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Rational Number Reconstruction

e Given an integer residue r (mod M), find a rational number
a/b such that » = a/b (mod M).

e Would like the solution a/b to be unique, so we require the
solution pair (a,b) be small:

la| <T, 0<b<T

for a given bound 7.

o If M > 2T? then the solution (if any) is unique.

Example

| 5\

@ The reconstruction of —106641 (mod 2000003) with target
bound 7" = 1000:

—995
—106641 = — 2 .
066 oo, (mod 2000003)




Motivation

o Consider the problem of linear system solving:

-97 —69 2 —86
—38 69 88 [z= 50 — T =
-36 —-15 99 —-94

e Using Hensel lifting, we compute

8835469671548
T =

3425840105938 } (mod 1013),
1711762724896

691692

1006629
263002

1006629
—664416

1006629

and then find & using entrywise rational number

reconstruction.

o Goal: perform less lifting, e.g.,

469671548
r =

840105938 ] (mod 109),

762724896

and then find @ using vector rational number reconstruction.

v
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Rational Number Reconstruction: The Vector Version

o Given a vector r € Z™ of images modulo M and a target
length 7', find a vector a/b € Q™ such that

r=a/b (mod M), 0< H[b‘a]”z <T.

e As in the scalar case, M > 272 implies solution uniqueness,
but often we still have uniqueness for smaller M.
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Example

o Find a vector of size at most T" = 1000 which gives a
reconstruction of

[ —11431 5719 —16455 | mod 40009.

e Unique solution: [ 33/231 792/231 —250/231 |, even
though M < 2T72.

o The length of [ 231 | 33 792 —250 | is shorter than T




The Obvious Approach

@ Use scalar rational number reconstruction on each of the n
coordinates.

o In general this requires M > 272, even if in fact uniqueness
holds for smaller M.
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o In an attempt to reconstruct [ —11431 5719 —16455 |,
Maple’s iratrecon finds the following:

—11431=1/7 =124/868 (mod 40009)
5719 = 24/7 = 2976/868 (mod 40009)
—16455 = 39/124 = 273/868 (mod 40009)

o The length of [ 868 | 124 2976 273 | is larger than our
target length of T" = 1000.
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The Lattice Approach

e Find vectors with length shorter than 7" in the lattice £
generated by the rows of the matrix

M
L= : e 7nFDx(n+1)

1 r - ry

e Short vectors in £ have the general form [b ‘ br mod M ],
and note that a = br mod M.

| A

Example
e From our previous example, £ would be generated by

40009
40009
40009
1 —11431 5719 —16455
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Continued Example

o The LLL lattice basis reduction algorithm can be used to
find short vectors in lattices.

231 33 792 —250

175 25 600 1023

4610 —5057 —1341 —486
—5974 —6569 2380 o7

LLL(L) =

o However, when n is large the LLL algorithm is much too
costly to run, and its ability to find short vectors is hindered.

v

Gradual Sublattice Reduction

o Work on the basis L gradually, by iteratively reducing bases
of truncated sublattices of L.
o References:
e A. Novocin, PhD Thesis, 2008

e M. van Hoeij, A. Novocin, LATIN 2010




Example: Gradual Sublattice Reduction
o LLL-reduce the lower-left 2 x 2 submatrix of L:

0 40009 LLL -7 -1
1 —11431 802 —5601 |-

Now, any vector which includes the last row must be longer
than 7', so the last row is discarded.

e Add a column and row and LLL-reduce:

0 0 40009 LLL =T -1 —24
-7 —1 —40033 —10738 —1534 3193

Once again, the last row may be discarded.

@ Add a column and row and LLL-reduce:

0 O 0 40009 LLL —231 —33 —792 250 |
-7 -1 —24 115185 17525 600 1023 |

Once again, the last row may be discarded.




A Gradual Sublattice Reduction Invariant

@ Let ¢ be a small integer constant such that

M > 2(C+1)/2T1+1/C.

e For example, with ¢ = 5 we require M > 879/5.

o The gradual sublattice reduction procedure just described
never has to reduce lattices of row dimension more than
c+ 1.

Basic Cost Analysis

o The algorithm just demonstrated requires O(n?(log M)?) bit
operations, but both of these factors can be improved upon.
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Optimization 1
@ Problem: As the gradual sublattice reduction proceeds, the
column dimension of the work bases increases up to n.

918 74 1776 —1773 —4186 210 —3285
119 17 408 2296 1201 —-10765 —214
—994 —142 3408 -—-T7411 —618 2841 4141

@ Only store the first column. All short vectors in the lattice
have the form [b ‘ br mod M]

@ Reconstruct the entries at the conclusion of the algorithm,
for example:

518 -7y = —5921258 = 74 (mod M).

@ The running of LLL only requires the quantities in the
Gramian matrix LLT, not the vector entries themselves.

v
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Optimization 2

@ The running time of LLL variants with respect to the
bitlength of the vector entries has been improved in recent
years.

o References:

o P. Q. Nguyen, D. Stehlé, STAM Journal on Computing 2009.
e I. Morel, D. Stehlé, G. Villard, ISSAC 2009.
e A. Novocin, D. Stehlé, G. Villard, STOC 2011.

e We employ the L? algorithm to achieve a O(n(log M)?) bit

operation cost.
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Conclusion: Scalar vs. Vector Reconstruction

o Using p-adic lifting, we reconstruct the solution & from its
image & mod M, where M = p* for large enough k.

o Let T be the maximum of the magnitudes of the
denominator and numerators of x.

scalar reconstruction requires: M € 2(T?)
vector reconstruction requires: M € 2((y/nT)'*1/¢)

@ The number of bits in M required to solve n dimensional
linear systems with +1 entries:

n Scalar RatRecon VecRecon ¢ =5

200 1061 642
400 2398 1444
800 5349 3215

1600 11806 7090




