
CS 137 Part 6
ASCII, Characters, Strings and Unicode

November 3rd, 2017

Characters

• Syntax char c;

• We’ve already seen this briefly earlier in the term.

• In C, this is an 8-bit integer.

• The integer can be a code representing printable and
unprintable characters.

• Can also store single letters via say char c = ’a’;

ASCII

• American Standard Code for Information Interchange.

• Uses 7 bits with the 8th bit being either used for a parity
check bit or extended ASCII.

• Ranges from 0000000-1111111.

• Image on next slide is courtesy of
http://www.hobbyprojects.com/ascii-table/

ascii-table.html

http://www.hobbyprojects.com/ascii-table/ascii-table.html
http://www.hobbyprojects.com/ascii-table/ascii-table.html

Highlights

• Characters 0-31 are control characters

• Characters 48-57 are the numbers 0 to 9

• Characters 65-90 are the letters A to Z

• Characters 97-122 are the letters a to z

• Note that ’A’ and ’a’ are 32 letters away

Programming With Characters

#include <stdio.h>

int main(void) {

char c = 'a'; //97

int i = 'a'; //97

c = 65;

c += 2; //c = 'C'
c += 32; //c = 'c'
c = '\n';
c = '\0';
c = '0';
c += 9;

return 0;

}

Clicker

Which of the following always gives the lower case letter of c when
c is a char that is a letter in the Latin Alphabet that is either
upper or lower case?

a) c = c ^ 32;

b) c = c | 32;

c) c = c & 32;

d) c = c << 32;

e) c = c >> 32;

Final Comments

• For the English language, ASCII turns out to be enough for
most applications.

• However, many languages have far more complicated letter
systems and a new way to represent these would be required.

• In order to account for other languages, we now have Unicode
which we will discuss in a few lectures.

Clicker

What is printed to the screen?

#include <stdio.h>

int main(void) {

char c = 'a';
c += 3;

c += ('z'-'x');
printf("%c\n",c);

return 0;

}

a) ’b’

b) ’c’

c) ’d’

d) ’e’

e) None of the above

Strings

• In C, strings are arrays of characters terminated by a null
character (’\0’)

#include <stdio.h>

int main(void) {

char s[] = "Hello";

printf("%s\n",s);

//The next is the same as the previous.

char t[] = {'H','e','l','l','o','\0'};
printf("%s\n",t);

// Slightly different

char *u = "Hello";

printf("%s\n",u);

return 0;

}

Notice that the last one is slightly different than the previous two...

Slight Change

This Doesn’t Seem Like Much But...

#include <stdio.h>

int main(void) {

char s[] = "Hello";

s[1] = 'a';
printf("%s\n",s);

// Slightly different

char *u = "Hello";

//The next line causes an error!

//u[1] = 'a'
printf("%s\n",u);

return 0;

}

String Literals

• In char *u = "Hello";, ”Hello” is called a string literal.

• String literals are not allowed to be changed and attempting
to change them causes undefined behaviour.

• Reminder: Notice also that sizeof(u) is different if u is an
array vs a pointer.

• Another note: char *hi = "Hello"" world!"; will
combine into one string literal.

Question

Write a function that counts the number of times a character c
occurs in a string s.

Solution

#include <stdio.h>

int count(char *s, char c) {

int count = 0;

for (int i = 0; s[i] != '\0'; i++) {

if (s[i] == c) count ++;

}

return count;

}

int main(void) {

char *hi = "Hello world!";

printf("%d\n",count(hi ,'l')); // 3

printf("%d\n",count(hi ,'z')); // 0

printf("%d\n",count(hi ,'L')); // 0

return 0;

}

Solution (Alternate)

#include <stdio.h>

int count(char *s, char c) {

int count = 0;

for (;*s;s++) {

if (*s == c) count ++;

}

return count;

}

int main(void) {

char *hi = "Hello world!";

printf("%d\n",count(hi ,'l')); // 3

printf("%d\n",count(hi ,'z')); // 0

printf("%d\n",count(hi ,'L')); // 0

return 0;

}

Clicker

Which of the following operations gives undefined behaviour when
coupled with printf("%s\n",s);?

a) char s[] = "test";

b) char s[] = "";

c) char s[] = {'t', 'e', 's', 't'};

d) char *s = "test";

e) All of the above will always work as expected.

