# A SAT+CAS Method for Enumerating Williamson Matrices of Even Order 

Curtis Bright ${ }^{1} \quad$ Ilias Kotsireas ${ }^{2} \quad$ Vijay Ganesh ${ }^{1}$<br>${ }^{1}$ University of Waterloo<br>${ }^{2}$ Wilfrid Laurier University

July 29, 2017

Brute-brute force has no hope. But clever, inspired brute force is the future.

Dr. Doron Zeilberger, Rutgers University, 2015

## Roadmap

Motivation

## Outline

## Williamson Matrices

Programmatic SAT

## Enumeration Method

Conclusion

## Motivation

- Many conjectures in combinatorics concern the existence or nonexistence of combinatorial objects which are only feasibly constructed through a search.
- To find large instances of these objects, it is necessary to use a computer with a clever search procedure.


## Example

- Williamson matrices, first defined in 1944, were enumerated up to order 59 in 2007 but only for odd orders ${ }^{1}$. They had never been enumerated in even orders until this work.
- We exhaustively enumerated Williamson matrices up to order 64 and found that they are much more abundant in even orders than odd orders.

[^0]
# Roadmap 

Motivation

Outline

# Williamson Matrices 

Programmatic SAT

Enumeration Method

Conclusion

## Motivational quote

> The research areas of SMT [SAT Modulo Theories] solving and symbolic computation are quite disconnected. [...] More common projects would allow to join forces and commonly develop improvements on both sides.

Dr. Erika Ábrahám, RWTH Aachen University, $2015^{2}$

[^1]
## How we performed the enumeration

- Used a reduction to the Boolean satisfiability problem (SAT).
- Used a SAT solver coupled with functionality from numerical libraries and a computer algebra system (CAS) to perform the search.
- Used the programmatic SAT solver MapleSAT ${ }^{3}$ which could programmatically learn conflict clauses, through a piece of code specifically tailored to the domain.

[^2]
## The MathCheck2 system

Uses the SAT+CAS paradigm to finitely verify or counterexample conjectures in mathematics, in particular the Williamson conjecture.

https://sites.google.com/site/uwmathcheck/

## Roadmap

## Motivation

## Outline

Williamson Matrices

Programmatic SAT

Enumeration Method

Conclusion

## The Williamson conjecture

It has been conjectured that an Hadamard matrix of this [Williamson] type might exist of every order $4 t$, at least for $t$ odd.

Dr. Richard Turyn, Raytheon Company, 1972

## Disproof of the Williamson conjecture

- Dragomir Đoković showed in 1993 that $t=35$ was a counterexample to the Williamson conjecture, i.e., Williamson matrices of order 35 do not exist.
- His algorithm assumed the Williamson order was odd.


## Williamson matrices

- $n \times n$ matrices $A, B, C, D$ with $\pm 1$ entries
- symmetric
- circulant (each row is a shift of the previous row)
- $A^{2}+B^{2}+C^{2}+D^{2}=4 n I_{n}$


## Williamson sequences

Williamson matrices can equivalently be defined using sequences:

- sequences $A, B, C, D$ of length $n$ with $\pm 1$ entries
- symmetric
- $\operatorname{PSD}_{A}(s)+\operatorname{PSD}_{B}(s)+\operatorname{PSD}_{C}(s)+\operatorname{PSD}_{D}(s)=4 n$ for all $s \in \mathbb{Z}$.

The values of the PSD (power spectral density) of $X$ are the squared absolute values of the discrete Fourier transform of $X$.

## PSD criterion

Since PSD values are non-negative and
$\operatorname{PSD}_{A}(s)+\operatorname{PSD}_{B}(s)+\operatorname{PSD}_{C}(s)+\operatorname{PSD}_{D}(s)=4 n$,
if $\operatorname{PSD}_{X}(s)>4 n$ for some $s$ then $X$ is not a member of a Williamson sequence.

## PSD criterion

Since PSD values are non-negative and
$\mathrm{PSD}_{A}(s)+\mathrm{PSD}_{B}(s)+\mathrm{PSD}_{C}(s)+\mathrm{PSD}_{D}(s)=4 n$,
if $\operatorname{PSD}_{X}(s)>4 n$ for some $s$ then $X$ is not a member of a Williamson sequence.

Problem
How can the PSD criterion be encoded in a SAT instance?

## Roadmap

## Motivation

## Outline

## Williamson Matrices

Programmatic SAT

Enumeration Method

Conclusion

## Solution: Programmatic SAT

- A programmatic SAT solver ${ }^{4}$ contains a special callback function which periodically examines the current partial assignment while the SAT solver is running.
- If it can determine that the partial assignment cannot be extended into a satisfying assignment then a conflict clause is generated encoding that fact.


[^3]
## Programmatic PSD criterion

- Given a partial assignment, we compute $\operatorname{PSD}_{X}(s)$ for $X \in\{A, B, C, D\}$ whose entries are all currently set.
- If any PSD value is larger than $4 n$ then we generate a clause which forbids the variables in $X$ from being set the way they currently are.


## Programmatic results

- The programmatic approach was found to perform much better than an approach which encoded the Williamson sequence definition using CNF clauses:

| order $n$ | programmatic speedup |
| :---: | :---: |
| 20 | 4.33 |
| 22 | 7.00 |
| 24 | 7.12 |
| 26 | 27.00 |
| 28 | 52.56 |
| 30 | 52.21 |
| 32 | 58.16 |
| 34 | 138.37 |
| 36 | 317.61 |
| 38 | 377.84 |
| 40 | 428.71 |
| 42 | 1195.99 |
| 44 | 2276.09 |

## Roadmap

## Motivation

## Outline

## Williamson Matrices

## Programmatic SAT

Enumeration Method

## Conclusion

## A Diophantine equation

The PSD criterion for $s=0$ becomes

$$
\operatorname{rowsum}(A)^{2}+\operatorname{rowsum}(B)^{2}+\operatorname{rowsum}(C)^{2}+\operatorname{rowsum}(D)^{2}=4 n
$$

In other words, every Williamson sequence provides a decomposition of $4 n$ into a sum of four squares.

