CS 137 Part 4
Structures and Page Rank Algorithm

October 6th, 2017
Structures

• Structures are a compound data type.
• They give us a way to group variables.
• They consist of named member variables and are stored together in memory.
Example

For example, suppose we wanted to model a clock; we would want the hours and minutes. Let's call this tod for time of day.

```c
struct tod{
    int hours;
    int minutes;
};
```

We could then use our struct to create instances of the time. For example

- struct tod now = {16,50};
- struct tod later = {.hours = 18};
```c
#include <stdio.h>
struct tod{
    int hours;
    int minutes;
};
void todPrint(struct tod when) {
    printf("%0.2d:%0.2d\n",
            when.hours, when.minutes);
}
int main(void){
    struct tod now = {16, 50};
    struct tod later = {.hours = 18};
    later.minutes = 1;
    todPrint(later);
    return 0;
}
```
More on Structures

• We can even return structures as well in much the same way as you would expect.

• Example: `struct tod todAddTime(struct tod when, int hours, int minutes)`

• Try to code this example. What issues arise from doing the naive thing?
Example

```c
struct tod todAddTime(struct tod when, int hours, int minutes) {
    when.minutes += minutes;
    when.hours += hours + when.minutes / 60;
    when.minutes %= 60;
    when.hours %= 24;
    return when;
}

int main(void) {
    struct tod now = {16, 50};
    now = todAddTime(now, 1, 10);
    todPrint(now);
    return 0;
}
```
Reminder

- When passing structs to functions, these values are also passed by value.
- If you wanted to modify the original struct in memory, you would need to pass a pointer to it and then modify the contents of the pointers (more on this later).
To make life easier, we can use a typedef to help create structures

```c
#include <stdio.h>
typedef struct {
    int hours;
    int minutes;
} tod;
int main(void) {
    tod now = {14, 40}; // instead of struct tod
    return 0;
}
```
Build a Video Game Character struct. Call this `vgchar`. It should have an identification number, x and y positions starting at the origin, a power level and a defense level. Then, create some of the following functions:

- Move up, down, left, right
- Fight (between two characters, take the power levels subtract the opponents defense levels and the higher wins)
- Change ID which takes in a new integer ID number.
Page Rank

- How does Google’s Searching Algorithm Work?
- Main idea: It crawls the web, indexes words on each page and then uses the index to find matches and sort by how relevant it is.
- Algorithm is due to Sergey Brin and Larry Page in their paper “The Anatomy of a Large-Scale Hypertextual Web Search Engine”
- See http://infolab.stanford.edu/~backrub/google.html
- Major idea: Pages with lots of links to them should be classified as good (otherwise why do they have lots of links?)
Definition of the Rank of a Page Version 1

- For a page P, let Q_i be all of the pages that link to P for $1 \leq i \leq M$ with M a nonnegative integer.
- Then, the rank of a page P, denoted by $r(P)$ is

$$r(P) = \sum_{i=1}^{M} \frac{r(Q_i)}{|Q_i|}$$

where $|Q_i|$ is the number of outbound links on page Q_i.
- We will also normalize throughout so that their sum is one.
Simple Example

Suppose the internet consisted of three pages, A, B and C. Below, the arrows indicate which pages go to which other pages.

Using the formula on the previous page, we have

\[
\begin{align*}
 r(A) &= \frac{r(C)}{1} \\
 r(B) &= \frac{r(A)}{2} \\
 r(C) &= \frac{r(A)}{2} + \frac{r(B)}{1}
\end{align*}
\]
Simple Example

Suppose the internet consisted of three pages, A, B and C. Below, the arrows indicate which pages go to which other pages.

Using the formula on the previous page, we have

\[
\begin{align*}
 r(A) &= \frac{r(C)}{1} \\
 r(B) &= \frac{r(A)}{2} \\
 r(C) &= \frac{r(A)}{2} + \frac{r(B)}{1}
\end{align*}
\]

Solving gives $r(A) = 2r(B) = r(C)$. Normalizing so that $r(A) + r(B) + r(C) = 1$ gives $r(A) = 0.4$, $r(B) = 0.2$, $r(C) = 0.4$.
Given the same normalization as before, what is the value of $r(A)$ for the following?

- a) 2/9
- b) 1/3
- c) 4/9
- d) 5/9
- e) None of the above
Random Surfer Model

• What Google does is slightly more sophisticated than this.
• Suppose we had a web surfer that:
 • with probability δ goes to a link from the current page
 • with probability $1 - \delta$ goes to a random page
• Define the randomized page rank of a page $r_\delta(P)$ to be

$$r_\delta(P) = \frac{1 - \delta}{N} + \delta \sum_{i=1}^{M} \frac{r(Q_i)}{|Q_i|}$$

where N is the number of pages on the web.
Simple Example

With this model, let’s revisit our example with $\delta = 0.8$.

