CS 137 Part 5

Pointers, Arrays, Malloc, Variable Sized Arrays, Vectors

October 25th, 2017

Exam Wrapper

Silently answer the following questions on paper (for yourself)

e Do you think that the problems on the exam fairly reflected
the topics covered in this course?
What percentage of test preparation was done alone vs with
others?
How much time did you spend

e Reviewing class notes

e Reworking old homework problems

e Working on additional problems

e Reading a textbook/other sources?
Estimate how many points you lost on your exam for...

e Not understand a concept

o Careless mistakes

e Not being able to formulate an approach to a problem

o Other reasons (Explain)
Based on the above, how will you prepare differently for the
final exam? Be specific. Also what can | do to help? (Please
relay to class reps).

Pointers

e What if we want functions to change values inside memory
that are outside the scope of a function?

e We saw this already when we changed values in an array.

e We can do this with other values as well by using pointers and
references.

Example

#include <stdio.h> stack

int main(void) A
int i = 6;
int *p; i|610] X
p = &i; main | p|Xx| X - sizeof (int *)
xp = 10; q[x] | x- 2sizeof (int *)
//p mow points to 10 2a[2] 3 X - 2sizeof (int *)
printf ("%d4d \n", 1i); - sizeof (int)
int *q; a[1] 2 X - 2sizeof (int *)

-2sizeof (int)
X - 2sizeof (int *)

q = P;

xq = 17; a[0]
printf ("%d \n", i); -3sizeof (int)
int all = {1,2,3}; :
return O;

[

Clicker

Suppose we have int *p = 123 (assume this is type casted
correctly). Which of the following values is different from the
others?

a) *&p

b) &x*p
) *p
) P

o N

Example

Write a program that swaps two integers in memory

Concrete Example

#include <stdio.h>

void swap(int *p, int *q) {
int temp = *p;
i L
*q = temp;

b

void main () {
int 1 = 0; j = 2;
swap(&i, &j); //references
printf ("%d %d\n", i, j);

Just For Fun

Turns out in C, you can swap two integers in just one line!

~ -~

=y), (y "=x), (x "=17y);
Denote XOR using .

Trace this with xg and yg the starting values:

(x

Step 1: x becomes xp @ yp
Step 2: y becomes yp @ (xo D yo) = Xo-
Step 3: x becomes (xp @ yo) D X0 = Yo-

Example

Write a function that returns a pointer to the largest element in a
given array.

#include <stdio.h>
int *largest(int al]l, int n) {
int m = 0;

for (int i = 1; i < n; i++) {
if (alil>alm]) m = 1i;
}
return a + m; // or return &(alm]);

}
void main () {
int test[] = {0,1,2,3,4,3,2,1,0};
int *p = largest(test,
sizeof (test)/sizeof (test [0]));
printf ("%d\n", *p);
}

Pointer Arithmetic

In the previous code, we used a + m where a was a pointer
and m was an integer.

Here, we've once again overloaded the + operator.

This is an example of pointer arithmetic

Supported operations:

e Add/subtract an integer to/from a pointer
e Subtract one pointer from another (so long as they are the
same type)

We can also use comparison operators like <, >, <=, >=, ==, I=

Let's see some examples

Example
Reminder: Draw picture.

#include <stdio.h>

int main(void) A
int al8] = {2,3,4,5,6,7,8,9};
int *p, *q, 1i;

p = &Cal2]); // p points to al2]
qQq =7p + 3; // q points to al[5]
p += 4; // p points to al6]

qQ =9 - 2; // q points to al[3]
i=q-9p; //41=3-6-=-3
i=p-q; //4i=6-3=23

if (p<=q) printf("less\n");
else printf ("more\n"); //printed
return O;

Clicker

Given the code snippet int t[5] = {1,2,3,4,5};
int *p = t;, which of the following pieces of code refers to the
address of the number 47

a) *(p+3)
b) p[3]
c) &pl3]
d) *(t+4)
e) *(p+4)

Clicker

Given that a is an integer array starting at memory address 2000
and aptr is a pointer to a, and sizeof (int) is 4, in what
memory address does aptr+4 point to?

2004

Caveat

e Warning - Two dimensional arrays remember are just glorified
one dimensional arrays.

e So when doing pointer arithmetic with two dimensional arrays,

remember to just treat it as a row major array and you will be
fine.

e Let's revisit summing an array and finding the largest using
pointer arithmetic.

Summing Array

int sum (int all, int n) {
int total = O0;
for (int *p = a; p < a + n; p++)
total += *p;
return total;

3

Summing Array (Alternate)

int sum (int al[], int n) {
int total = 0;
for (int i = 0; i < n; 1 ++)
total += *(a + 1i);
return total;

Largest

Largest

int *largest(int all, int n) {
int *m = a;
for(int *p = a+l; p<a+n; p++){
if (xp > *m) m=p;
}

return m;

Testing For Previous

#include <stdio.h>

int main(void) {
int al8] = {9,4,5,999,2,4,3,0,5};
int size = sizeof(a)/sizeof(al[0]);
printf ("%d\n", sum(a,size));
printf ("%d\n", *largest(a,size));
return O0;

Challenge

Determine what the following code prints. Assume x is at memory
address 100 and that int has size 4.