Strings in C

• In C string manipulations are very tedious and cumbersome.

• However, there is a library that can help with some of the
basics.

• This being said, there are other languages that are far better
at handling string manipulations than C.

• Before discussing these, we need a brief digression into const
type qualifiers.

Const Type Qualifiers

• The keyword const indicates that something is not modifiable
ie. is read-only.

• Assignment to a const object results in an error.

• Useful to tell other programmers about the nature of a
variable

• Could tell engineers to store values in ROM.

Examples

• const int i = 10; is a constant i whose value is initialized
to be 10.

• The command i = 5; will cause an error because you are
trying to reassign a constant.

• Even though it is a constant - through hacks, you could still
change the value:

#include <stdio.h>

int main(void) {

const int i = 10;

printf("%d\n",i);

int *a = &i;

*a = 3;

printf("%d\n",i);

return 0;

}

Differences Between const and #define

Constants

• const can be used to create
read-only objects of any time
we want, including arrays,
structures, pointers etc.

• Constants are subject to the
same scope rules as variables

• Constants have memory
addresses.

Macros

• #define can only be used
for numerical, character or
string constants.

• Constants created with
#define aren’t subject to
the same scoping rules as
variables - they apply
everywhere.

• Macros don’t have
addresses.

Important Difference

• The lines
• const int *p
• int *const q

are very different. The line const int *p means that we
cannot modify the value that the pointer p points to.

• For example, the line p = &i is okay whereas the line *p = 5

will cause an error.

• Continuing on this thought, if we have another pointer int
*r, then r = p will give a warning where as r = (int *)p

will give no warning but is dubious and in fact *r = 5 will
execute somewhat bypassing the intended behaviour.

• The line int *const q means that we cannot modify the
actual pointer q.

• For example, the line q = p will cause an error.

Clicker

Which of the following gives an error? (Assume these are
contained in an appropriate main function).

a) const int *p; int i = 3; p = &i;

b) int i = 3; int *const p = &i; *p=3;

c) int i = 3; const int *p; int *q = &i; p = q;

d) const int *p; *p = 3;

e) All of the above are valid.

Returning to Strings

• As mentioned before, C has a library to handle strings,
<string.h> but it contains fairly basic commands when
compared to a language like Python.

• Usage:

#include <stdio.h>

int main(void) {

char str1 [10] = "abc", str2 [10]="abc";

if(str1 == str2) printf("Happy!");

else printf("Sad.");

return 0;

}

Comparing strings will always fail (unless they are pointers to
the same string!) We probably don’t want this behaviour.
Thankfully equality is one of the functions inside the library.

Commands

Some commands of note:

• size t strlen(const char *s);

• char *strcpy(char *s0, const char *s1)

• char *strncpy(char *s0, const char *s1,size t n)

• char *strcat(char *s0, const char *s1);

• char *strncat(char *s0, const char *s1, size t

n);

• int strcmp(const char *s0, const char *s1);

strlen

size t strlen(const char *s);

• Returns the string length of s.

• Does not include the null character.

• Here, the keyword const means that strlen should only read
the string and not mutate it.

strcpy

char *strcpy(char *s0, const char *s1)

• Copies the string s1 into s0 (up to first null character) and
returns s0

• s0 must have enough room to store the contents of s1 but
this check is not done inside this function.

• If there is not enough room, strcpy will overwrite bits that
follow s0 which is extremely undesirable.

• Why return a pointer? Makes it easier to nest the call if
needed.

char *strncpy(char *s0, const char *s1,size t n)

• Only copies the first n characters from s1 to s0.

• Null padded if strlen(s1) < n.

• No null character added to end.

strcat

char *strcat(char *s0, const char *s1);

• Concatenates s1 to s0 and returns s0

• Does not check if there is enough room in s0 like strcpy.

• Two strings should not overlap! (Undefined behaviour
otherwise).

char *strncat(char *s0, const char *s1, size t n);

• Only concatenates the first n characters fro s1 to s0.

