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Brute-brute force has no hope. But clever, inspired
brute force is the future.

Dr. Doron Zeilberger, Rutgers University, 2015
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Motivation

I Many conjectures in combinatorics concern the existence or
nonexistence of combinatorial objects which are only
feasibly constructed through a search.

I To find large instances of these objects, it is necessary to use
a computer with a clever search procedure.

Motivation 4/28



Example

I Williamson matrices, first defined in 1944, were enumerated
up to order 59 in 2007 but only for odd orders1. They had
never been enumerated in even orders until this work.

I We exhaustively enumerated Williamson matrices up to
order��ZZ44 64 and found that they are much more abundant in
even orders than odd orders.

1W. H. Holzmann, H. Kharaghani, B. Tayfeh-Rezaie, Williamson matrices
up to order 59, Designs, Codes and Cryptography.
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Motivational quote

The research areas of SMT [SAT Modulo Theories]
solving and symbolic computation are quite
disconnected. [. . . ] More common projects would
allow to join forces and commonly develop
improvements on both sides.

Dr. Erika Ábrahám, RWTH Aachen University, 20152

2Building bridges between symbolic computation and satisfiability
checking. Invited talk, ISSAC 2015.
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How we performed the enumeration

I Used a reduction to the Boolean satisfiability problem
(SAT).

I Used a SAT solver coupled with functionality from
numerical libraries and a computer algebra system (CAS)
to perform the search.

I Used the programmatic SAT solver MapleSAT3 which
could programmatically learn conflict clauses, through a
piece of code specifically tailored to the domain.

3J. Liang et al., Exponential Recency Weighted Average Branching
Heuristic for SAT Solvers, AAAI 2016
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The MathCheck2 system

Uses the SAT+CAS paradigm to finitely verify or
counterexample conjectures in mathematics, in particular the
Williamson conjecture.

Williamson
conjecture Generator MapleSAT

Maple,
FFTW

FFTW

Williamson matrices Counterexample

Partial assignment Conflict clause

SAT instance

Instance solutions

Domain-specific
information

https://sites.google.com/site/uwmathcheck/
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The Williamson conjecture

It has been conjectured that an Hadamard matrix of
this [Williamson] type might exist of every order 4t,
at least for t odd.

Dr. Richard Turyn, Raytheon Company, 1972
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Disproof of the Williamson conjecture

I Dragomir Ðoković showed in 1993 that t = 35 was a
counterexample to the Williamson conjecture, i.e.,
Williamson matrices of order 35 do not exist.

I His algorithm assumed the Williamson order was odd.
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Williamson matrices

I n × n matrices A, B , C , D with ±1 entries
I symmetric
I circulant (each row is a shift of the previous row)
I A2 +B2 +C 2 +D2 = 4nIn
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Williamson sequences

Williamson matrices can equivalently be defined using sequences:

I sequences A, B , C , D of length n with ±1 entries
I symmetric
I PSDA(s) + PSDB (s) + PSDC (s) + PSDD(s) = 4n for all

s ∈ Z.

The values of the PSD (power spectral density) of X are the
squared absolute values of the discrete Fourier transform of X .
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PSD criterion

Since PSD values are non-negative and

PSDA(s) + PSDB (s) + PSDC (s) + PSDD(s) = 4n ,

if PSDX (s) > 4n for some s then X is not a member of a
Williamson sequence.

Problem
How can the PSD criterion be encoded in a SAT instance?
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Solution: Programmatic SAT

I A programmatic SAT solver4 contains a special callback
function which periodically examines the current partial
assignment while the SAT solver is running.

I If it can determine that the partial assignment cannot be
extended into a satisfying assignment then a conflict clause
is generated encoding that fact.