#include <stdio.h>

void main(void) {
int x[5];
printf ("%p\n", x);
printf ("%p\n", x + 1);
printf ("%p\n", &x);
printf ("%p\n", &x + 1);

Challenge

Determine what the following code prints. Assume x is at memory
address 100 and that int has size 4.

#include <stdio.h>
void main(void) A{

int x[5];

printf ("%p\n", x); // 100

printf ("%p\n", x + 1); // 104

printf ("%p\n", &x); // 100 (z == &z)

printf ("%p\n", &x + 1);
// 120 (int (*z)[5]+1) mem addy of array
// then added 1 to entire length.

Clicker

What is the value of p[3] after the following code is run? (Assume
the code has the usual header and footer).

int p[5] = {0,1,2,3,4}; a
int *q=&pl[1]; b
ql1]l += 2;

ql0] = ql3];
pl[2] += q[2] + ql[0];
pl3] -= ql1]1/6;

o

D (@]
— — ~— — ~—
g W N

Final Pointer Arithmetic Comment

The * operator and ++ operator can be combined:

o *p++ is the same as *(p++) (Use *p first then increment
pointer).

e (xp)++ (Use *p first then increment *p).

e *x++p or *(++p) (Increment p first then use *p after
increment).

e ++xp or ++(*p) (Increment *p first then use *p after
increment).

Example

#include <stdio.h> #include <stdio.h>
int main(void) A{ int main(void) A{
int al[4] = {5,2,9,4}%}; int al[4] = {5,2,9,4%};
int sum=0; int sum=0;
for(int *p = a; int *p = &al[0];
p < a+4; p++){ while(p < &al[4]1){
sum += *p; sum += *p++;
} }
printf ("%d", sum); printf ("%d", sum);
return 0; return 0;

Advanced Pointer Topics

e Up to this point, all of our memory usage has been on the
stack.

e There are times however where we might want to allocate
large chunks of memory or where we might need some
dynamically allocated memory.

e This is where the heap and memory allocation concepts will
become important.

Slightly More Detailed Code Storage

stack

!

/]\
heap

constants
text

Stack vs Heap

From openclipart.com

Stack Heap

openclipart.com

Stack vs Heap

H
Stack ap

e Scratch space for a thread
of execution.

e Memory set aside for
dynamic allocation.

e Typically only one heap for

e Each thread gets a stack. . .
an entire application.

o Elements are ordered (new
elements are stacked on
older elements).

e Entries might be unordered
and chaotic.

e Usually slower since need a
lookup table for each
element (ie. more
bookkeeping).

e Faster since
allocating/deallocating
memory is very easy.

Commands

To use the following, we need #include <stdlib.h>.

void *malloc(size_t size);

e Allocates block of memory of size number of bytes but
doesn’t initialize.

e Returns a pointer to it.

e Returns NULL, the null pointer, if insufficient memory or
size==0.

void free(void *)

o Frees a memory block that was allocated by user (say using
malloc).

e Failure to free memory that you have allocated is called a
memory leak.

More on the NULL Pointer

Since pointers are memory addresses, we need to be able to
distinguish from a pointer to something and a pointer to
nothing.

The NULL pointer is how we do this. It can be called by

e int *p = NULL;

e int *p = 0;

e int *p = (int *) O;
e int *p = (void *) 0;

The (void =) typecast will automatically get converted to
the correct type.

The NULL pointer is in many libraries, including <locale.h>,
<stddef.h>, <stdio.h>, <stdlib.h>, <string.h>,
<time.h>, <wchar.h> and possibly others.

Sample

Create an array of numbers

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
int *numbers (int n);
int main(void) A{
int *q = numbers (100);
printf ("%d\n", q[50]1);
free(q); //Avoid memory leak
q = NULL; //Guards against double deletes
return O;

Code Continued

int *numbers (int n){
int *p = malloc(n * sizeof (int));
assert(p); //Verify that malloc succeeded.
for(int i=0; i<n; i++)
plil = i;
return p;

Clicker
Below are 3 statements. Which is true for the code below?
e The code will not compile
e The code has a memory leak
e The code is not allocating enough memory

a) Exactly zero

#include <assert.h> statements are

int main(void) A true
int *p = NULL; b) Exactly one
p = malloc (10); statement is true
assert (p); c) Exactly two
for(int i=0; i<10; i++) statements are
pli]l = 1i; true

return O; d) Exactly three

statements are
true

Other Allocators

Again, we need <stdlib.h> to use these.
void* calloc (size_t nmemb, size_t size)

e Clear allocate.
e Allocates nmemb elements of size bytes each initialized to 0
void* realloc (void *p, size t size)

e Resizes a previously allocated block
e May need to create a new block and copy over old block
contents.

