
CS 137 Part 3
Floating Numbers, Math Library, Polynomials and Root Finding

September 29th, 2017

Floating Point Numbers

• How do we store decimal numbers in a computer?

• In scientific notation, we can represent numbers say by

−2.61202 · 1030

where −2.61202 is called the precision and 30 is called the
range.

• On a computer, we can do a similar thing to help store
decimal numbers.

Data Types

Type Size Precision Exponent

float 4 bytes 7 digits ±38
double 8 bytes 16 digits ±308

Note: You will almost always use the type double

Conversion Specifications

There are many different ways we can display these numbers using
the printf command. They in general have the format %± m.pX

where

• ± is the right or left justification of the number depending on
if the sign is positive or negative respectively

• m is the minimum field width, that is, how many spaces to
leave for numbers

• p is the precision (this heavily depends on X as to what it
means)

• X is a letter specifying the type (see next slide)

Conversion Specifications Continued

Some of the possible values for X

• %d refers to a decimal number. The precision here will refer to
the minimum number of digits to display. Default is 1.

• %e refers to a float in exponential form. The precision here
will refer to the number of digits to display after the decimal
point. Default is 6.

• %f refers to a float in “fixed decimal” format. The precision
here is the same as above.

• %g refers to a float in one of the two aforementioned forms
depending on the number’s size. The precision here is the
maximum number of significant digits (not the number of
decimal points!) to display. This is the most versatile option
useful if you don’t know the size of the number.

Example

#include <stdio.h>

int main(void) {

double x = -2.61202 e30;

printf("%zu\n",

sizeof(double));

printf("%f\n", x);

printf("%.2e\n",x);

printf("%g\n",x);

return 0;

}

Notice that on the %f line above we get some garbage at the end
(it is tough for a computer to store floating numbers!).

Exercise

Write the code that displays the following numbers (Ensure you
get the white space correct as well!)

1. 3.14150e+10

2. 0436 (two leading white spaces)

3. 436 (three white spaces at the end)

4. 2.00001

IEEE 754 Floating Point Standard

• IEEE - Institute of Electrical and Electronics Engineers

• Number is
(−1)sign · fraction · 2exponent

(This is a bit of a lie but good enough for us - the details of
this can get messy. See Wikipedia if you want more
information)

(Picture courtesy of Wikipedia)

A Fun Aside

• How do I convert 0.1 as a decimal number to a decimal
number in binary?

• Binary fractions are sometimes called 2-adic numbers.

• Idea: Write 0.1 as below where each ai is one of 0 or 1 for all
integers i .

0.1 =
a1
2

+
a2
4

+
a3
8

+ ...+
ak
2k

+ ...

• Our fraction will be

0.1 = (0.a1a2a3...)2

once we determine what each of the ai terms are.

Computing the Binary Representation

• From
0.1 =

a1
2

+
a2
4

+
a3
8

+ ...+
ak
2k

+ ...

• Multiplying by 2 yields

0.2 = a1 +
a2
2

+
a3
4

+ ...+
ak

2k−1
+ ...(Eqn1)

and so a1 = 0 since 0.2 < 1.

• Repeating gives

0.4 = a2 +
a3
2

+
a4
4

+ ...+
ak

2k−2
+ ...

and again a2 = 0.

Continuing

• From
0.4 = 0 +

a3
2

+
a4
4

+ ...+
ak

2k−2
+ ...

multiplying by 2 gives

0.8 = a3 +
a4
2

+
a5
4
...+

ak
2k−3

and again a3 = 0. Doubling again gives

1.6 = a4 +
a5
2

+
a6
4
...+

ak
2k−4

and so a4 = 1. Now, we subtract 1 from both sides and then
repeat to see that... (see next slide)

Continuing

1.6− 1 =
a5
2

+
a6
4
...+

ak
2k−4

0.6 =
a5
2

+
a6
4
...+

ak
2k−4

1.2 = a5 +
a6
2

+
a7
4
...+

ak
2k−4

giving a5 = 1 as well. At this point, subtracting 1 from both sides
gives

0.2 =
a6
2

+
a7
4
...+

ak
2k−4

which is the same as (Eqn 1) from two slides ago and hence,

(0.1)10 = (0.00011)2

Short Hand

0.1 · 2 = 0.2

0.2 · 2 = 0.4

0.4 · 2 = 0.8

0.8 · 2 = 1.6

0.6 · 2 = 1.2

0.2 · 2 = 0.4

and so (0.1)10 = (0.00011)2

Clicker

Which of the following is the binary fraction representation for
3/7?

a) (0.101)2

b) (0.001)2

c) (0.110)2

d) (0.010)2

e) (0.011)2

Errors

• Notice that these floating point numbers only store rational
numbers, that is, they cannot store real numbers (though
there are CAS packages like Sage which try to).

