
Vector Rational Number Reconstruction

Curtis Bright
(joint work with Arne Storjohann)

University of Waterloo

June 9, 2011

1 / 12



Rational Number Reconstruction

Given an integer residue r (mod M), find a rational number
a/b such that r ≡ a/b (mod M).

Would like the solution a/b to be unique, so we require the
solution pair (a, b) be small:

|a| ≤ T, 0 < b ≤ T

for a given bound T .

If M > 2T 2 then the solution (if any) is unique.

Example

The reconstruction of −106641 (mod 2000003) with target
bound T = 1000:

−106641 ≡ −995

994
(mod 2000003).
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Motivation

Consider the problem of linear system solving:[ −97 −69 2
−38 69 −88
−36 −15 99

]
x =

[ −86
50
−94

]
=⇒ x =

 691692
1006629
263002
1006629
−664416
1006629

.
Using Hensel lifting, we compute

x ≡
[

8835469671548
3425840105938
1711762724896

]
(mod 1013),

and then find x using entrywise rational number
reconstruction.

Goal: perform less lifting, e.g.,

x ≡
[

469671548
840105938
762724896

]
(mod 109),

and then find x using vector rational number reconstruction.
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Rational Number Reconstruction: The Vector Version

Given a vector r ∈ Zn of images modulo M and a target
length T , find a vector a/b ∈ Qn such that

r ≡ a/b (mod M), 0 <
∥∥[ b a

]∥∥
2
≤ T.

As in the scalar case, M > 2T 2 implies solution uniqueness,
but often we still have uniqueness for smaller M .

Example

Find a vector of size at most T = 1000 which gives a
reconstruction of

[ −11431 5719 −16455 ] mod 40009.

Unique solution: [ 33/231 792/231 −250/231 ], even
though M < 2T 2.

The length of [ 231 33 792 −250 ] is shorter than T .
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The Obvious Approach

Use scalar rational number reconstruction on each of the n
coordinates.

In general this requires M > 2T 2, even if in fact uniqueness
holds for smaller M .

Example

In an attempt to reconstruct [ −11431 5719 −16455 ],
Maple’s iratrecon finds the following:

−11431 ≡ 1/7 ≡ 124/868 (mod 40009)

5719 ≡ 24/7 ≡ 2976/868 (mod 40009)

−16455 ≡ 39/124 ≡ 273/868 (mod 40009)

The length of [ 868 124 2976 273 ] is larger than our
target length of T = 1000.
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The Lattice Approach

Find vectors with length shorter than T in the lattice L
generated by the rows of the matrix

L =


M

..
.

M
1 r1 · · · rn

 ∈ Z(n+1)×(n+1).

Short vectors in L have the general form
[
b br mod M

]
,

and note that a = br mod M .

Example

From our previous example, L would be generated by

L =

 40009
40009

40009
1 −11431 5719 −16455

.
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Continued Example

The LLL lattice basis reduction algorithm can be used to
find short vectors in lattices.

LLL(L) =

 231 33 792 −250
175 25 600 1023
4610 −5057 −1341 −486
−5974 −6569 2380 57


However, when n is large the LLL algorithm is much too
costly to run, and its ability to find short vectors is hindered.

Gradual Sublattice Reduction

Work on the basis L gradually, by iteratively reducing bases
of truncated sublattices of L.

References:

A. Novocin, PhD Thesis, 2008
M. van Hoeij, A. Novocin, LATIN 2010
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Example: Gradual Sublattice Reduction

LLL-reduce the lower-left 2× 2 submatrix of L:[
0 40009
1 −11431

]
LLL

===⇒
[
−7 −1
802 −5601

]
.

Now, any vector which includes the last row must be longer
than T , so the last row is discarded.

Add a column and row and LLL-reduce:[
0 0 40009
−7 −1 −40033

]
LLL

===⇒
[

−7 −1 −24
−10738 −1534 3193

]
Once again, the last row may be discarded.

Add a column and row and LLL-reduce:[
0 0 0 40009
−7 −1 −24 115185

]
LLL

===⇒
[
−231 −33 −792 250
175 25 600 1023

]
Once again, the last row may be discarded.
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A Gradual Sublattice Reduction Invariant

Let c be a small integer constant such that

M > 2(c+1)/2T 1+1/c.

For example, with c = 5 we require M > 8T 6/5.

The gradual sublattice reduction procedure just described
never has to reduce lattices of row dimension more than
c+ 1.

Basic Cost Analysis

The algorithm just demonstrated requires O(n2(logM)3) bit
operations, but both of these factors can be improved upon.
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Optimization 1

Problem: As the gradual sublattice reduction proceeds, the
column dimension of the work bases increases up to n.[

518 74 1776 −1773 −4186 210 −3285
119 17 408 2296 1201 −10765 −214
−994 −142 −3408 −7411 −618 2841 4141

]

Only store the first column. All short vectors in the lattice
have the form

[
b br mod M

]
.

Reconstruct the entries at the conclusion of the algorithm,
for example:

518 · r1 = −5921258 ≡ 74 (mod M).

The running of LLL only requires the quantities in the
Gramian matrix LLT, not the vector entries themselves.
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Optimization 2

The running time of LLL variants with respect to the
bitlength of the vector entries has been improved in recent
years.

References:

P. Q. Nguyen, D. Stehlé, SIAM Journal on Computing 2009.
I. Morel, D. Stehlé, G. Villard, ISSAC 2009.
A. Novocin, D. Stehlé, G. Villard, STOC 2011.

We employ the L2 algorithm to achieve a O(n(logM)2) bit
operation cost.
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Conclusion: Scalar vs. Vector Reconstruction

Using p-adic lifting, we reconstruct the solution x from its
image x mod M , where M = pk for large enough k.

Let T be the maximum of the magnitudes of the
denominator and numerators of x.

scalar reconstruction requires: M ∈ Ω(T 2)

vector reconstruction requires: M ∈ Ω((
√
nT )1+1/c)

The number of bits in M required to solve n dimensional
linear systems with ±1 entries:

n Scalar RatRecon VecRecon c = 5

200 1061 642
400 2398 1444
800 5349 3215
1600 11806 7090
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