
CS 137 Part 8
Merge Sort, Quick Sort, Binary Search

November 20th, 2017

This Week

• We’re going to see two more complicated sorting algorithms
that will be our first introduction to O(n log n) sorting
algorithms.

• The first of which is Merge Sort.

• Basic Idea:

1. Divide array in half
2. Sort each half recursively
3. Merge the results

Example

https://upload.wikimedia.org/wikipedia/commons/e/e6/

Merge_sort_algorithm_diagram.svg

https://upload.wikimedia.org/wikipedia/commons/e/e6/Merge_sort_algorithm_diagram.svg
https://upload.wikimedia.org/wikipedia/commons/e/e6/Merge_sort_algorithm_diagram.svg

Merge Sort

void sort(int a[], int n) {

int *t = malloc(n*sizeof(a[0]));

assert(t);

merge_sort(a, t, n);

free(t);

}

int main (void){

int a[] = {-10,2,14,-7,11,38};

int n = sizeof(a)/ sizeof(a[0]);

sort(a,n);

for (int i = 0; i < n; i++) {

printf("%d, ", a[i]);

}

printf("\n");

return 0;

}

void merge_sort (int a[], int t[], int n) {

if (n <= 1) return;

int middle = n / 2;

int *lower = a;

int *upper = a + middle;

merge_sort(lower , t, middle);

merge_sort(upper , t, n - middle);

int i = 0; // lower index

int j = middle; // upper index

int k = 0; // temp index

while (i < middle && j < n) {

if (a[i] <= a[j]) t[k++] = a[i++];

else t[k++] = a[j++];

}

while (i < middle) t[k++] = a[i++];

while (j < n) t[k++] = a[j++];

for (i = 0; i < n; i++) a[i] = t[i];

}

Runtime of Merge Sort

Analysis

How much work is done by each instance?

• Two function calls of O(1)

• Copy the left and right into t[] is O(k) where k is the size of
the current instance

• Copy t[] into a[] which is also O(k).

• Therefore, each instance of a merge sort is O(k).

Continuing

So each instance is O(k) but how many instances are there at each
level?

• The number of bubbles per row is n/k . This follows since after
k = n/2` halves, we’ve created 2` bubbles and this is n/k .

• Thus, for each level, the total amount of work done is
O(n/k · k) = O(n).

Wrapping Up

• Finally, how many levels are there?

• To answer this, we are looking for a number m such that
n
2m = 1.

• Solving gives m = log2(n).

• Hence, the total time is O(n log n).

• This analysis applies for the best, worst and average cases!

Clicker

Choose the best answer below.

a) Merge sort will run faster than selection sort and insertion sort
for all large lists.

b) Merge sort will run faster than selection sort on all large lists.

c) Insertion sort will sometimes run faster than merge sort.

d) If a large list is sorted, all three of our sorts will run significantly
faster than if the list was unsorted.

e) Exactly two of the above statements are true.

Quick Sort

• Created by Tony Hoare in 1959 (or 1960)

• Basic Idea:

1. Pick a pivot element p in the array
2. Partition the array into

< p p ≥ p

3. Recursively sort the two partitions.

• Key benefit: No temporary array!

Tricky Point

• How do we pick the pivot and partition?

• We will discuss two such ways, the Lomuto Partition and
choosing a median of medians.

• The Lomuto Partition is usually easier to implement but
doesn’t preform as well in the worst case.

• The median of medians enhancement vastly improves the
worst case runtime

• Note that Hoare’s original partitioning scheme has similar
runtimes to Lomuto’s but is slightly harder to implement so
we won’t do so.

Lomuto Partition

• Swaps left to right.

• Pivot is first element (Could by last element with
modifications below if desired).

• Have two index variables:

1. m which represents the last index in the partition < p
2. i which represents the first index of the unpartitioned part.
3. In other words

So elements with indices between 1 and m inclusive are < p
and elements with indices

Lomuto Partition Continued

There are two cases:

• If x < p, then increment m and swap a[m] with a[i] then
increment i

• If x ≥ p, then just increment i .

• End case: When i = n, then we swap a[0] and a[m] so that
the partition is in the middle.

