
CS 137 Part 5
Pointers, Arrays, Malloc, Variable Sized Arrays, Vectors

October 25th, 2017

Exam Wrapper
Silently answer the following questions on paper (for yourself)

• Do you think that the problems on the exam fairly reflected
the topics covered in this course?

• What percentage of test preparation was done alone vs with
others?

• How much time did you spend
• Reviewing class notes
• Reworking old homework problems
• Working on additional problems
• Reading a textbook/other sources?

• Estimate how many points you lost on your exam for...
• Not understand a concept
• Careless mistakes
• Not being able to formulate an approach to a problem
• Other reasons (Explain)

• Based on the above, how will you prepare differently for the
final exam? Be specific. Also what can I do to help? (Please
relay to class reps).

Pointers

• What if we want functions to change values inside memory
that are outside the scope of a function?

• We saw this already when we changed values in an array.

• We can do this with other values as well by using pointers and
references.

Example

#include <stdio.h>

int main(void) {

int i = 6;

int *p;

p = &i;

*p = 10;

//p now points to 10

printf("%d \n", i);

int *q;

q = p;

*q = 17;

printf("%d \n", i);

int a[] = {1,2,3};

return 0;

}

stack

i �610 x
main p x x - sizeof(int *)

q x x - 2sizeof(int *)

a[2] 3 x - 2sizeof(int *)

- sizeof(int)
a[1] 2 x - 2sizeof(int *)

-2sizeof(int)
a[0] 1 x - 2sizeof(int *)

-3sizeof(int)
...

Clicker

Suppose we have int *p = 123 (assume this is type casted
correctly). Which of the following values is different from the
others?

a) *&p

b) &*p

c) *p

d) p

Example

Write a program that swaps two integers in memory

Concrete Example

#include <stdio.h>

void swap(int *p, int *q) {

int temp = *p;

*p = *q;

*q = temp;

}

void main () {

int i = 0; j = 2;

swap(&i, &j); // references

printf("%d %d\n", i, j);

}

Just For Fun

• Turns out in C, you can swap two integers in just one line!

(x ^= y), (y ^= x), (x ^= y);

• Denote XOR using ⊕.

• Trace this with x0 and y0 the starting values:

• Step 1: x becomes x0 ⊕ y0

• Step 2: y becomes y0 ⊕ (x0 ⊕ y0) = x0.

• Step 3: x becomes (x0 ⊕ y0)⊕ x0 = y0.

Example

Write a function that returns a pointer to the largest element in a
given array.

#include <stdio.h>

int *largest(int a[], int n) {

int m = 0;

for (int i = 1; i < n; i++) {

if (a[i]>a[m]) m = i;

}

return a + m; // or return &(a[m]);

}

void main () {

int test[] = {0,1,2,3,4,3,2,1,0};

int *p = largest(test ,

sizeof(test)/ sizeof(test [0]));

printf("%d\n", *p);

}

Pointer Arithmetic

• In the previous code, we used a + m where a was a pointer
and m was an integer.

• Here, we’ve once again overloaded the + operator.

• This is an example of pointer arithmetic

• Supported operations:
• Add/subtract an integer to/from a pointer
• Subtract one pointer from another (so long as they are the

same type)

• We can also use comparison operators like <, >, <=, >=, ==, !=

• Let’s see some examples

Example
Reminder: Draw picture.

#include <stdio.h>

int main(void) {

int a[8] = {2,3,4,5,6,7,8,9};

int *p, *q, i;

p = &(a[2]); // p points to a[2]

q = p + 3; // q points to a[5]

p += 4; // p points to a[6]

q = q - 2; // q points to a[3]

i = q - p; // i = 3 - 6 = -3

i = p - q; // i = 6 - 3 = 3

if (p<=q) printf("less\n");

else printf("more\n"); // printed

return 0;

}

Clicker

Given the code snippet int t[5] = {1,2,3,4,5};
int *p = t;, which of the following pieces of code refers to the
address of the number 4?

a) *(p+3)

b) p[3]

c) &p[3]

d) *(t+4)

e) *(p+4)

Clicker

Given that a is an integer array starting at memory address 2000
and aptr is a pointer to a, and sizeof(int) is 4, in what
memory address does aptr+4 point to?

a) 2004

b) 2005

c) 2016

d) 2032

e) None of the above

Caveat

• Warning - Two dimensional arrays remember are just glorified
one dimensional arrays.

• So when doing pointer arithmetic with two dimensional arrays,
remember to just treat it as a row major array and you will be
fine.

• Let’s revisit summing an array and finding the largest using
pointer arithmetic.

Summing Array

int sum (int a[], int n) {

int total = 0;

for (int *p = a; p < a + n; p++)

total += *p;

return total;

}

Summing Array (Alternate)

int sum (int a[], int n) {

int total = 0;

for (int i = 0; i < n; i ++)

total += *(a + i);

return total;

}

Largest

int *largest(int a[], int n) {

int *m = a;

for(int *p = a+1; p<a+n; p++){

if (*p > *m) m=p;

}

return m;

}

Largest

int *largest(int a[], int n) {

int *m = a;

for(int *p = a+1; p<a+n; p++){

if (*p > *m) m=p;

}

return m;

}

Testing For Previous

#include <stdio.h>

int main(void) {

int a[8] = {9,4,5,999,2,4,3,0,5};

int size = sizeof(a)/ sizeof(a[0]);

printf("%d\n", sum(a,size));

printf("%d\n", *largest(a,size));

return 0;

}

Challenge

Determine what the following code prints. Assume x is at memory
address 100 and that int has size 4.