## A Diophantine equation

The PSD criterion for $s=0$ becomes

$$
\operatorname{rowsum}(A)^{2}+\operatorname{rowsum}(B)^{2}+\operatorname{rowsum}(C)^{2}+\operatorname{rowsum}(D)^{2}=4 n
$$

In other words, every Williamson sequence provides a decomposition of $4 n$ into a sum of four squares.

- There are usually only a few such decompositions.


## A Diophantine equation

The PSD criterion for $s=0$ becomes

$$
\operatorname{rowsum}(A)^{2}+\operatorname{rowsum}(B)^{2}+\operatorname{rowsum}(C)^{2}+\operatorname{rowsum}(D)^{2}=4 n
$$

In other words, every Williamson sequence provides a decomposition of $4 n$ into a sum of four squares.

- There are usually only a few such decompositions.
- A CAS (e.g., MAPLE) has functions designed to compute the decompositions.


## Compression

When $n$ is even we can compress a sequence of length $n$ to obtain a sequence of length $n / 2$ :


## Đoković-Kotsireas theorem

Any compression $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ of a Williamson sequence satisfies

$$
\mathrm{PSD}_{A^{\prime}}(s)+\mathrm{PSD}_{B^{\prime}}(s)+\mathrm{PSD}_{C^{\prime}}(s)+\mathrm{PSD}_{D^{\prime}}(s)=4 n
$$

for all $s \in \mathbb{Z}$.

## Using compressions

- For a given even order $n$, searching for compressed Williamson sequences is easier than searching for uncompressed Williamson sequences.
- With the help of a CAS we can generate all possible compressions.
- For each possible compression, we generate a SAT instance which encodes the problem of 'uncompressing' that sequence.


## Example SAT instance

If $A^{\prime}=[2,-2,0]$ was a possible compression, this implies that

$$
\begin{aligned}
& a_{0}+a_{3}=2 \\
& a_{1}+a_{4}=-2 \\
& a_{2}+a_{5}=0
\end{aligned}
$$

From which we generate the SAT clauses (with 'true' representing 1 and 'false' representing -1 )

$$
\begin{aligned}
a_{0} & \wedge a_{3} \\
\neg a_{1} & \wedge \neg a_{4} \\
\left(a_{2} \vee a_{5}\right) & \wedge\left(\neg a_{2} \vee \neg a_{5}\right)
\end{aligned}
$$

## Results

| $n$ | Gen. time $(\mathrm{m})$ | Solve time $(\mathrm{m})$ | \# instances | $\# W_{n}$ |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 0.00 | 0.00 | 1 | 1 |
| 4 | 0.00 | 0.00 | 1 | 1 |
| 6 | 0.00 | 0.00 | 1 | 1 |
| 8 | 0.00 | 0.00 | 1 | 1 |
| 10 | 0.00 | 0.00 | 2 | 2 |
| 12 | 0.00 | 0.00 | 3 | 3 |
| 14 | 0.00 | 0.00 | 3 | 7 |
| 16 | 0.00 | 0.00 | 5 | 6 |
| 18 | 0.00 | 0.01 | 22 | 40 |
| 20 | 0.00 | 0.01 | 21 | 27 |
| 22 | 0.00 | 0.01 | 22 | 27 |
| 24 | 0.00 | 0.06 | 176 | 80 |
| 26 | 0.01 | 0.01 | 24 | 38 |
| 28 | 0.01 | 0.03 | 78 | 99 |
| 30 | 0.14 | 0.11 | 281 | 268 |
| 32 | 0.06 | 0.38 | 1064 | 200 |
| 34 | 4.17 | 0.09 | 214 | 160 |
| 36 | 6.21 | 1.10 | 1705 | 691 |
| 38 | 67.55 | 0.18 | 360 | 87 |
| 40 | 152.03 | 28.78 | 40924 | 1898 |
| 42 | 1416.95 | 2.47 | 2945 | 561 |
| 44 | 1091.55 | 2.25 | 1523 | 378 |

The amount of time used to generate and solve the SAT instances, the number of instances generated, and the number of Williamson sequences found ( $\# W_{n}$ ).

# Roadmap 

## Motivation

## Outline

## Williamson Matrices

Programmatic SAT

Enumeration Method

Conclusion

## In summary

- We have demonstrated the power of the SAT+CAS paradigm and the programmatic SAT paradigm by applying them to the combinatorial Williamson conjecture.
- Provided an enumeration for the first time of Williamson sequences for even orders up to $\$ 464$.
- Shown that Williamson matrices are much more numerous in even orders. (No odd order is known for which $\# W_{n}>10$, yet $\# W_{64}=95,504$.)


[^0]:    ${ }^{1}$ W. H. Holzmann, H. Kharaghani, B. Tayfeh-Rezaie, Williamson matrices up to order 59, Designs, Codes and Cryptography.

[^1]:    ${ }^{2}$ Building bridges between symbolic computation and satisfiability checking. Invited talk, ISSAC 2015.

[^2]:    ${ }^{3}$ J. Liang et al., Exponential Recency Weighted Average Branching Heuristic for SAT Solvers, AAAI 2016

[^3]:    ${ }^{4}$ V. Ganesh et al., LYnx: A programmatic SAT solver for the RNA-folding problem, SAT 2012

