CS 137 Part 1

Introduction to C Programming

Introducing Team

e Dr. Carmen Bruni (more on me later)
e Gang Lu (Our ISC)
e Andy Nong (Our ISA)

About Me

Carmen Bruni, DC 3119, cbruni@uwaterloo.ca
Websites:

e www.student.cs.uwaterloo.ca/~cs137
e https://piazza.com/

Office Hours: Mondays 12:30-1:30 and Wednesdays 12:30-1:30 in
my office.

Office hours for ISA: 4:00-5:30 Tuesdays and Thursdays in MC
4065. Office hours for our first IA: 4:30-6:00 Mondays and
Wednesdays in MC 4065. Office hours for our second IA: 4:00-6:00
Tuesdays and Thursdays in MC 4065.

www.student.cs.uwaterloo.ca/~cs137
https://piazza.com/

Introduction

On your index card, write:
e Your actual name
e Your preferred name (and tips for pronunciation!)
e Something interesting about you

e Someone famous that shares the same name (first or last) or
birthday as you.

Words about the Course

Provides an introduction to fundamental programming principles
for first-year Software Engineering students. Topics include:
procedures and parameter passing, arrays and structures, recursion,
sorting, pointers and simple dynamic structures, space and time
analysis of designs, and design methodologies. The course will be
taught using the C programming language.

Course Times

e Section 001, 11:30-12:20 MWF, MC 1085 and the following
Thursdays:
September 20th, November 1st, Nevember22ad 3:30-4:30
MC 1085

e No lecture on October 19th due to Midterm (we will have
lectures on the 15th and 17th).

e No lecture on November 22nd.

Grading Scheme

e 8% Assignments (10 total - Must do A0 but worth 0%, take
best 8 of remaining 9)

e 35% Midterm on Friday October 20th from 9:30-11:30.
e Max of (57%,0%) (50%,7%) for final exam and clickers

Marmoset

e Assignments will be submitted on Marmoset (online
submission tool)

e At least 50% of your grade on every assignment will be public
tests.

e More on this in Lab 1.

Clickers

e A great way to encourage
active learning.

e Note: Not all weeks will
have the same number of
clicker questions! Some
weeks will have substantially
less and some weeks will
have substantially more
depending on the type of
content.

iclicker +

i
p-0-@-p: i
mo o Bo B> !I

Outline

In this course, we will use Marmoset, Piazza and a public website.

All content related to the course lectures will be on the public
website stated above.

All content relating to grading (assignments, tests, etc.) will
be on the website (password protected).

All non-personal questions should be posted on Piazza.
All homework submissions will be done on Marmoset.

Textbook (Optional): K.N. King, C Programming: A Modern
Approach

Course Rule

Laptop rule in class:

You may (and probably should) bring your laptop to class however
if you are in the first 4 rows you must use only text based
applications. Your peers can feel free to remind you of this should
you forget during class. If you want to goof around, please do so
not in the class or in the very last row. Remember no one is
forcing you to be here.

Tips for Surviving 1A

Eat well, sleep right and exercise. Surviving is harder when
you are unhealthy!

Fix holes in your knowledge today. You will never have a
better opportunity to correct mistakes and overcome fears
than today.

Start early! (Assignments, studying, etc.) Don't fall behind!
Go to class!

Brace yourself for failure (not in a course necessarily, but
expect problems you will have difficulty solving).

Swimming analogy

Remember since you have made it this far, it means that you
are fully capable and can succeed here.

Find help (More on next slide).

Options for Help

My office hours.

Your ISA’s office hours.

Your 1A’s office hours

Friends! (Discuss cheating and how to avoid it.)
Piazza, our online forum www.piazza.com

Math Tutorial Centre
https://uwaterloo.ca/math/current-undergraduates/
mathematics-tutorial-centre (MC 4066 8:30-5:30
starting either Next Monday or the one after)

The course webpage https:
//www.student.cs.uwaterloo.ca/~cs137/index.shtml.

www.piazza.com
https://uwaterloo.ca/math/current-undergraduates/mathematics-tutorial-centre
https://uwaterloo.ca/math/current-undergraduates/mathematics-tutorial-centre
https://www.student.cs.uwaterloo.ca/~cs137/index.shtml
https://www.student.cs.uwaterloo.ca/~cs137/index.shtml

Course Outline

From the textbook:

1. Basic C Programming, including variables, integers,
characters, expressions, conditionals, loops

2. Functions, parameters, arguments, recursion
3. Arrays and pointers
4. Structures

Not in the textbook:
1. Sorting, searching, time and space complexity
2. Other fun stuff

Core CS Sequence

1A - CS 137 - Programming Principles (in C)

1B - CS 138 - Data Abstraction (in C++)

2A - CS 241 - Sequential Programs (in C++/Scheme)
2B - CS 247 - Abstraction and Specification (in C++)

and SE 101, ECE 124, SE 212, ECE 222, CS 240, etc.