Let’s see this in action

Quick Sort Example

Quick Sort Main

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

// Code here is on next slides

int main(void){

int a[] = {-10,2,14,-7,11,38};

const int n = sizeof(a)/ sizeof(a[0]);

quick_sort(a,n);

for (int i = 0; i < n; i++) {

printf("%d, ", a[i]);

}

printf("\n");

return 0;

}

Swapping

void swap(int *a, int *b) {

int t = *a;

*a = *b;

*b = t;

}

Quick Sort

void quick_sort(int a[], int n) {

if (n <= 1) return;

int m = 0;

for (int i = 1; i < n; i++) {

if (a[i] < a[0]) {

m++;

swap(&a[m],&a[i]);

}

}

// put pivot between partitions

// i.e, swap a[0] and a[m]

swap(&a[0],&a[m]);

quick_sort(a, m);

quick_sort(a + m + 1, n - m - 1);

}

Clicker

Suppose that int a[] = {4,9,6,1,3,5,7};. What are the
contents of a just before the first recursive call to quick sort?

a) 1 3 4 6 9 5 7

b) 1 3 4 5 6 9 7

c) 3 1 4 6 9 5 7

d) 1 3 4 9 6 5 7

e) 3 1 4 9 6 5 7

Time Complexity Analysis

Best Case:

• Ideally, each partition is split into (roughly) equal halves.

• Going down the recursion tree, we notice that the analysis
here is almost identical to merge sort.

• There are log n levels and at each level we have O(n) work.

• Therefore, in the best case, the runtime is O(n log n).

Time Complexity Analysis

Average Case:

• Again this isn’t quite easy to quantify but we’ll suppose at
each level, the pivot is between the 25th and 75th percentiles.

• Then, in this case, the worst partition is 3:1.

• Now, there are log4/3 n levels (solve (3/4)mn = 1) and at
each level we still have O(n) work.

• Therefore, in the average case, the runtime is O(n log n).

Time Complexity Analysis

Worst Case:

• Worst case turns out to be very poor.

• What if the array were sorted (or reverse sorted)?

• Then the array is always partitioned into an array of size 1
and an array of size len-1.

• At each level we still have O(n) work.

• Unfortunately, there are now n levels for a total runtime of
O(n2).

• To be slightly more accurate, note that at each level, we have
a constant times

(n − 1) + (n − 2) + ... + 2 + 1 =
n(n − 1)

2
= O(n2)

amount of work.

Well if that’s the case...

• ... then why is quick sort one of more frequently used sorting
algorithms?

• One of the reasons why is that we have other schemes that
can help ensure that even in the worst case, we get O(n log n)
as our runtime.

• The key idea is picking our pivot intelligently.

• Turns out while this does theoretically reduces our worst case
runtime, often in practice this isn’t done because it increases
our overhead of choosing a pivot.

Idea

• What we’ll do is group the array into groups of five (a total of
n/5 such groups)

• Then we’ll take the median of each of those groups

• Now of these n/5 medians, repeat until you eventually find
the median of these medians. Call this m.

• Thus, with this m, we know that m is bigger than n/10
medians and each of those medians was at least the size of 3
other numbers (including itself) and so in total, we know that
m is bigger than 3n/10 of the numbers and similarly that it is
smaller than 3n/10 of the numbers.

• In the worst case then, we split the array into an array with
3n/10 elements and one with 7n/10 elements. The analysis is
similar to the average case from before.

• For a more formal proof take CS 341 (Algorithms)!

Picture for 25 elements

a b c d e
f g h i j
k l m n o
p q r s t
u v w x y

Clicker

What is the median of medians of this set (take groups of 5
horizontally)

9,33,16,4,12,

19,13,2,-5,6,

22,26,27,3,11

a) 12

b) 6

c) 22

d) 26

e) None of the above

Space Requirements for Quick Sort

• Partition uses only a constant number of variables (m, i and
possibly swapping)

• However recursive calls add to the stack.

• In the best case, we have 50/50 splits and in this case, the
stack only has size log n

• In the worst case, we have 1 and n − 1 splits (where n
changes with the length of the array we are considering) and
so we have a stack with size n.

Picture of the splits

Best Case

quicksort(a,1)
...

...
quicksort(a,n/4)

quicksort(a,n/2)

quicksort(a,n)

stack

Worst Case

quicksort(a,1)
...

...
quicksort(a,n-5)

quicksort(a,n-4)

quicksort(a,n-3)

quicksort(a,n-2)

quicksort(a,n-1)

quicksort(a,n)

stack

Optimizations

Tail Recursion

This is when the recursive call is the last action of the function

For example,

void quicksort(int a[], int n){

// Commands here ... no recursion

quicksort(a+m+1,n-m-1);

}

Tail Call Elimination

• When the recursive call returns, its return is simply passed on.

• Therefore, the activation record of the caller can be reused by
the callee and thus the stack doesn’t grow.