Typically, malloc is used unless you have a good reason to do
otherwise.

Pointers to structs

Let’s revisit our time of day struct example
struct tod {int hour, min};
To create a pointer to the structure, we can use:
struct tod *t = malloc (sizeof(struct tod));

Now t points to the beginning of a struct where the integers
hour and min are located.

We can modify these values by using (*t) .hour = 18; or
t->hour = 18;

Note: Arrow operator can be overloaded (say in C++)
whereas the dot cannot. Brackets are necessary above
because dot has precedence. Arrow is left associative (like
addition, multiplication, etc.).

Flexible Array Members

In the time of day example, the sizes of all the elements were
fixed.

What happens if you say want a struct with an array whose
size is to be determined later?

Turns out there are ways to handle this but it must be done
very carefully.

This is valid only in C99 and beyond.

This technique is called the “struct hack”.

Struct Hack Setup

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
struct flex_array{
int length;
int all; //Note: declared at end
};

e |nside the struct, int a[] has size 0.
e sizeof (struct flex_array) returns 4.

e Note: In jstdlib.hj, there is a data type size_t that should be
used when using malloc.

Struct Hack Execution

int main(void) A
size_t array_size = 4;
struct flex_array *fa = malloc(
sizeof (struct flex_array)

+ array_size * sizeof (int));
assert(fa);
fa->length=array_size;
for (int i=0; i< fa->length; i++)

fa->al[i] = 1i;
printf ("%d\n", fa->al[3]);
free(fa);
fa=NULL;

return O;

Clicker

Suppose

struct one{int x};
struct two{struct one *v;};

struct one *a = malloc(sizeof (struct one));
struct two *b = malloc(sizeof (struct two));
(*b).v = malloc(sizeof (struct one));

have been executed. Which of the following lines is not
syntactically correct?

a) a=>x = 3;

b) (x(b->v)).x = 3;
c) b->v->x = 3;

d) (x(xb).v).x= 3;
)

e) b—>(*xv).x = 3;

Variable Size Array

Arrays have a fixed size. Is there a way to create an array that
expands as more terms are needed?

There is a library in C4++ that does this, the vector library
but not in C.

We'll actually create a simplified instance of this to
demonstrate how it works for a vector of integers.

Idea: Initialize contents to 0 and grow automatically by
powers of 2.

Vector.h

#ifndef VECTOR_H

#define VECTOR_H

struct vector;

struct vector *vectorCreate(void);

struct vector *vectorDelete(struct vector *v);

void vectorSet(struct vector *v, int index,
int value);

int vectorGet(struct vector *v, int index);

int vectorLength(struct vector *v);

#endif

Note: size is the total storage where as length is the actual used
storage.

Descriptions (should include in the header file!)

e struct vector *vectorCreate(); will create a new vector
and initialize everything to 0.

e struct vector *vectorDelete(struct vector *v));
deletes the vector *v. Returns NULL on success. (return
NULL to allow for v=vectorDelete(v);)

e void vectorSet(struct vector *v, int index, int
value) ; sets index index to be value. This code rescales
the vector as necessary.

e int vectorGet(struct vector *v, int index); returns
element at index index.

e int vectorLength(struct vector *v); returns the
length of the vector *v.

Vector.c

#include "vector.h"
#include <assert.h>
#include <stdlib.h>
struct vectord{

int *a;

int size, length;

};

Vector.c (Continued)

struct vector *vectorCreate(void) {

struct vector *v = malloc(
sizeof (struct vector));

assert (v);
v->size = 1;
v->a = malloc(l*xsizeof (int));
assert (v->a);
v->length = 0;
return v;

}
struct vector *vectorDelete(struct vector *v) {
if (v) {
free(v->a);
free(v);
}

return NULL;

Vector.c (Continued)

void vectorSet(struct vector *v,
int index, int value) {
assert (v && index >= 0);
// grow storage if mecessary
if (index >= v->size) {
do {
v->size *x= 2;
} while (index >= v->size);
v->a = realloc(v->a, v->size * sizeof (int));
}
//Zero Fill
while (index >= v->length) {
v->a[v->length] = O0;
v->length++;
}

v -> alindex] = value;

Vector.c (Continued)

int vectorGet (struct vector *v, int index) {
assert(v && index >= 0 && index < v—>1ength);
return v->alindex];

}

int vectorLength(struct vector *v) {
assert(v);
return v->length;

}

Test.c

#include <stdio.h>
#include "vector.h"

void main() {
struct vector *v = vectorCreate();
vectorSet (v, 10, 2);
printf ("%d\n", vectorLength(v));
printf ("%d\n", vectorGet(v, 10));
v = vectorDelete(v);

Summary Note

Notice how none of the implementation details were in our
header file; only the declarations.

This is a design principle known as information hiding.

We do this to hide implementation details from the user, yet
keep the user interaction/interface the same.

We can modify the internal code and not affect other people
who are using our code externally.