First C Program

#include <stdio.h>

int main(void) A
printf ("Hello world\n");
return O;

}
Note - The f in printf stands for “formatted”.

First C Program Explanation

//This is a standard i/o header file
#include <stdio.h>
//int below is the return type
//void below means an empty parameter list
int main(void) {
// the \n below is a mnewline character
printf ("Hello world\n");
//return status to caller
//(usually the shell on an 0S)
return O;

Returning Success

By convention, return 0 is a success and anything non-zero is a
failure. There are alternatives to the above code:

#include <stdlib.h>
int main(void) A{
return EXIT_SUCCESS; //which is 0O
}
//or return EXIT_FAILURE; which ts 1

You can also omit the return statement (which in C99 defaults to
returning 0 but in C89, is undefined).

b
b

A
)

How to Run Code

nano hello.c

gcc hello.c

./a.out

gcc-o hello hello.c
./hello

With Explanation

#Create hello.c

% nano hello.c

#Compile into executable (a.out)

% gcc hello.c

./ refers to the current directory;
after this t1s the executable name
% ./a.out

This sets the output file

to the first parameter

% gcc-o hello hello.c

% ./hello

IDE Options

There are some options for an IDE if you like GUI based learning.
I've heard good things about Eclipse (and CodeBlocks but I've had
bug problems with CodeBlocks). You can also just go online and
use repl.it which works great for single file programs. You are
free to use whatever editor you would like.

repl.it

Homework For Day 1

If you have the textbook, read chapters 1,2, 4 and 5 (and
skim through chapter 3)

Change your CS account password and do A0

Familiarize yourself with UNIX and some text editor (or get
Eclipse running!)

Linux and MacOS users should learn the basics of SSH (or
Fugu for a GUI option)

Windows users should learn putty, or bash (Cygwin) or SSH
terminal client for a GUI option.

Get a Watcard!!!

Our First Algorithm - The Euclidean Algorithm

1080
e How do we reduce 1690 °

Our First Algorithm - The Euclidean Algorithm

1080
e How do we reduce 1690 °

e Similarly, how to we compute the greatest common divisor of
1080 and 1920, denoted by gcd(1080,1920)?

Our First Algorithm - The Euclidean Algorithm

1080
e How do we reduce 1690 °

e Similarly, how to we compute the greatest common divisor of
1080 and 1920, denoted by gcd(1080,1920)?

e Turns out geometrically this has a neat interpretation.

Youtube Video

https://www.youtube.com/watch?v=AVrtH6m2wcU

https://www.youtube.com/watch?v=AVrtH6m2wcU

How Does It Work?

e What the video shows is that at each step, we are dividing the
larger number by the smaller number using the division
algorithm (more on this in MATH 135).

e When Euclid performed this, he used repeated subtraction
(which is basically division).

e |n fact, we have

1920 = 1080(1) + 840

1080 = 840(1) + 240
840 = 240(3) + 120
240 = 120(2) +

Mod operator

At each step, the remainder when dividing a number by
another positive integer seems to be the most important value

In C, we have the modulus operator (sometimes called the
remainder operator) given by % and defined over the integers
with a > 0 by

a % b is the remainder when a is divided by |b| (nonzero)

For example, 18 % 4 = 2 and 23 % (—5) = 3. Also,
1920 % 1080 = 840.

For a < 0, the above is the remainder subtracted by b (so
that the sign of the answer is the same as the sign of a.

Repeating Structure

e Notice that at each step, we want to basically do the same
procedure, that is, divide a value by another value and keep
track of the remainder.

e In C, this can be accomplished using a while loop:

while (expr_is_true){
//do something
}

e Let's see an example:

While Loop Example

The following code counts down from 5 down to 0.

#include <stdio.h>
int main(void) A
int i = 5;
while(i !'= 0){
i=1i-1;
}
return 0;

}

Notice on each pass the value of i gets smaller and smaller until it
reaches 0 when the loop expression is false and we break the loop.