• This for us is okay since the rationals can approximate real
numbers as accurately as we need.

• When we discuss errors in approximation, we have two types
of measures we commonly use, namely absolute error and
relative error.

Errors (Continued)

• Let r be the real number we’re approximating and let p be the
exact value.

• Absolute Error |p − r |. Eg. |3.14− π| ≈ 0.0015927...

• Relative Error |p−r |r . Eg. |3.14−π|π = 0.000507.

• Note: Relative error can be large when r is small even if the
absolute error is small.

Errors (Continued)

Be wary of...

• Subtracting nearly equal numbers

• Dividing by very small numbers

• Multiplying by very large numbers

• Testing for equality

Clicker

What is the relative error when approximating
√

2 ≈ 1.4142135....
with 1.4?

a) > 1

b) = 1

c) < 1

An Example

#include <stdio.h>

int main(void) {

double a = 7.0/12.0;

double b = 1.0/3.0;

double c = 1.0/4.0;

if (b+c==a) printf("Everything is Awesome!");

else printf("Not cool ... %g",b+c-a);

}

Watch out...

• Comparing x == y is often risky.

• To be safe, instead of using if (x==y) you can use
if (x-y < 0.0001 && y-x < 0.0001) (or use absolute
values - see next lecture!)

• We sometimes call ε = 0.0001 the tolerance.

• Note: Sometimes it is okay to compare floats to constants
such as if (x==0.0) but you’re best to exercise caution.
Comparing to 0 is a surprisingly difficult problem.

One Note

• What happens when you type double a = 1/3? Do you get
0.33333?

• In C, most operators are overloaded. When it sees 1/3, C
reads this as integer division and so returns the value of 0.

• There are a few ways to fix this, one of them is to make at
least one of the value a double (or a float) by writing double

a = 1.0/3 (dividing a double by an integer or a double gives
a double).

• Another way is by typecasting, that is, explicitly telling C to
make a value something else.

• For example, double a = ((double)1)/3 will work as
expected.

Math Library (Highlights)

• #include <math.h>

• Lots of interesting functions including:
• double sin(double x) and similarly for cos, tan, asin,

acos, atan etc.
• double exp(double x) and similarly for log, log10,

log2, sqrt, fabs, ceil, floor etc. (note log is the
natural logarithm and fabs is the absolute value)

• int abs(int x) is the absolute value function
• double pow(double x, double y) gives xy , the power

function.
• Constants: M PI, M PI 2, M PI 4, M E, M LN2, M SQRT2
• Other values: INFINITY, NAN, MAXFLOAT

Polynomials

• A polynomial is an expression with at least one indeterminate
and coefficients lying in some set.

• For example, 3x3 + 4x2 + 9x + 2.

• In general: p(x) = a0 + a1x + ...+ anx
n

• We will primarily use ints for the coefficients. (maybe doubles
later)

• Question: Brainstorm some different ways we can represent
polynomials in memory. Discuss the pros and cons of each.

Our Representation

• We will represent it as an array of n + 1 coefficients where n is
the degree.

• For our example 3x3 + 4x2 + 9x + 2, we have
double p[] = {2.0, 9.0, 4.0, 3.0};

• How do we evaluate a polynomial? That is, how can we
implement:

double eval(double p[], int n, double x);

Traditional Method

• Compute x , x2, x3,.. xn for n − 1 multiplications.

• Multiply each by a1, a2, ..., an for another n multiplications.

• Add all the results a0 + a1x ++ anx
n for a final n

multiplications.

• This gives a total of 2n − 1 multiplications and n additions.

• A note: Multiplication is an expensive operation compared to
addition. Is there a way to reduce the number of
multiplication operations?

Horner’s Method

• Named after William George Horner (1786-1837) but known
long before him (dating back as early as pre turn of
millennium Chinese mathematicians).

• Idea:

2 + 9x + 4x2 + 3x3 = 2 + x(9 + x(4 + 3x))

• Start inside out. Total operations are n multiplications and n
additions.

Horner’s Method

#include <stdio.h>

#include <assert.h>

double horner(double p[], int n, double x){

assert(n > 0);

double y = p[n-1];

for(int i=n-2; i >= 0; i--)

y = y*x + p[i];

return y;

}

Horner’s Method (Continued)

int main(void) {

double p[] = {2,9,4,3};

int len = sizeof(p)/ sizeof(p[0]);

printf("2 = %g\n",horner(p,len ,0));

printf("18 = %g\n",horner(p,len ,1));

printf("60 = %g\n",horner(p,len ,2));

printf(" -6 = %g\n",horner(p,len ,-1));

return 0;

}

Clicker

For the polynomial 4x3 + 3x2 + 9x + 2, how many total operations
(both addition and multiplication) does our implementation of
Horner’s Method save over the traditional method?

a) 1

b) 2

c) 3

d) 4

e) None of the above

Root Finding

• Given a function f (x), how can we determine a root?