• Adds null character after concatenation.

strcmp

int strcmp(const char *s0, const char *s1);

• Compares the two strings lexicographically (ie. comparing
ASCII values).

• Return value is
• < 0 if s0 < s1
• > 0 if s0 > s1
• = 0 if s0 == s1

Examples

#include <stdio.h>

#include <string.h>

int main(void){

char s[100] = "apples";

char t[] = " to monkeys";

char u[100];

strcpy(u,s);

strncat(s,t,4);

strcat(s,u);

printf("%s\n",s);

int comp = strcmp("abc","azenew");

// Remember if s0 < s1 <-> comp < 0

if (comp < 0) printf("value is %d\n",comp);

comp = strcmp("ZZZ","a");

if (comp < 0) printf("value is %d\n",comp);

}

Exercise

• Notice that strcat modifies the first string.

• Write a program that concatenates two strings into a new
string variable and returns a pointer to this object.

Concatenate

#include <stdlib.h>

#include <string.h>

char *concat(const char *s0 , const char *s1) {

//Extra 1 for the null character.

char *s = (char*) malloc(

(strlen(s0) + strlen(s1) + 1)* sizeof(char));

strcpy(s,s0);

strcat(s,s1);

return s;

}

int main(void) {

char *hi = concat("hello", "world");

printf("%s\n", hi);

free(hi);

return 0;

}

Clicker

What is printed to the screen?

#include <stdio.h>

#include <string.h>

int main(void){

char s[20] = "Led ";

char t[10];

strncpy(t,"Zeppole" ,4);

strncat(t,"eline" ,4);

strcat(s,t);

printf("%lu\n",strlen(s));

}

a) 4

b) 8

c) 12

d) There is an error
in the code

e) None of the
above

gets vs scanf

• Very briefly, when trying to read a string from the user using
scanf, recall that it stops reading characters at any whitespace
type character

• This might not be the desired effect - to change this, you
could use the gets function which stops reading input on a
newline character.

• Both are risky functions as they don’t check to see when the
array which is storing the strings are full.

• Often C programmers will just write their own input functions
to be safe.

Printing Strings

• On certain compilers, eg gcc -std=c11, the command

char *s = "abcj\n"; printf(s);

gives a warning that this is not a string literal and no format
arguments.

• Turns out this is a potential security issue if the string itself
contains formatting arguments (for example if it was user
created)

• You can avoid these errors if for example you make the above
string a constant or if you use printf("%s",s); type
commands.

Other String Functions

• void *memcopy(void * restrict s1, const void

*restrict s2, size t n)

• void *memmove(void *s1, const void * s2, size t

n)

• int memcmp(const void *s1, const void *s2, size t

n)

• void *memset(void *s, int c, size t n)

memcopy
void *memcopy(void * restrict s1, const void

*restrict s2, size t n)

• Copies n bytes from s2 to s1 which must not overlap.

• restrict indicates that only this pointer will access that
memory area. This allows for compiler optimizations.

• For example

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

int main(void) {

char s[10];

memcpy(s, "hello" ,5);

printf("%s\n",s);

return 0;

}

memmove
void *memmove(void *s1, const void * s2, size t n)

• Similar to memcopy but s1 and s2 can overlap.

• For example

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

int main (void) {

char dest[] = "oldvalue";

char src[] = "newvalue";

printf("Pre memmove ,

dest: %s, src: %s\n", dest , src);

memmove(dest , src , 9);

printf("Post memmove ,

dest: %s, src: %s\n", dest , src);

return (0);

}

memcmp

int memcmp(const void *s1, const void *s2, size t n)

• Similar to strcmp except it compares the bytes of memory.

• For example,

#include <stdio.h>

#include <string.h>

int main(void) {

char s[10] = "abc";

char t[10] = "abd";

int val = memcmp(s,t,2);

if (val == 0) printf("Amazing!");

return 0;

}

memset

void *memset(void *s, int c, size t n)

• Fills the first n bytes of area with byte c. (Note - parameter is
int but function will used an unsigned char conversion).

