Vector Rational Number Reconstruction Version 2

Curtis Bright

August 28, 2009

Rational Number Reconstruction

- Given an integer residue $a \in \mathbb{Z}_{M}$ and a size bound N, the rational number reconstruction problem is to solve

$$
d a \equiv n \quad(\bmod M), \quad d, n \leq N
$$

for $d, n \in \mathbb{Z}$.

- If $M>2 N^{2}$ then there is at most one rational number n / d solution.
- For example, consider $a=25 \in \mathbb{Z}_{97}$ and $N=6$.
> iratrecon(25, 97);

$$
3 / 4
$$

- Lo and behold, $4 \cdot 25 \equiv 3(\bmod 97)$.

Vector Rational Number Reconstruction

- Given an integer residue vector $\boldsymbol{a} \in \mathbb{Z}_{M}^{n}$ and a size bound N, the vector rational number reconstruction problem is to solve

$$
d \boldsymbol{a} \equiv \boldsymbol{n} \quad(\bmod M), \quad\|[d \mid \boldsymbol{n}]\| \leq N
$$

for $d \in \mathbb{Z}$ and $\boldsymbol{n} \in \mathbb{Z}^{n}$.

- For example, consider

$$
\boldsymbol{a}=\left[\begin{array}{lllll}
-23677 & -49539 & 74089 & -21989 & 63531
\end{array}\right] \in \mathbb{Z}_{195967}^{5}
$$

and $N=10^{4}$.

- This has the unique nonzero solution

$$
d=3137 \quad \text { and } \quad \boldsymbol{n}=\left[\begin{array}{lllll}
-3256 & -2012 & 331 & 891 & -1692
\end{array}\right]
$$

i.e.,

$$
\boldsymbol{a} \equiv\left[\begin{array}{lllll}
-3256 & -2012 & 331 & 891 & -1692
\end{array}\right] / 3137 \quad(\bmod 195967)
$$

- Even though the solution is unique, Maple can't find it because M isn't sufficiently larger than N to ensure entrywise uniqueness.
$>\mathrm{a}:=[-23677,-49539,74089,-21989,63531]:$
> map(iratrecon, a, 195967);

[FAIL, \begin{tabular}{l}
-235

,----

269

,

211

303
\end{tabular}

> map(iratrecon, a, 195967, 3256, 3137);

2527	-2245	-957
$[----$,	$-2189 / 4$,	,-----
33	37	$-1934 / 9$,

- Finding a common denominator, we see that

$$
\boldsymbol{a} \equiv\left[\begin{array}{lllll}
-53814 & 16340 & 90815 & -13080 & 12962
\end{array}\right] / 14652 \quad(\bmod 195967)
$$

but this solution vector has norm greater than 10^{5}, and we wanted one less than 10^{4}.

Lattices

- Given a set of vectors, the lattice generated by them is the set of all integer linear combinations of those vectors:

- A set of linearly independent vectors which generate the same lattice is known a basis of the lattice.

Lattice Bases

- Not all bases are created equal, some have needlessly long vectors:

- Many problems, including rational reconstruction, can be posed in the form, 'given this lattice basis with long vectors, find a short nonzero vector in the lattice'.
- The LLL Algorithm finds a vector within a factor of 2^{d} of the shortest nonzero vector in a d-dimensional lattice, and it runs in polynomial time in d.

LLL Algorithm

- LLL is based around the concept of size reduction of a vector \boldsymbol{b}_{i} against a set of vectors $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{i-1}$.
- To do the size reduction against \boldsymbol{b}_{j}, we replace \boldsymbol{b}_{i} with

$$
\boldsymbol{b}_{i}^{\prime}:=\boldsymbol{b}_{i}-r \boldsymbol{b}_{j}
$$

for the $r \in \mathbb{Z}$ which minimizes $\left\|\operatorname{proj}_{\boldsymbol{b}_{j}^{*}}\left(\boldsymbol{b}_{i}^{\prime}\right)\right\|$.

- We want short vectors in the set we are size reducing against. If we had instead...

we can't size reduce \boldsymbol{b}_{2} against \boldsymbol{b}_{1}.
- In a case like this we would want to $\operatorname{swap} \boldsymbol{b}_{1}$ and \boldsymbol{b}_{2}, and then size-reduce.
- Roughly, the Lovász condition is satisfied when \boldsymbol{b}_{i} and \boldsymbol{b}_{i-1} aren't in a case like this.

LLL Pseudocode

for $i:=2$ to n do
size reduce \boldsymbol{b}_{i} against $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{i-1}$
if Lovász condition not satisfied then
swap \boldsymbol{b}_{i-1} and \boldsymbol{b}_{i}
$i:=\max (i-2,1)$

- At the conclusion of the loop, the first i vectors are $L L L$ reduced.