• Example: f (x) = x − cos(x). Courtesy: Desmos.

Idea

• Notice that f (−10) < 0 < f (10) so a root must be in the
interval of [−10, 10] (why!?)

• Look at the midpoint of the interval (namely 0) and evaluate
f (0).

• If f (0) > 0, look for a root in the interval [−10, 0]. Otherwise,
look for a root in [0, 10].

• Repeat until a root is found.

Bisection Method

• For which types of functions is this method guaranteed to
work?

• What cases should we worry about?

• Can we run forever?

• What is our stopping condition?

• Two stopping conditions possible
• Stop when |f (m)| < ε for some fixed ε > 0 where m is the

midpoint of the interval. (Not great since actual root might
still be far away)

• Stop when |mn−1 −mn| < ε (where mn is the nth midpoint).
(Much better)

• Should include a safety escape, namely some fixed number of
iterations.

Bisection Method

• For which types of functions is this method guaranteed to
work?

• What cases should we worry about?

• Can we run forever?

• What is our stopping condition?

• Two stopping conditions possible
• Stop when |f (m)| < ε for some fixed ε > 0 where m is the

midpoint of the interval. (Not great since actual root might
still be far away)

• Stop when |mn−1 −mn| < ε (where mn is the nth midpoint).
(Much better)

• Should include a safety escape, namely some fixed number of
iterations.

Algorithm Pseudocode

• Given some a and b with f (a) > 0 and f (b) < 0, set
m = (a + b)/2.

• If f (m) < 0, set b = m.

• Otherwise, set a = m

• Loop until either |f (m)| < ε, |mn−1 −mn| < ε, or the number
of iterations has been met.

Bisection.h

#ifndef BISECTION_H

#define BISECTION_H

/*

Pre: None

Post: Returns the value of x - cos(x)

*/

double f(double x);

/*

Pre: epsilon > 0 is a tolerance , iterations > 0,

f(x) has only one root in [a,b], f(a)f(b) < 0

Post: Returns an approximate root of f(x) using

bisection method. Stops when either number of

iterations is exceeded or |f(m)| < epsilon

*/

double bisect(double a, double b,

double epsilon , int iterations);

#endif

Bisection.h

#ifndef BISECTION_H

#define BISECTION_H

/*

Pre: None

Post: Returns the value of x - cos(x)

*/

double f(double x);

/*

Pre: epsilon > 0 is a tolerance , iterations > 0,

f(x) has only one root in [a,b], f(a)f(b) < 0

Post: Returns an approximate root of f(x) using

bisection method. Stops when either number of

iterations is exceeded or |f(m)| < epsilon

*/

double bisect(double a, double b,

double epsilon , int iterations);

#endif

Bisection.c

#include <assert.h>

#include <math.h>

#include "bisection.h"

double f(double x){ return x - cos(x);}

double bisect(double a, double b,

double epsilon , int iterations){

double m=a, fm;

assert(epsilon > 0.0 && f(a)*f(b) < 0);

for(int i=0; i<iterations; i++){

m = (a+b)/2.0;

fm = f(m); //Why is this a good idea?

if (fabs(b-a) < epsilon) return m;

// Alternatively:

//if (fabs(fm) < epsilon) return m;

if (fm*f(b) > 0) b=m;

else a=m;

}

return m;

}

Main.c

#include <stdio.h>

#include "bisection.h"

int main(void) {

printf("%g\n", bisect (-10 ,10 ,0.0001 ,50));

return 0;

}

Calculating the Number of Iterations

• An advantage to using the condition |mn −mn−1| < ε is that
this gives us good accuracy on the actual root.

• Another is that we can compute the number of iterations fairly
easily (and so don’t necessarily need our iterations guard).

• After each iteration, the length of the interval is cut in half,
so, we seek to find a value for n such that

ε >
b − a

2n

rearranging gives

2n >
b − a

ε

and so after logarithms

n log 2 > log(b − a)− log(ε)

with b = 10, a = −10, ε = 0.0001, we get n > 17.60964.