#include <stdio.h>

void main(void) {

int x[5];

printf("%p\n", x);

printf("%p\n", x + 1);

printf("%p\n", &x);

printf("%p\n", &x + 1);

}

Challenge

Determine what the following code prints. Assume x is at memory
address 100 and that int has size 4.

#include <stdio.h>

void main(void) {

int x[5];

printf("%p\n", x); // 100

printf("%p\n", x + 1); // 104

printf("%p\n", &x); // 100 (x == &x)

printf("%p\n", &x + 1);

// 120 (int (*x)[5]+1) mem addy of array

// then added 1 to entire length.

}

Clicker

What is the value of p[3] after the following code is run? (Assume
the code has the usual header and footer).

int p[5] = {0,1,2,3,4};

int *q=&p[1];

q[1] += 2;

q[0] = q[3];

p[2] += q[2] + q[0];

p[3] -= q[1]/6;

a) 1

b) 2

c) 3

d) 4

e) 5

Final Pointer Arithmetic Comment

The * operator and ++ operator can be combined:

• *p++ is the same as *(p++) (Use *p first then increment
pointer).

• (*p)++ (Use *p first then increment *p).

• *++p or *(++p) (Increment p first then use *p after
increment).

• ++*p or ++(*p) (Increment *p first then use *p after
increment).

Example

#include <stdio.h>

int main(void) {

int a[4] = {5,2,9,4};

int sum=0;

for(int *p = a;

p < a+4; p++){

sum += *p;

}

printf("%d", sum);

return 0;

}

#include <stdio.h>

int main(void) {

int a[4] = {5,2,9,4};

int sum =0;

int *p = &a[0];

while(p < &a[4]){

sum += *p++;

}

printf("%d", sum);

return 0;

}

Advanced Pointer Topics

• Up to this point, all of our memory usage has been on the
stack.

• There are times however where we might want to allocate
large chunks of memory or where we might need some
dynamically allocated memory.

• This is where the heap and memory allocation concepts will
become important.

Slightly More Detailed Code Storage

stack
↓

↑
heap

constants

text

Stack vs Heap

From openclipart.com

Stack Heap

openclipart.com

Stack vs Heap

Stack

• Scratch space for a thread
of execution.

• Each thread gets a stack.

• Elements are ordered (new
elements are stacked on
older elements).

• Faster since
allocating/deallocating
memory is very easy.

Heap

• Memory set aside for
dynamic allocation.

• Typically only one heap for
an entire application.

• Entries might be unordered
and chaotic.

• Usually slower since need a
lookup table for each
element (ie. more
bookkeeping).

Commands

To use the following, we need #include <stdlib.h>.

void *malloc(size t size);

• Allocates block of memory of size number of bytes but
doesn’t initialize.

• Returns a pointer to it.

• Returns NULL, the null pointer, if insufficient memory or
size==0.

void free(void *)

• Frees a memory block that was allocated by user (say using
malloc).

• Failure to free memory that you have allocated is called a
memory leak.

More on the NULL Pointer

• Since pointers are memory addresses, we need to be able to
distinguish from a pointer to something and a pointer to
nothing.

• The NULL pointer is how we do this. It can be called by
• int *p = NULL;
• int *p = 0;
• int *p = (int *) 0;
• int *p = (void *) 0;

• The (void *) typecast will automatically get converted to
the correct type.

• The NULL pointer is in many libraries, including <locale.h>,
<stddef.h>, <stdio.h>, <stdlib.h>, <string.h>,
<time.h>, <wchar.h> and possibly others.

Sample

Create an array of numbers

#include <assert.h>

#include <stdio.h>

#include <stdlib.h>

int *numbers(int n);

int main(void) {

int *q = numbers (100);

printf("%d\n", q[50]);

free(q); // Avoid memory leak

q = NULL; // Guards against double deletes

return 0;

}

Code Continued

int *numbers(int n){

int *p = malloc(n * sizeof(int));

assert(p); // Verify that malloc succeeded.

for(int i=0; i<n; i++)

p[i] = i;

return p;

}

Clicker
Below are 3 statements. Which is true for the code below?

• The code will not compile

• The code has a memory leak

• The code is not allocating enough memory

#include <assert.h>

int main(void) {

int *p = NULL;

p = malloc (10);

assert(p);

for(int i=0; i<10; i++)

p[i] = i;

return 0;

}

a) Exactly zero
statements are
true

b) Exactly one
statement is true

c) Exactly two
statements are
true

d) Exactly three
statements are
true

Other Allocators

Again, we need <stdlib.h> to use these.
void* calloc (size t nmemb, size t size)

• Clear allocate.