Rational Reconstruction: Lattice Reformulation

- Consider the lattice generated by the rows of the following $(n+1) \times(n+1)$ integer matrix:

$$
\left[\begin{array}{ccccccc}
& & & & & . & M \\
& & & & M & & \\
& M & M & & & \\
1 & a_{1} & a_{2} & a_{3} & \cdots & a_{n}
\end{array}\right]
$$

- For all $d \in \mathbb{Z}$, the vector

$$
\left[\begin{array}{llllll}
d & d a_{1} & d a_{2} & d a_{3} & \cdots & d a_{n}
\end{array}\right]
$$

is in this lattice. Because of the first n rows,

$$
\left[\begin{array}{lllll}
d \operatorname{rem}_{M}\left(d a_{1}\right) & \operatorname{rem}_{M}\left(d a_{2}\right) & \operatorname{rem}_{M}\left(d a_{3}\right) & \cdots & \operatorname{rem}_{M}\left(d a_{n}\right)
\end{array}\right]
$$

is also in this lattice.

- Recall we want to solve

$$
d \boldsymbol{a} \equiv \boldsymbol{n} \quad(\bmod M), \quad\|[d \mid \boldsymbol{n}]\| \leq N
$$

for d and \boldsymbol{n}. Equivalently, we can solve

$$
\left\|\left[d \mid \operatorname{rem}_{M}(d \boldsymbol{a})\right]\right\| \leq N
$$

for d.

- As noted, vectors of this form are in the lattice just considered.
- Therefore, the problem is equivalent to finding vectors shorter than N in the specific lattice we just saw.

Applying LLL Straightforwardly

- The problem instance we saw previously gives raise to the basis matrix

$$
\left[\right]
$$

- Running LLL on this lattice gives the new basis matrix

$$
\left[\begin{array}{cccccc}
-3137 & 3256 & 2012 & -331 & -891 & 1692 \\
\hline-3600 & -8445 & 10430 & -9313 & -10268 & -18111 \\
-4047 & -7044 & 10092 & -8673 & 20465 & -1253 \\
241 & -23114 & 15088 & 22452 & -8240 & 25545 \\
28082 & 18517 & 15535 & -143441 & -3081 & -6026 \\
-11836 & 8162 & 10340 & 34921 & 17628 & -27537
\end{array}\right],
$$

from which the first vector gives a solution to our problem.

- In fact, it is not hard to show that the other vectors do not contribute to a vector shorter than N, using the Gram-Schmidt orthogonalization.

Problems with LLL

- Too expensive; running LLL on the previous lattice requires $O\left(n^{6} \log ^{3} M\right)$ bit operations.
- LLL approximation factor is 2^{n}, much too large for large n.

Iterative Reduction

- However, the structure of the lattice permits a kind of iterative reduction.
- For example, consider only reducing the lower-left 2×2 submatrix:

$$
\left[\begin{array}{ll}
0 & 195967 \\
1 & -23677
\end{array}\right] \stackrel{\text { LLL }}{\Longrightarrow}\left[\begin{array}{cc}
-389 & -96 \\
-149 & 467
\end{array}\right]
$$

- We can use this to help us reduce the lower-left 3×3 submatrix.
- We can tell what the third column would have been, had we kept it around. Note the third column starts out as -49539 times the first column:

$$
\left[\begin{array}{ll|l}
195967 \\
1 & -23677 & -49539
\end{array}\right]
$$

and this is always preserved by size reduction and swaps.

- It follows that we have a basis for the lattice generated by the lower-left 3×3 matrix:

$$
\left[\begin{array}{ccc}
& & \\
& 195967 & 195967 \\
1 & -23677 & -49539
\end{array}\right] \stackrel{\text { same lattice }}{\Longleftrightarrow}\left[\begin{array}{ccc}
-389 & -96 & 19270671 \\
-149 & 467 & 7381311
\end{array}\right]
$$

- We can now run LLL again:

$$
\left[\begin{array}{ccc}
& & 195967 \\
-389 & -96 & 19270671 \\
-149 & 467 & 7381311
\end{array}\right] \stackrel{\text { LLL }}{\Longrightarrow}\left[\begin{array}{ccc}
-538 & 371 & 470 \\
91 & 1030 & -808 \\
27089 & 13738 & 20045
\end{array}\right]
$$

- The last vector can now be thrown away, because the last GSO vector has norm larger than N.

Main Contributions

- If $M>2^{(c+1) / 2} N^{1+1 / c}$, for $c \in \mathbb{Z}_{>0}$ a small constant which can be chosen, then continuing in this way the row dimension of the matrices will be bounded by $c+1$.
- For $c=O(1)$ the bit complexity is $O\left(n^{2} \log ^{3} M\right)$.
- The column dimension of the matrices are bounded by n, but in fact we can get away with only storing the first column. This improves the bit complexity to $O\left(n \log ^{3} M\right)$.
- The last step of Dixon's algorithm for linear system solving is to reconstruct a rational vector $\boldsymbol{x} \in \mathbb{Q}^{n}$ from its modular image $\operatorname{rem}_{M}(\boldsymbol{x})$ when $M=p^{i}$.
- Usual elementwise reconstruction requires $i \approx 2 \log N$.
- This lattice technique requires $i \approx\left(1+\frac{1}{c}\right) \log N$.