Rules for Variable Names

e The command int i = 5; initializes an integer variable
(think that this code creates a box called i and store the
value 5 in this box).

e Variable names...

e Must begin with a letter or an underscore.

o After the first letter, can be letters, numbers or underscores.
e Case sensitive.

e Cannot be keywords (eg. int, while etc.)

Another Problem
What about printing? Specifically what about printing variables?

printf (string, argument(s));

To print variables, in our string we can include "%d" meaning that
the first instance will correspond to the first argument. As an
example,

#include <stdio.h>
int main(void){
int a = 3;
printf("1 + 2 = %d and %d + %d = 9 \n",
a, a, 2%a);
return 0;

}

prints 1 + 2 = 3 and 3 + 3 = 9 to the screen. The %d literally
means “signed integer”. There are others like %c for character, %u
for unsigned integer and so on. We will introduce as needed.

Revisit While Loop

The following code counts down from 5 down to 0.

#include <stdio.h>
int main(void) A{
int i = 5;
while (i >= 0){
printf ("The value of i is %d4d", i);
i=1i-1;
}
return O;

}

Notice on each pass the value of i gets smaller and smaller until it
reaches 0 when the loop expression is false and we break the loop.

Let's Code the Euclidean Algorithm!

Let's Code the Euclidean Algorithm!

#include <stdio.h>

int main(void) { Call stack
int a = 1920;
int b = 1080;

int r = 0;
while (b !'= 0){

r = a’%b;
a = b; r 0
b =r;
} b 1080
printf ("%d\n",a);
. return O0; a 1920

// Note: Could also
// use while(b){ }

Iterations of the while loop:

Code Running

Iteration a b r
0 1920 | 1080 0
1 1080 | 840 | 840 (=1920%1080)
2 840 | 240 | 240 (=1080%840)
3 240 | 120 120 (=840%240)
4 120 0 0 (=240%120)

Making the Code User Friendly

e Currently, we can only do the above example with a = 1920
and b = 1080.

e We could go into the code to change these numbers but this
seems inefficient.

e We would like to make this more user friendly by asking the
user for input for the a and b values after the file compiles.

Input

scanf ("%d", &a);

e The command scanf looks to the standard input (stdin) to
read an integer.

e The integer read will be stored into a.

o If the user doesn't enter an integer, the previous value for a
remains and the scanf fails.

e The & refers to the memory address of a. We'll talk a lot
more about this later so for now accept that you need the &
symbol to make the scanf command to work.

e scanf ignores all whitespace/newline characters. (Caveat see
next page)

Other Features

scanf ("%d/%d", &num,&denom) ;

e The above code will look for user input of fractions of the
form num/denom and store the numerator and denominator
in the appropriate variables.

e This idea will work not just for / but for any special type of
inputted format.

e The inputted format however must match exactly in order to
work.

e This includes white spaces in the matching.

Euclidean Algorithm With User Input

#include <stdio.h>
int main(void) {

int a = 0;
int b = 0;
int r = 0;

scanf ("%d", &a);
scanf ("%d", &b);

while (b != 0){
r = a%b;
a = b;
b =r;

}

printf ("%d\n",a);
return 0;

Euclidean Algorithm With User Input

#include <stdio.h>
int main(void) {

int a = 0, b =0, r = 0;
scanf ("%d%d", &a,&b);
while (b != 0){

r = a%b; a = b; b = r;
}

printf ("%d\n",a);
return O;

Computer Memory

Table of bytes (byte addressable)

byte = 8 bits

Llel Tofed I -]
1

In the above example, (00100110), = 25 4 22 4 21 = 38,
(Usually we drop the subscript if the base is clear).
Recall 1 byte = 8 bits.

Table of Variable Values

Type Storage Size Value Range Numeric

char 1 byte [—128,127] [—27,27 —1]
unsigned char 1 byte [0, 255] 0,25 — 1]

int 2 bytes [—32768, 32767] [—2T5,25 — 1]

int 4 bytes [—2147483648, 2147483647] | [—23!,231 — 1]
unsigned int 4 bytes [0, 4294967295] [0,2% — 1]

short int 2 bytes [—32768, 32767] [—215 215 _q]
unsigned short int 2 bytes [0, 65535] [0,2%0 — 1]

long int 4 bytes [—2147483648, 2147483647] | [—2°1,231 — 1]

long int 8 bytes [9.22-10%8,0.22. 1018 — 1] | [—203,253 _q]

long long int 8 bytes [9.22-10%8 9.22 . 1018 — 1] | [—2%3,2%3 _7q]
unsigned long long int 8 bytes [0,1.84 - 101° — 1] [0,2%% — 1]

Endianness (Images Courtesy Wikipedia)

Integers are usually 4 bytes. There
are two ways that an integer could
be stored. Either they could be
big endian (like in MIPS) where
the most significant byte is at the
lowest memory address [usual left-
right reading; store from least to
largest].

or it could be little endian (like
in x86), namely the most signifi-
cant byte is at the highest memory
address. In C, the implementa-
tion is computer/compiler depen-
dent and usually irrelevant for us.

