
CS 136L Lecture 5
Bash scripting

Recap of some syntax

• $#, $@, $0, $?
• read, shift

• ==, !=, =∼ (careful!)

• &&, ||, !

• -d, -e, -f, -r, -w, -x

Bash Coding Tips

• Like in C, code in small chunks, compile and test frequently!

• Error messages might not be very useful so debugging small
code chunks is important.

• W a t ch a ll w h i t e spa c e s!!!!! (variable names, streams,
if, while, for)

• Include the shebang! #!/bin/bash - will give you colouring
in vi even if file doesn’t end in .sh

• Remember variables require $ to be accessed. Also $ for
embedded commands.

• x=$((x+1)) to increment variable

• Make script runnable using chmod a+x ./script_name.sh

• Debug a script using bash -x ./script_name.sh

Debugging Example

This script consumes a single parameter corresponding to a file
name checking if it exists and if so it displays words one line at a
time but contains several errors. Fix.

#!/bin/bash/

if [-e $1] then

echo "File doesn 't exist" > &2

exit 4

for word in cat $1 do

echo word

Diff

A note about diff. When executed, it changes the status code as
follows:

• 0 No differences were found.

• 1 Differences were found.

• >1 An error occurred.

Can gobble output (i.e. don’t display difference) by using
> /dev/null

Debugging Example 2

This script consumes three parameters and prints exactly
All Same if all three files are the same and Not Same otherwise
but contains several errors. Fix.

#!/bin/bash

diff $1 $2
is-diff1 = $?
diff $2 $3
ISDIFF = $?
if [is -diff1 == 0 && ISDIFF == 0]; then

echo "All Same"

else

echo Not Same

fi

Debugging Example 3

This script is the same as the previous script but consumes an
unlimited number of parameters. It contains several errors. Fix.

while [$# -ne 1]; do

diff $1 $2
if [$0 -eq 1]; then

echo "Not same"

exit 1

fi

shift

done

echo "All same"

