra register to store our
computations!

e In fact, we can generalize the above to our grammar. Recall
the rule

exprA exprB PLUS term

(where letters A and B have been added for illustrative
purposes below). Then, we have

code (exprA) = code(exprB) + push($3)
+ code(term) + pop($5)
+ add $3, $5, $3

Note that above for the add command, term is in register 3
and exprB is in register 5.

More on Converting Grammars

Singleton grammar productions are relatively straightforward to
translate:

e S —F procedure 4 becomes code(S) = code(procedure)
e expr — term becomes code(expr) = code(term)

Assignments are also not too bad for IDs (pointers are a bit
trickier). The production rule

statement — lvalue BECOMES expr SEMI when lvalue is an ID
becomes

code(statement) = code (expr) ; $3 <- expr
+ sw $3, **x($29)

where *x is the offset for the ID that is 1value.

More on Converting Grammars

What about for println? Recall the rule:

statement PRINTLN LPAREN expr RPAREN SEMI

More on Converting Grammars

What about for println? Recall the rule:
statement PRINTLN LPAREN expr RPAREN SEMI

You actually have already done this in A2P6 and A2P7al

Importing Code

A compiler needs to take lots of code from many different parts to
make it work.

Definition
A runtime environment (or RTE for short) is the execution
environment provided to an application or software by the

operating system to assist programs in their execution. Such things
include procedures, libraries, environment variables and so on.

For example, msvert.d1l is a module containing standard C
library functions such as printf, memcpy and so on (for
Windows). For Linux machines, this is stored in 1ibc. so.

Thus, it makes sense to provide print as part of the runtime.