• This is guaranteed by some languages like Scheme

• It can be enabled in gcc by using the -O2 optimization flag.

• With this and sorting the smallest partition first, the stack
depth in the worst case space complexity of quick sort is
O(log n).

Built in Sorting

• In practice, people almost never create their own sorting
algorithms as there is usually one built into the language
already.

• For C, <stdlib.h> contains a library function called qsort

(Note: This isn’t necessarily quick sort!)

void qsort(void *base , size_t n, size_t ,size ,

int (* compare)(const void *a, const void *b));

Description of Parameters

• base is the beginning of the array

• n is the length of the array

• size is the size of a byte in the array

• *compare is a function pointer to a comparison criteria.

Compare Function

#include <stdlib.h>

int compare(const void *a, const void *b) {

int p = *(int *)a;

int q = *(int *)b;

if (p < q) return -1;

else if (p == q) return 0;

else return 1;

}

void sort(int a[], int n) {

qsort(a,n,sizeof(int),compare);

}

Alternatively

int compare(const void *a, const void *b) {

int p = *(int *)a;

int q = *(int *)b;

return (p < q) ? -1 : ((q > p) ? 1 : 0);

}

Binary Search

• Recall we started with linear searching which we said had a
O(n) runtime.

• If we already have a sorted array, linear searching seems like
we’re not effectively using our information.

• We’ll discuss binary searching which will allow us to search
through a sorted array.

Binary Searching

Basic Idea

• Check the middle element a[m]

• If we match with value, return this element

• If a[m] > value then search the lower half

• If a[m] < value then search the upper half

• Stop when lo > hi where lo is the lower index and hi is the
upper index (start and end in the next graphic)

Binary Search
Let’s find 6 in the following sorted array

https://puzzle.ics.hut.fi/ICS-A1120/2016/notes/

round-efficiency--binarysearch.html

https://puzzle.ics.hut.fi/ICS-A1120/2016/notes/round-efficiency--binarysearch.html
https://puzzle.ics.hut.fi/ICS-A1120/2016/notes/round-efficiency--binarysearch.html

Binary Search

#include <stdio.h>

int search(int a[], int n, int value) {

int lo = 0, hi = n-1;

while (hi >= lo) {

//Note int m = (hi +lo)/2 is equivalent

//but may overflow.

//Same with (hi+lo)>>1;

int m = lo+(hi -lo)/2;

if (a[m] == value) return m;

if (a[m] < value) lo = m+1;

if (a[m] > value) hi = m-1;

}

return -1;

}

Binary Searching

int main() {

int a[] = {-10,-7,0,2,11,14,38,42};

const int n = sizeof(a)/ sizeof(a[0]);

printf("%d\n", search(a,n ,10));

printf("%d\n", search(a,n ,11));

printf("%d\n", search(a,n, -100));

return 0;

}

Tracing

Let’s trace the code with value = 10, 11 and -100

Time Complexity of Binary Search

Worst Case (and Average Case) Analysis

• If we don’t find the element, then at each step we search only
in half as many elements as before and searching takes only
O(1) work.

• We can cut the array in half a total of O(log n) times.

• Thus, the total runtime is O(log n).

Best Case Analysis

• We find the element immediately and return taking only O(1)
time.

Note this is extremely fast - even with 1 billion integers, we only
need at worst 30 probes.

Clicker

Suppose an array int a[] is in increasing order. In which of the
following situations will a linear search determine more quickly
than a binary search whether or not value is in the array? Choose
the best answer.

a) It will never be faster

b) When looking for the first value in the array

c) When looking for the last value in the array.

d) When looking for the first and last value in the array.

e) When looking for the middle value in the array.

Sorting Summary

Selection sort

• Find the smallest and swap with the first

• Runtime for best, average and worst case: O(n2)

Insertion sort

• Find where element i goes and shift the rest to make room for
element i .

• Runtime for best case is O(n) and for average and worst case:
O(n2)

Sorting Summary

Merge sort

• Divide and conquer - Split in halves, recurse then merge.

• Runtime for best, average and worst case: O(n log n) but has
O(n) extra space.

Quick Sort

• Pick pivot, split elements into smaller and large than pivot,
repeat.

• Runtime for best, average and worst case: O(n log n)

Searching Summary

Linear Search

• Scan one by one until found

• Runtime for best case is O(1) and for, average and worst case:
O(n)

Binary Search

• Probe middle and repeat (requires sorted array)

• Runtime for best case is O(1) and for, average and worst case:
O(log n)