Clicker

Suppose a continuous function f (x) is an increasing function with
a single root at x = 3.5. Suppose further that you ran our
bisection algorithm on the interval [−8, 8] with iterations = 4

(assume the tolerance break condition is not executed and that
f (−8)f (8) < 0). What would your function return?

a) 0.0

b) 1.0

c) 2.0

d) 3.0

e) 4.0

Another Method - Fixed Point Iteration

• Given a function g(x), we seek to find a value x0 such that
g(x0) = x0.

• We call such a point a fixed point.

• These are of significant importance in dynamical systems.

• In our example, looking for a root of f (x) = x − cos(x) is the
same problem as finding a fixed point of g(x) = cos(x).

• Note: Not all functions have fixed points (but we can transfer
between root solving problems and fixed point problems).

• There is another more visual way to interpret this...

Cobwebbing

Also known as Cobwebbing. (Courtesy Desmos)

A Note

x0 = 0

g(x0) = 1

g(g(x0)) = g(1) = 0.540

g(g(g(x0))) = g(g(1)) = g(0.540) = 0.858

g(g(g(g(x0)))) = g(g(g(1))) = g(g(0.540)) = g(0.858) = 0.654

• It turns out by the Banach Contraction Mapping Theorem (or
the Banach Fixed Point Theorem) that if the slope of the
tangent line at a fixed point has magnitude less than 1, this
cobwebbing process will eventually converge to a suitable
starting point.

Pseudocode

• Start with some point x0.

• Compute x1 = g(x0).

• If |x1 − x0| < ε, stop.

• Otherwise go back to the beginning with x0 = x1.

Fixed.h

#ifndef FIXED_H

#define FIXED_H

/* Pre: None

Post: Returns the value of cos(x) */

double g(double x);

/*

Pre: epsilon > 0 is a tolerance , iterations > 0,

x0 is sufficiently close to a stable fixed point

Post: Returns an approximate fixed point of g(x)

using cobwebbing. Stops when either number of

iterations is exceeded or |g(xi)-xi| < epsilon

where xi is the value of x0 after i iterations.

*/

double fixed(double x0 , double epsilon ,

int iterations);

#endif

Fixed.h

#ifndef FIXED_H

#define FIXED_H

/* Pre: None

Post: Returns the value of cos(x) */

double g(double x);

/*

Pre: epsilon > 0 is a tolerance , iterations > 0,

x0 is sufficiently close to a stable fixed point

Post: Returns an approximate fixed point of g(x)

using cobwebbing. Stops when either number of

iterations is exceeded or |g(xi)-xi| < epsilon

where xi is the value of x0 after i iterations.

*/

double fixed(double x0 , double epsilon ,

int iterations);

#endif

Fixed.c

#include <assert.h>

#include <math.h>

#include "fixed.h"

double g(double x){ return cos(x);}

double fixed(double x0 ,

double epsilon , int iterations){

double x1;

assert(epsilon > 0.0);

for(int i=0; i<iterations; i++){

x1 = g(x0);

if (fabs(x1 -x0) < epsilon) return x1;

x0 = x1;

}

return x0;

}

Main.c

#include <stdio.h>

#include "fixed.h"

int main(void) {

printf("%g\n", fixed (0 ,0.0001 ,50));

return 0;

}

Improving the previous two codes

• Notice in each of the two previous examples, we hard coded a
definition of a function.

• Ideally, the code would also have as a parameter the function
itself.

• C lets us do this using function pointers.

• Syntax: Pass a parameter double (*f)(double) a pointer
to a function that consumes a double and returns a double.

• Note: The brackets around (*f) are important to not confuse
this with a function that returns a pointer.

Bisection2.h

#ifndef BISECTION2_H

#define BISECTION2_H

double bisect2(double a, double b,

double epsilon , int iterations ,

double (*f)(double));

#endif

Bisection2.h

#ifndef BISECTION2_H

#define BISECTION2_H

double bisect2(double a, double b,

double epsilon , int iterations ,

double (*f)(double));

#endif

Bisection2.c

#include <assert.h>

#include <math.h>

#include "bisection2.h"

double bisect2(double a, double b,

double epsilon , int iterations ,

double (*f)(double)){

double m=a, fm;

assert(epsilon > 0.0 && f(a)*f(b) < 0);

for(int i=0; i<iterations; i++){

m = (a+b)/2.0;

if (fabs(m-a) < epsilon) return m;

if (f(m)*f(b) > 0) b=m;

else a=m;

}

return m;

}

Main.c

#include <stdio.h>

#include <math.h>

#include "bisection2.h"

double g(double x){ return x - cos(x);}

double h(double x){ return x*x*x-x+1;}

int main(void) {

printf("%g\n", bisect2 (-10,10,0.0001,50,g));

printf("%g\n", bisect2 (-10,10,0.0001,50,h));

return 0;

}