• Allocates nmemb elements of size bytes each initialized to 0

void* realloc (void *p, size t size)

• Resizes a previously allocated block

• May need to create a new block and copy over old block
contents.

Typically, malloc is used unless you have a good reason to do
otherwise.

Pointers to structs

• Let’s revisit our time of day struct example

• struct tod {int hour, min};
• To create a pointer to the structure, we can use:

struct tod *t = malloc (sizeof(struct tod));

• Now t points to the beginning of a struct where the integers
hour and min are located.

• We can modify these values by using (*t).hour = 18; or
t->hour = 18;

• Note: Arrow operator can be overloaded (say in C++)
whereas the dot cannot. Brackets are necessary above
because dot has precedence. Arrow is left associative (like
addition, multiplication, etc.).

Flexible Array Members

• In the time of day example, the sizes of all the elements were
fixed.

• What happens if you say want a struct with an array whose
size is to be determined later?

• Turns out there are ways to handle this but it must be done
very carefully.

• This is valid only in C99 and beyond.

• This technique is called the “struct hack”.

Struct Hack Setup

#include <assert.h>

#include <stdio.h>

#include <stdlib.h>

struct flex_array{

int length;

int a[]; //Note: declared at end

};

• Inside the struct, int a[] has size 0.

• sizeof(struct flex array) returns 4.

• Note: In ¡stdlib.h¿, there is a data type size t that should be
used when using malloc.

Struct Hack Execution

int main(void) {

size_t array_size = 4;

struct flex_array *fa = malloc(

sizeof(struct flex_array)

+ array_size * sizeof(int));

assert(fa);

fa ->length=array_size;

for(int i=0; i< fa ->length; i++)

fa->a[i] = i;

printf("%d\n", fa ->a[3]);

free(fa);

fa=NULL;

return 0;

}

Clicker

Suppose

struct one{int x};

struct two{struct one *v;};

struct one *a = malloc(sizeof(struct one));

struct two *b = malloc(sizeof(struct two));

(*b).v = malloc(sizeof(struct one));

have been executed. Which of the following lines is not
syntactically correct?

a) a->x = 3;

b) (*(b->v)).x = 3;

c) b->v->x = 3;

d) (*(*b).v).x= 3;

e) b->(*v).x = 3;

Variable Size Array

• Arrays have a fixed size. Is there a way to create an array that
expands as more terms are needed?

• There is a library in C++ that does this, the vector library
but not in C.

• We’ll actually create a simplified instance of this to
demonstrate how it works for a vector of integers.

• Idea: Initialize contents to 0 and grow automatically by
powers of 2.

Vector.h

#ifndef VECTOR_H

#define VECTOR_H

struct vector;

struct vector *vectorCreate(void);

struct vector *vectorDelete(struct vector *v);

void vectorSet(struct vector *v, int index ,

int value);

int vectorGet(struct vector *v, int index);

int vectorLength(struct vector *v);

#endif

Note: size is the total storage where as length is the actual used
storage.

Descriptions (should include in the header file!)

• struct vector *vectorCreate(); will create a new vector
and initialize everything to 0.

• struct vector *vectorDelete(struct vector *v));

deletes the vector *v. Returns NULL on success. (return
NULL to allow for v=vectorDelete(v);)

• void vectorSet(struct vector *v, int index, int

value); sets index index to be value. This code rescales
the vector as necessary.

• int vectorGet(struct vector *v, int index); returns
element at index index.

• int vectorLength(struct vector *v); returns the
length of the vector *v.

Vector.c

#include "vector.h"

#include <assert.h>

#include <stdlib.h>

struct vector{

int *a;

int size , length;

};

Vector.c (Continued)

struct vector *vectorCreate(void) {

struct vector *v = malloc(

sizeof(struct vector));

assert(v);

v->size = 1;

v->a = malloc (1* sizeof(int));

assert(v->a);

v->length = 0;

return v;

}

struct vector *vectorDelete(struct vector *v) {

if (v) {

free(v->a);

free(v);

}

return NULL;

}

Vector.c (Continued)

void vectorSet(struct vector *v,

int index , int value) {

assert(v && index >= 0);

// grow storage if necessary

if (index >= v->size) {

do {

v->size *= 2;

} while (index >= v->size);

v->a = realloc(v->a, v->size * sizeof(int));

}

//Zero Fill

while (index >= v->length) {

v->a[v->length] = 0;

v->length ++;

}

v -> a[index] = value;

}

Vector.c (Continued)

int vectorGet(struct vector *v, int index) {

assert(v && index >= 0 && index < v->length);

return v->a[index];

}

int vectorLength(struct vector *v) {

assert(v);

return v->length;

}

Test.c

#include <stdio.h>

#include "vector.h"

void main() {

struct vector *v = vectorCreate ();

vectorSet(v, 10, 2);

printf("%d\n", vectorLength(v));

printf("%d\n", vectorGet(v, 10));

v = vectorDelete(v);

}

Summary Note

• Notice how none of the implementation details were in our
header file; only the declarations.

• This is a design principle known as information hiding.

• We do this to hide implementation details from the user, yet
keep the user interaction/interface the same.

• We can modify the internal code and not affect other people
who are using our code externally.