32-bit integer

Memory 0AOBOCOD

32-bit integer

0A0BOCOD Memory
|‘> a. |

——> g+1:

— (1+2:

a+3:
Little-endian

Endianness

short int a = 1;

Memory Address | Big Endian | Little Endian
1000 0000 0000 | 0000 0001
1001 0000 0001 | 0000 0000

Unsigned Integers
This is a positional number system that works like a normal binary
system.
Ll

b7 be bs by b3 by b1 by

The value of a number stored in this system is the binary sum,
that is

b727 + b2% + bs25 + bs2* + b323 + 22 + b2 + by
For example,
01010101 = 2% + 2% + 22+ 20 =64 + 16 + 4+ 1 = 8519
or
11111111 =27 420 425 4 2% 1 23 4 22 4 o1 4 20
=128 4+64+32+16+8+4+2+1
= 25510

Converting to Binary
e Question: Write 38 and in binary.

Converting to Binary

Question: Write 38 and in binary.

One way: Take the largest power of 2 less than 38, subtract
and repeat.

For example, 32 is the largest power of two less than 38,
subtracting gives 6. Next, 4 is the largest power of two less
than 6 and subtracting gives 2. This is a power of two hence
38 =32+4+2=(100110),.

Another way is to constantly divide by 2:

Number | Quotient | Remainder
38 19 0
19 9 1
9 4 1
4 2 0
2 1 0
1 0 1

e ..and in binary (reading bottom to top) this is (100110)>.

Signed Integers

e These are more complicated - they are represented in
something called Two’s complement form
e To negate a value:
1. Take the complement of all bits
2. Add 1
e This will ultimately mean that the first bit is a sign bit (0 if
positive 1 if negative)

An Example

Let's compute —381¢ using this notation.

An Example

Let's compute —381¢ using this notation. First, write 38 in binary:
3810 = 00100110
Next, take the complement of all the bits
11011001

Finally, add 1:
11011010

This last value is —381p.

Short Cut

e A slightly faster way is to locate the rightmost 1 bit and flip
all the bits to the left of it.

e For example:

11011010 Negating 00100110

How Signed Integers Work

The idea is that the negation of a positive integer k is
represented in memory as 2”7 — k where n is the size of the
data type.

Arithmetic works naturally except that any final carry overs
are ignored (see the two examples below).

Watch out for overflow errors!

For a few examples, to add 4 and —3 on the left in a 4 bit
system or adding —4 and —3 on the right, we have

1 1
0100 (+4) 1100 (—4)
+1101 (-3) +1101 (-3)

0001 (+1) 1001 (=7)

Overflow

e http://www.youtubecutter.com/watch/26bel1342/
e https://youtu.be/jm4wqRj4Lm87t=3h17m12s

http://www.youtubecutter.com/watch/26be1342/
https://youtu.be/jm4wqRj4Lm8?t=3h17m12s

What happened?

The boss has 20000 health points (HP)

SNES was a 16 bit console so this value was stored essentially
in a short int.

Thus, the boss' health is 0100 1110 0010 0000 in binary
The Elixir is a full heal item which adds the original maximum

health to the current health then checks if the health is
greater than max and adjusts current health to max health.

Thus, the final bosses HP becomes 1001 1100 0100 0000
which as a signed integer is -25536.

This is less than 0 hence the boss is dead.

Overflow and Underflow Notes

e Note that over/underflow errors in C in signed values give
undefined behaviour.

e However, overflow errors for signed integers are well defined -
adding one to the maximum size of a signed value gives you 0
always.

Basic Operations

In the next few slides, we'll introduce some of the basic
operations (you've seen many already!)

Arithmetic Operators (follow BEDMAS rules):

(), %, *, /,+, — in order from left to right if there is a tie (for
example, with modulus, division and multiplication or with the
last two operations).

Note that the division above for integers is integer division
(the decimal is truncated).

These are left associative.

