
Warm Up Problem

Write a DFA over Σ = {a, b} that...

• Accepts only words with an even number of as

• Accepts only words with an odd number of as and an even
number of bs

• Accepts only words where the parity of the number of as is
equal to the parity of the number of bs

If you did the homework above, try these problems!

• What is the definition of a DFA? (Try it without looking!)

• Write a DFA over Σ = {a, b} that accepts all words ending
with bba.

CS 241 Lecture 7
Non-Deterministic Finite Automata

With thanks to Brad Lushman, Troy Vasiga and Kevin Lanctot

Recall Regular Language

Definition

A regular language over an alphabet Σ consists of one of the
following:

1. The empty language and the language consisting of the empty
word are regular

2. All languages {a} for all a ∈ Σ are regular.

3. The union, concatenation or Kleene star of any two regular
languages are regular.

4. Nothing else.

Recall: Deterministic Finite Automata

Definition

A DFA is a 5-tuple (Σ,Q, q0,A, δ):

• Σ is a finite non-empty set (alphabet).

• Q is a finite non-empty set of states.

• q0 ∈ Q is a start state

• A ⊆ Q is a set of accepting states

• δ : (Q × Σ)→ Q is our [total] transition function (given a
state and a symbol of our alphabet, what state should we go
to?).

Extending δ
We can extend the definition of δ : (Q × Σ)→ Q to a function
defined over (Q × Σ∗) via:

δ∗ : (Q × Σ∗)→ Q

(q, ε) 7→ q

(q, aw) 7→ δ∗(δ(q, a),w)

where a ∈ Σ and w ∈ Σ∗ (aw is concatenation). Basically, if
processing a string, process a letter first then process the rest of a
string. In this way...

Definition

A DFA given by M = (Σ,Q, q0,A, δ) accepts a string w if and
only if δ∗(q0,w) ∈ A.

Language of a DFA

With the previous slide we can make one more definition.

Definition

Denote the language of a DFA M to be the set of all strings
accepted by M, that is:

L(M) = {w : M accepts w}

A Beautiful Result

In a future course (CS 360/365), you will prove the following
beautiful result:

Theorem (Kleene)

L is regular if and only if L = L(M) for some DFA M. That is, the
regular languages are precisely the languages accepted by DFAs.

Implementing a DFA

Algorithm 1 DFA algorithm
1: s = q0

2: while not EOF do
3: read character ch

4: switch (s)
5: case q0:
6: switch (ch)
7: case ch = a0:
8: s = new state a 0

9: case ch = a1:
10: s = new state a 1

...
11:

12: case ch = a|Σ|:
13: s = new state a sigma

14: end switch
15: case q1:

...
16:

17: end switch
18: end while

Alternatively

You could also use a lookup table:

q0 q1 . . . q|Q|
a0

a1
...

a|Σ|

where above, the blank table entries would be the next states.

Check out the provided assembler starter code in your assignment!

Extension to DFAs
We could also have DFAs where we attach actions to arcs.

• For example, consider a subset of the language of binary
numbers without leading zeroes described below.

• We’ll create a DFA where we also compute the decimal value
of the number simultaneously. Could then print the value.

• Look at the DFA corresponding to 1(0 | 1)∗1.

• In what follows, you should read 1/N ← 2N + 1 as the
leftmost 1 corresponds to a DFA transition, the / has no
meaning and the N ← 2N + 1 changes N to be 2N + 1.

1/N ← 1

1/N ← 2N + 1
1/N ← 2N + 10/N ← 2N

0/N ← 2N

Revisiting our Warm Up

What happens if we make out DFAs more complex? Let’s revisit
our warmup example from today over the alphabet Σ = {a, b}:

L = {w : w ends with bba}

q0 q1

q3

q2

b

a

a

a

b

b

a

b

Imagine

But what if we allowed more than one transition from a state?

q0 q1

q2

a

a

Does such a thing make sense? Do we gain any computability
power from this?

Multiple Transitions

• When we allow for a state to have multiple branches given the
same input, we say that the machine chooses which path to
go on.

• This is called non-determinism.

• We then say that a machine accepts a word w if and only if
there exists some path that leads to an accepting state!

• We can then simplify the previous example to an NFA as
defined on the next slide:

Simplified NFA

L = {w : w ends with bba}

q0 q1 q2 q3
b

a, b

b a

Machine “guesses” to stay in first state until bba is seen. How
does a machine do this?

Language of a NFA

Similar to before, we have the following definition:

Definition

Let M be an NFA. We say that M accepts w if and only if there
exists some path through M that leads to an accepting state.

Denote the language of an NFA M to be the set of all strings
accepted by M, that is:

L(M) = {w : M accepts w}

Non-Deterministic Finite Automata

The above idea can be mathematically described as follows:

Definition

An NFA is a 5-tuple (Σ,Q, q0,A, δ):

• Σ is a finite non-empty set (alphabet).

• Q is a finite non-empty set of states.

• q0 ∈ Q is a start state

• A ⊆ Q is a set of accepting states

• δ : (Q × Σ)→ 2Q is our [total] transition function. Note that
2Q denotes the power set of Q, that is, the set of all subsets
of Q. This allows us to go to multiple states at once!

Extending δ For an NFA
Again we can extend the definition of δ : (Q × Σ)→ 2Q to a
function δ∗ : (2Q × Σ∗)→ 2Q via:

δ∗ : (2Q × Σ∗)→ 2Q

(S , ε) 7→ S

(S , aw) 7→ δ∗

⋃
q∈S

δ(q, a),w

where a ∈ Σ. Analogously, we also have:

Definition

An NFA given by M = (Σ,Q, q0,A, δ) accepts a string w if and
only if...

Extending δ For an NFA
Again we can extend the definition of δ : (Q × Σ)→ 2Q to a
function δ∗ : (2Q × Σ)→ 2Q via:

δ∗ : (2Q × Σ∗)→ 2Q

(S , ε) 7→ S

(S , aw) 7→ δ∗

⋃
q∈S

δ(q, a),w

where a ∈ Σ. Analogously, we also have:

Definition

An NFA given by M = (Σ,Q, q0,A, δ) accepts a string w if and
only if δ∗({q0},w) ∩ A 6= ∅.

Simulating an NFA

Algorithm 2 Algorithm to Simulate an NFA

1: S = {q0}
2: while not EOF do
3: c = read char()
4: S =

⋃
q∈S δ(q, c)

5: end while
6: if S ∩ A 6= ∅ then
7: Accept
8: else
9: Reject

10: end if

Practice Simulating w = abbba

q0 q1 q2 q3
b

a, b

b a

Processed Remaining S

ε abbba {q0}
a bbba {q0}
ab bba {q0, q1}
abb ba {q0, q1, q2}
abbb a {q0, q1, q2}
abbba ε {q0, q3}

Since {q0, q3} ∩ {q3} 6= ∅, accept.