• For example

#include <stdio.h>

#include <string.h>

int main(void) {

int a[100];

memset(a,0,sizeof(a));

printf("%d\n",a[43]);

memset(a,1,sizeof(a));

printf("%d\n",a[41]);

//1 + 2^{8} + 2^{16} +2^{24} = 16843009

return 0;

}

Unicode
• As exciting as ASCII is, it is far from sufficient to handle all

characters over all languages/alphabets.
• Unicode spans more than 100,000 characters over languages

both real and fake, both living and dead!
• A unicode character spans 21 bits and has a range of 0 to

1, 114, 112 or 3 bytes per character. This last number comes
from the 17 planes which unicode is divided into multiplied by
the 216 code points (contiguous block).

• Plane 0 is the BMP (Basic Multilingual Plane) - see next slide.
• Unicode letters also share the same values as ASCII. This was

necessary for adoption by the Western World which had ASCII
first.

• Examples:

UTF+13079 UTF+0061 (6 · 16 + 1 = 97)
a

First Plane Basic Multilingual Plane

More on Unicode Planes

• Plane 0 (BMP) consists of characters from U+0000 to
U+FFFF

• Plane 1 consists of characters from U+10000 to U+1FFFF

• ... Plane 15 consists of characters from U+F0000 to
U+FFFFF

• Plane 16 consists of characters from U+100000 to U+10FFFF

Unicode Encoding

• The Unicode specification just defines a character code for
each letter.

• There are different ways however to actually encode unicode.

• Popular encodings include UTF-8, UTF-16, UTF-32, UCS-2.

• Different encodings have advantages and disadvantages

• We’ll talk about UTF-8, one of the best supported encodings.

Byte Usage in UTF-8

Code Point Range in Hex UTF-8 Byte Sequence in Binary

000000-00007F 0xxxxxxx
000080-0007FF 110xxxxx 10xxxxxx
000800-00FFFF 1110xxxx 10xxxxxx 10xxxxxx
010000-10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

• For example, let’s look at the letter ä which has unicode 0xE4
or 11100100 in binary.

• In UTF-8, this falls into range 2 above and so is encoded as
11000011 10100100.

• When you concatenate the bolded text gives you the binary
encoding of 0xE4.

More on Byte Usage in UTF-8

• The 1 byte characters (ie those in range 1) correspond to the
ASCII characters (0 to 0x7F = 01111 1111 = 127)

• The 2 byte characters are up to 11 bits long with a range 128
to 211 − 1 (ie 2047)

• The 3 byte characters are up to 16 bits long, with a range
2048 to 216 − 1 (ie 65535)

• The 4 byte characters are up to 21 bits long, with a range
65536 to 221 − 1 (ie: 2097151)

Notes

• In C, a standard library called <wchar.h> has code for dealing
with unicode.

• In fact, more popularly, ICU (the International Components
for Unicode) is more in use by companies such as Adobe,
Amazon, Appache, Apple, Google, IBM, Oracle, etc.

• For more details, visit http://site.icu-project.org/

• For us we will mainly be dealing with ASCII.

• However, in an ever international world, you will need to at
some point understand Unicode encoding.

http://site.icu-project.org/

Example using <wchar.h>

#include <locale.h>

#include <wchar.h>

int main(void) {

//L means wchar_t literal vs a normal char.

wchar_t wc = L'\x3b1 ';
setlocale(LC_ALL , "en_US.UTF -8");

//%lc or %C is wide character

wprintf(L"%lc\n",wc);

//Using wprintf once means you need

//to use it all the time (undefined

// behaviour otherwise)

wprintf(L"%zu\n",sizeof(wchar_t));

return 0;

}

Clicker

Recalling our table below, how many ones in UTF-8 would have
been used for our encoding of the Hieroglyph U+13079?

Code Point Range in Hex UTF-8 Byte Sequence in Binary

000000-00007F 0xxxxxxx
000080-0007FF 110xxxxx 10xxxxxx
000800-00FFFF 1110xxxx 10xxxxxx 10xxxxxx
010000-10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

a) 11

b) 12

c) 13

d) 14

e) 15

This Week

• We spoke a lot about characters and strings, including how
they are encoded and how to program them in C

• Next week we make a big shift to discuss algorithm efficiency.

• We will discuss Big-Oh Notation and it’s relatives and then
use the notation to discuss many sorting algorithms.