Using the formula on the previous page, we have

\[
\begin{align*}
 r(A) &= \frac{1}{15} + \frac{4r(C)}{5} \\
 r(B) &= \frac{1}{15} + \frac{2r(A)}{5} \\
 r(C) &= \frac{1}{15} + \frac{2r(A)}{5} + \frac{4r(B)}{5}
\end{align*}
\]
• With a little patience and the usual normalization, we can solve this system to see that

\[r(A) = \frac{61}{159} \approx 0.38365... \quad r(B) = \frac{35}{159} \approx 0.22013 \]

\[r(C) = \frac{21}{53} \approx 0.39623 \]

via say Gaussian Elimination or even Cramer’s Rule.

• However, if \(N \) is large... say \(N > 10^9 \) this is very infeasible.

• A trick that is often used is to use a fixed point iteration process called Jacobi’s Method!
Jacobi’s Method

• Begin with a solution \((r_0(A), r_0(B), r_0(C)) = (1/3, 1/3, 1/3)\).
• Compute

\[
\begin{align*}
 r_1(A) &= \frac{1}{15} + \frac{4r_0(C)}{5} \\
 r_1(B) &= \frac{1}{15} + \frac{2r_0(A)}{5} \\
 r_1(C) &= \frac{1}{15} + \frac{2r_0(A)}{5} + \frac{4r_0(B)}{5}
\end{align*}
\]

Repeat with \((r_1(A), r_1(B), r_1(C))\) until you’re happy!
For Our Example

This is a good approximation after 20 iterations. Note that for the web this would take thousands of iterations (but is still faster than solving exactly!)

<table>
<thead>
<tr>
<th>Iteration</th>
<th>r(A)</th>
<th>r(B)</th>
<th>r(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.33333</td>
<td>0.33333</td>
<td>0.33333</td>
</tr>
<tr>
<td>1</td>
<td>0.33333</td>
<td>0.20000</td>
<td>0.46667</td>
</tr>
<tr>
<td>2</td>
<td>0.44000</td>
<td>0.20000</td>
<td>0.36000</td>
</tr>
<tr>
<td>3</td>
<td>0.35467</td>
<td>0.24267</td>
<td>0.40267</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>19</td>
<td>0.38364</td>
<td>0.22013</td>
<td>0.39623</td>
</tr>
</tbody>
</table>
Representation in Memory

We will use structs to help encode this

```c
#include <stdio.h>

typedef struct {
    int src, dst;
} link;

int main(void) {
    link l[] = {{0,1}, {0,2}, {1,2}, {2,0}};
    return 0;
}
```
Main Ideas Of Next Slide

- Compute out links
- Make initial guess and store in r, normalized
- Perform the iterative process in s and update in r.
void pagerank (link l[], int n_link, double r[], int n_page, double delta, int n_iter){
 double s[n_page];
 int out[n_page];
 for (int i = 0; i < n_page; i++) out[i] = 0;
 for (int j = 0; j < n_link; j++)
 out[l[j].src]++;
 for (int i = 0; i < n_page; i++)
 r[i] = 1.0 / n_page;
 for (int k = 0; k < n_iter; k++) {
 for (int i = 0; i < n_page; i++)
 s[i] = (1.0 - delta) / n_page;
 for (int j = 0; j < n_link; j++)
 s[l[j].dst] +=
 (r[l[j].src]/out[l[j].src])*delta;
 for (int i = 0; i < n_page; i++)
 r[i] = s[i];
 }
}
include <stdio.h>

// Insert page rank code from before here

void main () {
 link l[] = {{0,1},{0,2},{1,0},{2,1}};
 double r[3];
 pagerank(l, sizeof(l)/sizeof(l[0]), r, sizeof(r)/sizeof(r[0]), 0.80, 20);
 for (int i = 0; i < 3; i++)
 printf("%g\n", r[i]);
}
Final Warning - Sinks

- What happens if a page has no outgoing links?
- We call such pages sinks. With a sink, the only way to escape it is to leave randomly.
- With sink nodes, probabilities become lost.
- Let’s see this explicitly with an example.
An Example

Consider the following with $\delta = 0.8$:

![Diagram](image)

- The page rank equations for this are

 $\begin{align*}
 r(A) &= \frac{1 - \delta}{2} = 0.1 \\
 r(B) &= \frac{1 - \delta}{2} + \delta \cdot \frac{r(A)}{1} = 0.18
 \end{align*}$

- Notice that these values do not add up to 1 and will never change after iterations.
Fixes

We can fix this problem in a few ways:

- Renormalize the final answer (this is bad because it over-estimates the page rank for nodes with many in-links)
- Connect each sink node to all other nodes (this is expensive)
- Connect each sink node without actually connecting them:

\[
r_{\delta}(P) = \frac{1 - \delta}{N} + \delta \sum_{i=1}^{M} \frac{r(Q_i)}{|Q_i|} + \delta \sum_{i=1}^{M_0} \frac{r(S_i)}{N}
\]

where the first sum contains no sinks and the second sum is over all sinks \(M_0\) is the total number of sinks.
Other Problems

- What about cyclic links?
- Hoarding - websites linking to each other to boost page rank.
- We won’t discuss these (or other issues) in this course.