Note: There is no exponentiation operator in C (need to use
repeated multiplication or a special library)

Assignment Operators

Basically done last in order of operations.

Right associative, that is, evaluate everything to the right first
then assign the value.

Syntax: value = expr, for example a = 3.

There are also as assignment and operator operations

Syntax: value operation= expr where the operation can
be %, *, /,+, — or others which we will see later.

For example, a += 2; ‘roughly’ means a = a + 2. | say
‘roughly’ because of weird situations for example a *= b + ¢
which is not a = a*b +c (missing brackets) or if a is an
object with some other side effect these won't be exactly the
same (but for us this is unlikely to come up).

Note: Order is important! The commands a += 2; and

a =+ 2; are different!

Incremental Operators

e Two types: prefix, applied before the variable is used, and
suffix, applied after the variable is used.

e As examples,

++a; would increment a by one and then possibly use a.

--a; would decrement a by one and then possibly use a.

a++; would use a first (if applicable) then increment a by one.

a--; would use a first (if applicable) then decrement a by one.

e Combining:

#include <stdio.h>

int main(void) A
int a = 3, b = 1;
b += a+++2;
return O;

¥

The value of a is 4 and the value of b is 6 (remember we add
a and 2 first then add this to the value of b!) Notice that this
can be confusing without spaces or brackets!

Incremental Operator Example

#include <stdio.h>
int main(void) {
int a=10, b=15;
a += ++b;
printf ("%d\n",a);
a=10, b=15;
a += b++;
printf ("%d\n",a);
a=10, b=15;
a += --b;
printf ("%d\n",a);
return O;

}
This will print 26, 25 and 24 on three separate lines.

An Example of Associativity

o Left associative: i%j*k is equivalent to (i%j)*k

e Right associative: a = b +=c is equivalent toa = (b += ¢)
(which adds c to b and then stores a with the value of b)

#include <stdio.h>

int main(void) A
int a =1, b = 2, ¢ = 3;
a =Db += c;
printf ("%d",a);

}

will print out 5.

Relational and Logical Operators

e Relational operators <, >, <=, >= take lower precedence
than arithmetic and are left associative

e Equality operators ==, ! = (note the double equal sign!) take
lower precedence than reIat|onaI operators and are left
associative.

e Logical Operators

o | (negation) is right associative and has the same precedence
as unary + or —

e || and && are logical or and and respectively, are left
associative and are lower than equality.

Relational and Equality Operators

e Logical operators return 1 for true and 0 for false.

e The operators && and || are short-circuited evaluators; that
is, they only evaluate right hand expressions as necessary. For
example:

int a=0; a != 0 && 4/a > 2;
Since a is 0, the first condition after the semi colon is false
and hence C will not evaluate the second condition (that is,
this will compile and run without error even though the
second condition would normally give an error if on its own!)

Precedence Chart

Precedence|Operator
E3ea

0

Description
Suffix/postfix increment and decrement
Function call

Array subscripting

Structure and union member access

Structure and union member access through pointer

(type){List} Compound literal(coo)

N 0
-~
o
.

type

2 i ype)
&
sizeof
_Alignof

3 /%

4 |+

5 <>

6 <=

7

8 &

5 B

10 |

1 &

12 ||

13in0te 11
14
5 |,

Prefix increment and decrement

Unary plus and minus

Logical NOT and bitwise NOT

Type cast

Indirection (dereference)

Address-of

Size-of

Alignment requirement(c11)

Multiplication, division, and remainder
Addition and subtraction

Bitwise left shift and right shift

For relational operators < and = respectively
For relational operators > and = respectively
For relational = and # respectively

Bitwise AND

Bitwise XOR (exclusive or)

Bitwise OR (inclusive or)

Logical AND

Logical OR

Ternary conditional"te 21

Simple assignment

Assignment by sum and difference
Assignment by product, quotient, and remainder
Assignment by bitwise left shift and right shift
Assignment by bitwise AND, XOR, and OR
Comma

http://en.cppreference.com/w/c/language/operator_precedence

Associativity
Left-to-right

Right-to-left

Left-to-right

Right-to-Left

Left-to-right

http://en.cppreference.com/w/c/language/operator_precedence

De Morgan's Theorem

De Morgan's Theorem in C
Let P and @ be logical statements. Then

I(P&&Q) == IP||!Q
I(P||Q) = = IP&&!Q

Proof:

[P] 1Q

P 11Q
111 1
110 1
0|1 1
00 0

Bit-Wise Operators

Suppose we have char a=5, b=3;. Note that this is valid as C
will interpret 5 as the character corresponding to 00000101 and
similar for 3 with the bit string 00000011 (recall also that a char is

one byte).
e Bitwise not ~ , for example ¢ = ~ a; gives ¢ = 11111010
e Bitwise and &, for example ¢ = a&b; gives ¢ = 00000001

, for example ¢ = a|b; gives ¢ = 00000111

Bitwise or

Bitwise exclusive or ”, for example ¢ = a ~ b; gives
¢ = 00000110

Bitwise shift right or left >> and <<, for example
a >> 2; gives ¢ = 00000001 and
c = a << 3; gives ¢ = 00101000.