Williamson
conjecture Generator MapleSAT

Maple,
FFTW

FFTW

Williamson matrices Counterexample

Partial assignment Conflict clause

SAT instance

Instance solutions

Domain-specific
information

4V. Ganesh et al., Lynx: A programmatic SAT solver for the
RNA-folding problem, SAT 2012
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Programmatic PSD criterion

I Given a partial assignment, we compute PSDX (s) for
X ∈ {A,B ,C ,D} whose entries are all currently set.

I If any PSD value is larger than 4n then we generate a clause
which forbids the variables in X from being set the way
they currently are.
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Programmatic results

I The programmatic approach was found to perform much
better than an approach which encoded the Williamson
sequence definition using CNF clauses:

order n programmatic speedup
20 4.33
22 7.00
24 7.12
26 27.00
28 52.56
30 52.21
32 58.16
34 138.37
36 317.61
38 377.84
40 428.71
42 1195.99
44 2276.09
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A Diophantine equation

The PSD criterion for s = 0 becomes

rowsum(A)2 + rowsum(B)2 + rowsum(C )2 + rowsum(D)2 = 4n .

In other words, every Williamson sequence provides a
decomposition of 4n into a sum of four squares.

I There are usually only a few such decompositions.
I A CAS (e.g., Maple) has functions designed to compute

the decompositions.
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Compression

When n is even we can compress a sequence of length n to
obtain a sequence of length n/2:

A = [a0, a1, a2, a3, a4, a5, a6, a7, a8, a9]

A ′ =
[
a0 + a5, a1 + a6, a2 + a7, a3 + a8, a4 + a9

]
.
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Ðoković–Kotsireas theorem

Any compression A ′, B ′, C ′, D ′ of a Williamson sequence
satisfies

PSDA ′(s) + PSDB ′(s) + PSDC ′(s) + PSDD ′(s) = 4n

for all s ∈ Z.
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Using compressions

I For a given even order n , searching for compressed
Williamson sequences is easier than searching for
uncompressed Williamson sequences.

I With the help of a CAS we can generate all possible
compressions.

I For each possible compression, we generate a SAT instance
which encodes the problem of ‘uncompressing’ that
sequence.
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Example SAT instance

If A ′ = [2,−2, 0] was a possible compression, this implies that

a0 + a3 = 2

a1 + a4 = −2

a2 + a5 = 0

From which we generate the SAT clauses (with ‘true’
representing 1 and ‘false’ representing −1)

a0 ∧ a3

¬a1 ∧ ¬a4

(a2 ∨ a5)∧ (¬a2 ∨ ¬a5)
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Results

n Gen. time (m) Solve time (m) # instances #Wn
2 0.00 0.00 1 1
4 0.00 0.00 1 1
6 0.00 0.00 1 1
8 0.00 0.00 1 1
10 0.00 0.00 2 2
12 0.00 0.00 3 3
14 0.00 0.00 3 7
16 0.00 0.00 5 6
18 0.00 0.01 22 40
20 0.00 0.01 21 27
22 0.00 0.01 22 27
24 0.00 0.06 176 80
26 0.01 0.01 24 38
28 0.01 0.03 78 99
30 0.14 0.11 281 268
32 0.06 0.38 1064 200
34 4.17 0.09 214 160
36 6.21 1.10 1705 691
38 67.55 0.18 360 87
40 152.03 28.78 40924 1898
42 1416.95 2.47 2945 561
44 1091.55 2.25 1523 378

The amount of time used to generate and solve the SAT instances, the number of
instances generated, and the number of Williamson sequences found (#Wn ).

Enumeration Method 26/28



Roadmap

Motivation

Outline

Williamson Matrices

Programmatic SAT

Enumeration Method

Conclusion

Conclusion 27/28



In summary

I We have demonstrated the power of the SAT+CAS
paradigm and the programmatic SAT paradigm by applying
them to the combinatorial Williamson conjecture.

I Provided an enumeration for the first time of Williamson
sequences for even orders up to��ZZ44 64.

I Shown that Williamson matrices are much more numerous
in even orders. (No odd order is known for which
#Wn > 10, yet #W64 = 95,504.)
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