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On this day.. in 1842

Doppler presented his e↵ect. Johann Christian Doppler
(1803-1853) presented a lecture on the Doppler E↵ect. It was first
experimentally verified in 1845 using a locomotive drawing an open
car with several trumpeters.



Today’s Lecture

• The problem: The division of loaves

• The place: Antic Egypt

• Egyptian Fractions



The division of loaves

Share 9 loaves of bread amongst 10 men.



Egyptian Geography

• Egyptian civilization established
on the shores of the Nile about
5000 years ago;

• The yearly flood of the Nile
brings sediments and nutriments
that enrich the surrounding soils
in the valley.

• The Nile becomes a mean of
transportation for both material
and people and with the flood
allowing for crop to grow, Egypt
becomes a self-su�cient country
(unlike other civilizations)



The Nile and the Practical Problems that Arise

• The Calendar Problem
• Use of solar (days, seasons, and years) and lunar (months)

calendar produces various calendars.
• Precision is an issue:

• One of the first calendar would alternate months of 29 and 30
days long (based on the lunar cycle), making for 354 days
years. That would result to add a full month after three years.

• A second calendar would have 12 months of 30 days (based
on the sun), and the Egyptians would add 5 days at the end of
the year.

• Need for mathematics to record information:
• Quantities of cereals harvested;
• Size of cultivated land and taxes on those;
• Work done by workers.

It is this kind of practical problem that leads the Egyptians to
develop a mathematical structure that will allow them to
ensure a certain consistency.



The Papyrus

In order to ascertain the accuracy of the information gathered, the
Egyptians used parchments, called papyrus, made from plants
growing in the neighboring Nile. The majority of Egyptian
mathematical knowledge comes from the study of these papyri.
Obviously, by their vegetable nature, papyri are fragile documents
and have been very poorly preserved. So there are very few
resources that are still available today to study Egyptian
mathematical techniques. Most of the mathematical information is
contained in the following documents:

• Amhes (Rhind) Mathematical Papyrus

• Moscow Mathematical Papyrus



The Amhes Mathematical Papyrus

Figure: Amhes Mathematical Papyrus : Wikipedia



Egyptian Numerical Notation

• Hieroglyphs

Figure: Hieroglyphs: Burton

Figure: Representation of a number using hieroglyphs : Burton

Note the absence of a positionnal system.



Egyptian Numerical Notation

• Hieratic Numeration

Figure: Hieratic Numeration

This is the notation used on the Amhes Mathematical Papyrus



Egyptian Numerical Notation

• Demotic Numeration

Figure: Demotic Numeration



Egyptian Arithmetic
• Addition

Figure: Addition

• Subtraction

Figure: Subtraction

Note : Subtraction uses the completion process. That is, to
subtract 678-345 the Egyptian scribe would think of the
problem: what must I add to 345 to get 678?



Egyptian Arithmetic
• Multiplication

Figure: Multiplication using hieroglyphs



Egyptian Arithmetic

Questions to ask :

• What kind of process are they using?

• Doubling and adding;
• Very early use of a binary systrem;

• Would that kind of process always work ?
• The greedy algorithm:

435 = 256 + (435� 256) = 28 + 179

435 = 28 + 128 + (179� 128) = 28 + 27 + 51

435 = 28 + 27 + 32 + (51� 32) = 28 + 27 + 25 + 19

435 = 28 + 27 + 25 + 16 + (19� 16) = 28 + 27 + 25 + 24 + 3

435 = 28 + 27 + 25 + 24 + 2 + (3� 2) = 28 + 27 + 25 + 24 + 21 + 1

435 = 28 + 27 + 25 + 16 + 2 + 1 = 28 + 27 + 25 + 24 + 21 + 20

We could show that this process is finite and unique.
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Egyptian Arithmetic

Show that every positive integer n can be written as a sum of
distinct powers of two.

Proof:



Egyptian Arithmetic

Show that every positive integer n can be written as a sum of
distinct powers of two.

Proof (cont’d):



Egyptian Arithmetic

• Division :
The Egyptian division is only a variation of the multiplication,
a little as we still do today. Then, if we ask to make 559÷ 13,
this is equivalent to asking: what is the integer k such that
k ⇥ 13 = 559?



Rational numbers

The division of natural numbers without rest is a simple operation
using the doubling and adding technique. However, when the
division produces a remainder, fractions must then be introduced.
Egyptian fractions have the peculiarity that they are all unit
fractions, that is to say that the numerator is always 1. The
exception to this rule is 2

3 (and 3
4 in some texts).

Figure: Symbols for Egyptian Fractions : MacTutor

Subsequently, with the evolution of writing, a simple bar above the
number was introduced. For example: 1

13 = 13.



Horus Eye

• Horus is the son of Osiris, king of the gods.

• Osiris was killed by his brother Set.

• Horus tried to avenge his father, but in doing so he lost an eye
that was restored to him by Thoth, the god of wisdom.

• Horus, instead decided to give his eye to his father, who,
following his assassination, became the god of hell so that his
father could ”keep” an eye on the world of the living.

• The lost and restored eye of Horus represents the moon and
its other eye, the sun.



Horus Eye and Fractions

Figure: Horus Eye

• Unit fractions

• Idea of geometric series

• Binary, again...

• The Egyptian measuring system for volume, the hekat, uses
division that are using unit fractions with denominators being
powers of 2 from 2 to 64.



Representing a rational number as a sum of unit fractions:

Represent 7
11 as a sum of unit fractions. To do so, we will use the

fact that if a, b, c are all positive integers such that a < b < c ,
then 1

a > 1
b > 1

c . We will use, once again, the greedy algorithm.