These can even be combined with the assignment operator!

C

Selection Statements

e What do we do if we want to execute code only when some
condition is true?

e To handle this, we can use one of a few different types of
control statements.

If Statements

if (expression) {
//statement

}
else //optional

{

//statement when exzpression is false

3

Braces are optional if there is only one statement (brackets are not
optional!) Can also write this on one line:

if (expression) statement else statement

First If Example

#include <stdio.h>
int main(void) {
int a=5, b;
if (a == 5){
b = 10;
} else {
b = 4;
}
printf ("%d\n",b);
return O;

Cascaded If Statements

if (expression){

}

//statement

else if (expression2) {
//statement

else if (expression3) {
//statement

/.

else {

//final statement

If Example

#include <stdio.h>
int main(void) {
int age;
scanf ("%d" ,&age);
if (age < 5)
printf ("Free movie ticket!");
else if (age < 18)
printf ("Youth movie ticket.");
else
printf ("Regular admission movie ticket.");
return O;

Nested If Statements

Conditional statements can also be nested.

#include <stdio.h>
int main(void) A{
int x;
scanf ("%d", &x);
if (x < 10){
if (x >5)
printf ("Small");
else
printf ("Very small");
} else {
printf ("Big");
}
return O;

¥

Exercise: Rewrite the above code without nested if statements.

Question

What does this print?

#include <stdio.h>
int main(void) A
int i = 3;
if (i%2==0)
if (i == 0) printf("zero\n");
else printf ("how odd\n");
return O;

Question

What does this print?

#include <stdio.h>
int main(void) A
int i = 3;
if (i%2==0)
if (i == 0) printf("zero\n");
else printf ("how odd\n");
return O;

}

This is the dangling ‘else’ issue. This code prints nothing. Each

else statement, independent of indentation belongs to the nearest
if statement. Code can be very confusing to read without brackets
and you are advised to use them judiciously to help with clarity.

More Conditionals

Ternary Conditional Operator

exprl 7 expr2 : expr3

e If exprl is true, this conditional statement returns the value of
expr2. Otherwise it returns expr3.

e For example assuming we have integer i and J,
printf ("%d\n", i > j 7 i : j);

returns the maximum of i and j.

Switch Statements

Syntax:
switch (expr){

case const_expr: statements break;

case const_expr: statements break;
default: statements

e The break; command lets C know that this case is finished.

e You are not permitted to have multiple equal cases.

Example

#include <stdio.h>
int main(void) A
int 1i;
printf ("Enter an integer between 1 and 3.");
scanf ("%d" ,&i);
switch (i){
case 1:
printf (" is the loneliest number\n");
break;
case 2: printf(", an even prime\n"); break;
case 3: printf(" is a crowd\n"); break;
default: printf(" illegal entry\n"); break;
}

return O;

Without Breaks

What happens if you don't put in breaks?

#include <stdio.h>
int main(void) {
int 1i;
printf ("Enter an integer between 1 and 3.");
scanf ("%d" ,&i);
switch (i){
case 1:
printf (" is the loneliest number\n");
break;
case 2: printf(" is an even prime\n");
case 3: printf(" is a crowd\n"); break;
default: printf (" illegal entry\n"); break;
}

return 0;

Previous Slide Explanation

e On user input of 2, we will print “is an even number” and “is
a crowd". If this is the behaviour you want (called a fall
through), you probably want to let the programmer know with
a comment.

e Note you can also put multiple cases on the same line if they
do the same thing

Your Turn!

Write a program that requests any integer and prints the sum of
the digits to the screen. For example, if the user enters 1234 then
the answer 10 (=1+42+3+4) is printed to the screen.

Special Cases

What special cases do you have to consider for your code?

e Negative numbers?
e Non-integer values?

e Zero?

Integer capacity? (Probably want less than 9 digits).