Representing a rational number as a sum of unit fractions

• That method is credited to Fibonacci.

• We (I?) don’t know exactly how the Egyptians were actually
getting their unit fractions.

• It has been shown that every rational number smaller than 1
can be expressed as a sum of unit fractions.

• That sum is not unique. There are actually an infinite number
of ways of writing a fraction as a sum of unit fractions
(consider the identity 1

n = 1
n+1 + 1

n(n+1)).



Representing a rational number as a sum of unit fractions

Not a formal proof of Fibonacci’s process:
Let a

b < 1, where a, b are positive integers.

1. b
a = q + r where q is an integer such that q < b

a < q + 1.
Thus 1

q > a
b > 1

q+1 .

2. The first unit fraction is 1
q+1 .

3. The di↵erence of a
b � 1

q+1 is a(q+1)�b
b(q+1) .

4. Before the subtraction, the numerator was a and after it is
a(q+1)� b. Now, note that the di↵erence of both numerator
is a� a(q + 1)� b = b � aq. Using the fact that q < b

a , or
aq < b, then b � aq > 0. That tells us that the numerator is
still positive but decrease after each iteration. So this process
can’t go indefinitely and so the numerator will reach
eventually reach 1.
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Dividing with remainder

Ex 1: 27÷ 8



Dividing with remainder

Ex 2: 33÷ 36



Dividing with remainder

Ex 3: 13÷ 18



The 2
N table

The di↵erent papyrus have tables which have facilitated the work
of the scribes. One of these tables is in the Rhind papyrus. Since
the Egyptians used only unit fractions, with the exception of 2

3 ,
and their arithmetic was based mainly on doubling, fractions 2

N
were frequently encountered. This table certainly has an advantage
for Egyptian scribes in order to increase the e�ciency of their
calculations. It lists the summation of unit fractions for fractions
for which the denominator varies from N = 3 to N = 101.



The 2
N table

Figure: The
2

N
table : Wikipedia



Representing a rational number as a sum of unit fractions
A few notes:

• The study of the various Egyptian documents makes it possible to understand
how the scribes succeeded in performing di↵erent calculations.

• It is nevertheless true that certain aspects of their arithmetic remain
unexplained. For example, several historians have tried to determine how the
2÷ N table was designed, and despite several assumptions, there does not seem
to be any single method that led to the creation of this table.

• There are certain elements of constancy such as the one found in fractions of
the form 2

3k . Indeed, each of the decompositions is of the form: 2
3k = 1

2k + 1
6k .

• It should be noted that not all divisions can be performed using any of these
methods. Unfortunately, the lack of documents does not allow us to know how
the Egyptians divided by 10.

• The heaviness of the calculations leading to the resolution of simple problems
shows the ine�ciency of the Egyptian fractional system in the context of
mathematics as studied today. However, we must not forget that there may be
other techniques used by the scribes that we can not witness today, since the
majority of the documents did not survive the test of time.



Solution to the Distribution of Loaves Problem: AMP
Problem 6

In Egyptian mathematics, always remembering that only unit
fractions or 2

3 are used, we find that 9
10 = 2

3 + 1
5 + 1

30 portion of
bread for each of the 10 people. So, the problem is to create 10
portions of 1

30 , which will take 1
3 of bread, ten portions of 1

5 Of
bread, which will take two loaves. There are then six complete
loaves and 2

3 of another loaf. The last division is to divide the six
complete loaves into 2

3 and 1
3 of bread. Finally, the distribution is

as follows: Seven of the people will receive 2
3 + 1

5 + 1
30 of bread

and the other three will receive 1
3 of bread in addition to a piece of

1
5 of a bread and another of 1

30 of a bread. Here is a representation
of the solution:



Solution to the Distribution of Loaves Problem

Figure: Distribution of Loaves Problem



Problem 33 of the AMP

The sum of a certain quantity together with its two thirds, its half,
and its one-seventh becomes 37. What is the quantity?



Problem 33 of the AMP: The Solution

1 1 + 3 + 2 + 7
2 4 + 3 + 4 + 28

4 8 + 3 + 2 + 14
8 18 + 3 + 7

16 36 + 3 + 4 + 28

Applying 3, 4, 28 to 42 we have :

1 42

/3 28
2 21
/4 10 + 2
/28 1 + 2



Problem 33 of the AMP: The Solution

The total is 40; there remains 2, or 21 of 42. As 1 + 3 + 2 + 7
applied to 42 gives 97, we shall have as a continuation of our first
multiplication

97 42 or 1 as part of 42
/56 + 679 + 776 21 or 2 as part of 42

This 21 with the product already obtained will make the total 37.

Thus the required quantity is 16 + 56 + 679 + 776



Interesting Problems

a. Show that

2

n
=

1

3

✓
1

n

◆
+

5

3

✓
1

n

◆

whenever 5|n.

b. If 7 | n, conjecture a formula similar to part a. for fractions of

the form
2

n
and prove that your conjecture is correct.



Interesting Problems

c. Show that for all positive integers n > 2,
2

n
can be written as

a sum of two non-zero unit fractions with di↵erent
denominators.

d. It can be shown in a similar way that fractions of the form
3

n
can be expressed as a sum of three unit fractions with
di↵erent denominators. However, not all fractions of the form
3

n
can be expressed as a sum of two unit fractions with

di↵erent denominators,
3

7
is an example of that fact. Show

that
3

7
can’t be expressed as a sum of two unit fractions with

di↵erent denominators.
e. Show that if r = a

b is in lowest terms, with a, b > 1 and a, b
both odd, then r cannot be expressed as the sum of a finite
number of unit fractions whose denominators are distinct
powers of 2.


